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第1章 はじめに

この講義では、一般にシステムを解析するための強力な手法である数値シミュレーションのなかで、
特に常微分方程式系の解法を概観することにしたい。

まず、事務的なことを：

1.1 参考書

�数値解析入門（三井著、朝倉書店、1985）
�微分方程式の数値解法 I（三井著、岩波講座応用数学、1993）
� Numerical Hamiltonian Problems, J.M. Sanz-Serna and M.P. Calbo, Chapman & Hall 1994

をあげておく。「数値解析入門」は絶版らしいが、常微分方程式の数値解法について初歩から高度な
方法まであつかった日本語でよめる本としてはもっとも優れたものであるといってよいと思う。そ
の次は同じ著者のもうちょっと薄い本で、薄くなったのに内容はあまり減っていないのでちょっと難
しい。

英語でよい本はいくつかあるが、それらは上にあげた本に紹介されている。ここであげたのはハミ
ルトン系（普通の運動方程式で書けるということ）に対して特化した、シンプレクティック法と呼
ばれる方法の概説書である。

あと、数値解析の前に、解けるような常微分方程式とか、解の存在／一意性、安定性等についての
一般理論の概説としては、多数の本があるが、

�新微分方程式対話（笠原著、現代数学社、1970）

は平易な語り口でよい。

1.2 評価

レポート である。講義中にいくつかレポート課題をだすので、そのなかから何題か選んで解答し
てもらう。なお、数値計算法の講義であるので、実際にプログラムをつくってもらうような課題も
ある。

1.3 講義内容

講義案内にも書いたように、以下のようなテーマ（1つ 1週というわけではない）を扱う。
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1. なぜ数値解法をやるかということ
2. 常微分方程式の解の存在と数値解
3. 解法 I ：ルンゲ・クッタとそのバリエーション
4. 解法 II ：線形多段階法
5. 解法 III：補外法
6. 安定性と大域誤差|数値解はどれほど「正しい」か I

7.「硬い」方程式とそのための解法
8. ハミルトン力学系とそのための解法
9. 後退誤差解析|数値解はどれほど「正しい」か II

10.「振動的に硬い」方程式
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第2章 なぜ数値解法をやるのかということ

4学期の講義のなかで、システム数理 I では線形システムの特に制御理論をあつかったことと思う。
線形システムというのは、基本的に、系が（近似的に）線形の方程式で記述できる、いいかえれば

dx

dt
= Ax+ y (2.1)

の形に書けるもののことである。この系の良いことは、答がわかるということである。一変数なら
もちろんだが、多変数、あるいは高次の導関数があるようなものでも、線形である限り答えは固有
解の重ね合わせでかける。

こういうシステムというのは、工学的な応用上は重要である。例えば、ちょっと昔のオーディオ機
器を考えてみると、これはテープとかレコードに信号が記録されていて、それを読みとって増幅し
て音にする。ここで、レコードから信号を読み出すピックアップ、それを増幅するプリアンプ、メ
インアンプ、さらにはスピーカのそれぞれが、入ってきた信号をなるべく忠実に増幅したり、ある
いは位置変化を電気信号に変えたり、あるいは電気信号を空気の振動に変えたりする。

そのほか、人工システムというのは、たいてい、線形な振舞いをするようになっているものである。
これはどうしてかというと、線形でないようなものは設計のしかたとか、使い方がよくわからない
からである。

もちろん、線形の逆の極端になればまたそれは振舞いが簡単になる。その例はディジタル回路であ
り、これは線形とは逆に、入力、出力がともに on|o� の 2値であらわされるわけである。

こういうわけで、例えばエレクトロニクスでは、回路というのは線形（リニア）回路（アナログと
いうよりリニアの方が使われる）とディジタル回路にわかれるということになる。

ここで注意しなければいけないことは、こういった、線形とかディジタルというのは、あくまでも
「理想化」に過ぎないということである。なにがいいたいかといえば、工学的に作ったものでも、理
想的に線形であるということはなくかならず非線形性がある。（ディジタルはちょっと話がちがって、
理想的であるといってもいい）

例えば抵抗というものを考える。これはオームの法則

I = V=R (2.2)

に従うと高校では教わるわけだが、もちろんものごとはそんなに簡単ではない。簡単ではない理由
はいろいろあって、一つはまだ線形の範囲で、インダクタンスとかキャパシタンスがあるというこ
と、もう一つはこれら自体が入力信号によって変化するということである。どんなふうに変わるか
というのはいろいろあるけれど、例えばどんどん電圧をあげていけば発熱して温度が上がり、抵抗
が大きくなる。もっとどんどん電圧をあげていくといつかは燃えはじめて、切れてしまったりもす
るわけである。

バネ、あるいは一般に機械的変形というものを考えても同じことで、ある範囲では線形に振舞うが
変形が大きくなると応答が非線形になり、そのうちに壊れてしまう。
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というわけで、工学的に作るものというのは、わりと線形の範囲で使うものが多い。これにはいろ
いろな理由があるが、もっとも大きいものは、線形でないと答がわからない ということである。何
か目的があってものをつくるわけだから、どう作ったらどう動くかということが簡単に計算出来な
いといけない。このためには線形性というのは本質的である。

しかし、自然システムの方をみれば、非線形なものはいくらでもある。そういったものは、解（つ
まり、たとえば時間変化）が固有関数では書けない。また、それだけではなく、多くの場合に「可
積分」ではないということがわかっている。

2.1 可積分と非可積分

ここでいう可積分性とは、系の振舞いが十分な数の保存量によって制限されていて、それらと時間
の関数の形に解が書き下せるということである。例えば 1 次元調和振動子

d2x

dt2
= �x (2.3)

を考えてみると、この解というのは xと v = dx=dtの空間では円上を等角速度で運動することにな
る。従って、初期条件がわかれば任意の時刻での「解がわかる」。数学的には、ハミルトン系（普通
の、運動方程式が書けるような系。ただし、摩擦とかがない理想的なもの）では、自由度の数の 2

倍マイナス 1個だけ保存量があれば可積分であるということになる。

N 自由度のハミルトン系の状態は 2N 次元の空間のなかの 1点として表現でき、系の時間発展はそ
のなかの軌道として表現できる。大雑把にいうと、保存量が 1つ増えれば解（軌道）の存在できる
空間が 1次元減る。2N � 1あると 1 次元に落ちるわけである。

自由度が増えたり、あるいは非線形の方程式になっても、もちろんこのような解がある場合という
ものもある。例えば、太陽の回りの惑星の運動というのは、（惑星が 1つだけなら）可積分である。
これは、周期解があるということからも想像がつくであろう。

しかし、惑星が 2つになって、そのあいだの相互作用があると、これはもう可積分ではない。この
場合にも、相互作用の効果を近似的に付け加えていく摂動法のようなものが使える場合もあるが、
それでは済まないような場合も無数にある。

たとえば、図に示すのは、3体問題の計算例である。これは 1981年にでた論文からとった図であ
る。こういったものは、周期解に近いと思ってなんとかできるものではないということはわかるで
あろう。

こういった、面倒な話というのは世の中にいっぱいあって、可積分とか、それに近いとかいったこ
とを前提にする方法では対応できないわけである。

さて、可積分でないといっても、「解がない」わけではない。上の図はまさにそういった解を示して
いるわけである。

この解を求めるのはどうやったのであろうか？もちろん、計算機で計算してもとめたわけである。
しかし、計算してといわれても、実際にどんなプログラムで何を計算したのだろうか？また、この
答えは「合っている」のだろうか？そもそも計算機で求まった答があっているとか間違っていると
かはどうやって判断するのだろうか？

といったようなことを、この講義では考えていくことにしたい。



2.1. 可積分と非可積分 9





11

第3章 解の存在

まあ、ここまではお話しなので適当にきいていてくれてかまわないんだけど、ここからは本題。

微分方程式系が与えられた時、それに解があるかどうかというのと、それが可積分かどうかという
のは別の概念である。というわけで、「常微分方程式に解がある」とはどういうことかという話をす
る。以下、面倒なので 1変数の場合、すなわち

dx=dt = f(x; t) (3.1)

で話をするが、今日の議論はそのまま多変数に拡張できる。あ、それから、この講義ではほぼ初期
値問題だけを扱う。初期値問題とは、要するに上の方程式のある時刻での解の値（初期条件）が与
えられて、そこから時間（とは限らないが、独立変数）を変えていった時の解が欲しいというもの
である。

境界値問題というものもある。例えば、まっすぐな棒を一方の端でもって支えたら、重力で少し曲
がる。これは、一方の端は固定されていて、他方は自由だが、導関数についてみると条件がつく。
こういうのが境界値問題ということになる。両端でささえたときにどう曲がるかというのも境界値
問題であり、境界条件の付け方がちがう。また、線形の固有値問題というのも応用上は重要である。

解法という観点からすると、境界値問題等は初期値問題の応用と考えられるので、この講義では基
本的に初期値問題を扱うことにしたい。

3.1 初期値問題の解の存在

さて、初期値問題である。直観的には、初期値問題であれば、初期値があればその少し後の値が決
まり、その少しあとの値が決まればまたそのあとも、、、ということで決まっていく（数値解|計算
機で求める解|は実際にそんなふうにする）わけで、そういう方針で構成的な解の存在証明をする
ことも不可能ではない。が、普通の教科書（常微分方程式論の）にのっているのはピカールの方法
というものなので、一応それにそって説明する。

常微分方程式の初期値問題
dx=dt = f(t; x); x(t0) = x0 (3.2)

の t0 � t � t1 での解を考える。今、 関数 f が領域 t0 � t � t1; jx� x0j � b で連続であり、最大
値、最小値をもつとしよう。絶対値が M でおさえられ、 t1 � t0 < b=M という関係がなりたつと
する。さらに、上の範囲の任意の t, xと x0 についてリプシッツ条件

jf(t; x)� f(t; x0)j � Ljx� x0j (3.3)

を満たすものとする。

このとき、上の常微分方程式の初期値問題の解は存在し、しかもただひとつであるというのが。解
の存在と一意性についてのコーシー・リプシッツの定理である。
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以下、証明である。証明のためには、逐次近似といわれる方法を使う。具体的には以下の関数列を
考える。

�0(t) = x0; (3.4)

�k+1(t) = x0 +

Z t

t0

f(t0; �k(t
0))dt0 (3.5)

まず、この関数列が以下の性質をもつということを示す。

1. 連続である
2. x0 � b � �k(t) � x0 + bを満たす

これらは帰納法で示せる。面倒なので省略。次に、この関数列が一様収束することを示そう。この
ためには、級数

1X
p=0

(�k+1(t)� �k(t)) (3.6)

（これは定義により �k+1 � x0と同じもの）の一様収束が示せればよい。

j�k+1(t)� �k(t)j = j
Z t

t0
f(t; �k(t))� f(t; �k�1(t))dtj (3.7)

である。ここでリプシッツ条件から

j�k+1(t)� �k(t)j � Lj
Z t

t0

j�k(t)� �k�1(t)jdtj (3.8)

となる。今、 k = 1の場合について考えると、

j�1(t)� �0(t)j = j�1(t)� x0j =
����
Z t

t0
f(t; x0)dt

���� �M jt� t0j (3.9)

したがって、

j�2(t)� �1(t)j � L

����
Z t

t0

j�1(t)� �0(t)jdt
����

� ML

����
Z t

t0

jt� t0jdt
����

=
ML

2
jt� t0j2 (3.10)

あとは同様にして

j�k+1(t)� �k(t)j � MLk

(k + 1)!
jt� t0jk+1 (3.11)

がいえる。従って、右辺の和が一様収束すれば左辺も一様収束する。ところが、右辺の和は指数関
数のテイラー展開になっているので一様収束する。つまり、極限が存在する。

この級数の極限は、結局もとの方程式の解になっている。なお、一意性についての証明は面倒なの
で省略する。

さて、ここまででは、リプシッツ条件を満たす狭い範囲でしか解が出来ていないが、一般にはその
先に延ばしていくことが出来る。これを解の延長という。

ここで求まって（というか、あることが示された）解は、可積分でなくても存在するということを
もう一度注意しておく。前に示した 3体問題の解は、そういう意味で存在しているわけである。
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先週は、駆け足で常微分方程式の解の存在を示した。今日は、数値解法のもっとも単純なものであ
る Euler 法を題材に、常微分方程式の数値解とはどういうものかについて考えていこう。

あ、それから、この講義ノートは

http://grape.c.u-tokyo.ac.jp/ makino/kougi/system suuri4 1998/overall.html

にあるので、前回こなかった人とかは参考にしてみてほしい。

というわけで、 Euler 法とは何かということから始めよう。

4.1 Euler 法|一変数の場合

まず、一変数の場合を考えよう。微分方程式の初期値問題

_x = f(x; t); x(t0) = x0 (4.1)

に対して、（前進）オイラー法とは以下のような方法である。

時刻 ti での数値解が xi であったとすると、時刻 ti+1 = ti +�t での数値解を

xi+1 = xi +�tf(xi; ti) (4.2)

という形に書く。

t

x

t
i

x
i

x
i+1

t
i+1

上の図に様子を示す。ここでは、真の解（がわかっているものとして）を曲線で示し、そこから出
発したとした。
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やっていることはなんということはなくて、真の解に対する時刻 ti での接線を数値解ということに
しようということである。

ある時刻 ts での初期条件が与えられて、 te での解を求めようという時に、例えばその区間を n等
分して

t0 = ts; tk = t0 +�tk; �t =
te � ts
n

(4.3)

というふうに ti を決めてやる。あとは x1 から順に x2; x3; ::::xn と計算していけば、 te = tn での
数値解 xn が求まるわけである。

直観的には、n を大きくしていけば、正しい答えに近付いていきそうな気がするであろう。しかし、
そうなるということをどうやって証明すればいいであろうか？

4.2 例：線形方程式の場合

とりあえず、答がわかっている場合にオイラー法がどう振舞うかということをみてみることにしよ
う。初期値問題

_x = kx; x(0) = 1 (4.4)

の t = 1 での数値解を考える。いうまでもないが、厳密解が x = ektで与えられるわけである。

xi+1 = xi +�tkxi = xi(1 + �tk) (4.5)

なので、
xe = (1 + k=n)n (4.6)

である。指数関数は定義により
et = lim

n!1
(1 + t=n)n (4.7)

と書けるので、問題は、この「数値解」がどれくらい正しいかということであるが、

lim
n!1

xe = ek (4.8)

となり、n!1の極限で数値解が厳密解に一致するということが示せたことになる。上の証明は任
意の係数、初期条件と積分区間に一般化できる。

なお、多変数の場合にもまったく同様に厳密解に収束することが証明できるが、これは計算練習と
いうことにしておく。各自証明を試みること。

4.3 計算機の精度

さて、前節では、とりあえずもっとも簡単な一変数線形の方程式で極限で厳密解が得られるという
ことを証明できたわけだが、じつは実際に計算機で計算してみるとこんなにうまくはいかない。

うまくいかないというのはどういう意味かというと、実際に nをどんどん大きくしていっても、答
が厳密解に近付かなくなるどころかかえって遠ざかっていくということが起きる。これは実際にプ
ログラムをつくって確かめてみればすぐにわかる。
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なぜそういうことが起きるか、また、そうならないようにして意味がある数値解を得るためにはど
うすればいいかというのが、さまざまな数値解法が研究される大きな目標の一つである。ちなみに、
もうひとつの目標は、なるべく短い計算時間で正確な答を得るということである。

計算機で、例えば C でプログラムを書くと、 int と宣言する、普通整数とよぶデータ型と、float

または double と宣言する、普通「実数」とよぶデータ型を必要に応じて使い分ける。微分方程式
の解を求めようという場合なら、普通従属変数には double を使うであろう。

計算機を使う時に「実数」と呼ぶものは、数学的な意味での実数とはもちろん違うものである。な
にが違うかというと、基本的には「有限の桁数」しかないということである。

つまり、数学的な実数というのは、もちろん、連続であるわけで、ということは、たとえば 1.000.....0001

と 0が何個続いても、そういう実数というものはあるわけである。

ところが、計算機では、ある数を有限の情報量（ビット数）で表現する必要がある。今のふつうの
計算機では、例えば C の 
oat なら 32 ビット、double なら 64 ビットを使う。例えば 
oat の場
合、実際の表現は（符号）�(2指数)�（仮数）という形になっていて、符号に 1ビット（0 なら正、
1なら負）、指数に 8ビット、仮数に残りの 23ビットを使う。

仮数は 1 と 2の間を表現すればいいので、0 を 1 ということにして、オール 1（16進数で 7fffff）
を 2� 2�23に割り当てる。指数については、正負両方にとるために、 7f のときに 20 = 1 というこ
とにする。

なお、あと、0 というものを表現する必要があるが、これは「全ビット 0 」が 0ということにする。

ちょっと話が細かくなったが、問題は要するに有限の桁数（ビット数）で表現されているというこ
とである。このために、四則演算、あるいは関数計算をしたときに得られる答というものが、厳密
に正しいわけではなくなっている。つまり、無限小数になるものをどこかで打ち切るので、その分
誤差がでるわけである。

なお、打ち切り方には、切捨て、切り上げ、四捨五入などいろいろあり得るが、最近の計算機は大
抵四捨五入になっている。といっても 2進数なので 0捨 1入 (最近接丸め)ということになる。さら
に細かいことをいうと、捨てるところがちょうど 1 の時にどうするべきかという問題があるが、こ
れはさらにその上が 0 になるほうにもっていく（最近接偶数丸め）ということをする計算機もある。

double であれば仮数が 52ビット、指数が 11ビットになる。

4.4 丸め誤差のある場合の収束性

実は丸め誤差がある場合の計算精度の議論というのはかなり難しい。しかし、このあたりがちゃん
とわかってないと、計算して出てきた答が正しいかどうかということが理解できないので、少し詳
しい解説を試みる。

前にやった、線形方程式の例をそのまま使うことにしよう。式ではわからないので、操作手順（プ
ログラム！）に表してみる。

x = 1;

dt = 1.0/n;

for(i=0;i<n;i++){

x = x + x*k*dt
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}

例えば C で書けばこんな感じだろう。丸め誤差の結果、答がどう変わるかということを考えてみる。

これにはいくつかの方針がありえる。一つは、「悲観的」解析である。（区間解析という専門用語が
ある）つまり、演算毎に、誤差があったら答が最大これだけずれるというのを見積もって、答の両
側に幅をつけていく。もう一つは、「楽観的」解析（確率的解析ともいう）である。丸めが最近接丸
めであるときには、「計算結果は真の値の回りのある幅で一様分布する」と仮定してよい場合が多
い。この時には、計算結果は確率的に真の値の回りをランダム・ウォークすることになる。

これらの 2つの方法は原理的には美しいが、実際にはどちらも役に立たないことが多い。というの
は、現実にはどちらも恐ろしく手間がかかるうえに、悲観的解析はあまりに悲観的であり、楽観的
解析は逆に過度に楽観的であるからである。上の例で、どうなるか考えてみる。

このためには、まず、丸め誤差のモデル化が必要である。いま、簡単のために、任意の演算に対し
て丸め誤差が以下のように表現できるとする：演算の「真の」結果が p であるとき、計算機で表現
された結果は区間 [(1� �)p; (1 + �)p] の間に一様分布する。

まず、区間解析を試みよう。 面倒なので k = 1とし、 k との乗算では誤差は生じないとする。こ
の時、 dt = [(1� �)=n; (1 + �)=n] となり、for の最初の反復の後では

x(1) = [(1 + (1� �)=n)(1� �); (1 + (1 + �)=n)(1 + �)]

' [1 + 1=n� �(1 + 2=n); 1 + 1=n+ �(1 + 2=n)] (4.9)

で、次の反復ではどうなるかとかいって順に計算していけばいいが、これはあまりに大変であるの
で以下の近似を行なう：

�誤差は x + x*dt の、加算のところだけで出る。

これは、通常の場合にはそれほど悪い近似ではない。このときは、結局、数値解が�
1 +

1

n
� �

�n
< x <

�
1 +

1

n
+ �

�n
(4.10)

の範囲にくるということになる。

今、 n >> 1; n� << 1 として展開すれば、

e(1� n�) < x < e(1 + n�) (4.11)

ということになり、 n に比例する誤差が入るということになる。

さて、確率的解析の場合にも同様に上の単純化をすると、結果は誤差の平均値は 0 で分散が n�2 の
程度ということになる。

実際に計算してみると、区間評価では n >
p
1=�で誤差を大きめに、逆に確率評価では n > ��2=3で

小さめに見積もっている。

この、非常に単純な場合には、どちらについてもそのようにずれる理由がわかり、精密な解析を行
なえば誤差のもう少し正しい上限を与えることは不可能ではない。が、解くべき方程式や計算法が
すこし複雑になると、解析が非常に困難になることは注意するべきであろう。

なお、一々丸め誤差のことを考えていると話が進まないので、以下、基本的な話は丸めのことを無
視して、必要に応じて丸めの影響を考えることにする。なお、ふつう「打ち切り誤差」という時に
は、この意味の丸めを無視したもののことである。
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4.5 オイラー法の収束性と打ち切り誤差

線形方程式の場合に、ステップサイズ 0の極限で真の解に収束するということを前に示したわけだ
が、計算機が実際に計算するときにはもちろん有限のステップサイズである。また、上に述べたよ
うに丸めの影響があって、どうせ収束はしない。そうすると、どの程度のステップサイズの時に計
算精度がどうなるかということを知る必要がある。

もちろん、プログラムを書いて、真の解との誤差を調べればいいが、もともと数値解を計算するの
は真の解がわからないからなので、そうはいかないわけである。

以下、一般の微分方程式に対してオイラー法がどのように収束するかということを考えてみる。先
週やった存在定理と同じように、常微分方程式の初期値問題

dx=dt = f(t; x); x(ts) = x0 (4.12)

の t0 � t � t1 での解を考える。今、 関数 f が領域 t0 � t � t1; jx� x0j � b で連続であり、最大
値、最小値をもつとしよう。絶対値が M でおさえられ、 te � ts < b=M という関係がなりたつと
する。さらに、上の範囲の任意の t, xと x0 についてリプシッツ条件

jf(t; x)� f(t; x0)j � Ljx� x0j (4.13)

を満たすものとする。さらに、n; h を、 nh = te � ts を満たすようにとる（nは整数）。

このとき、オイラー法が一様に一次収束する、すなわち、ある定数 Cが存在し、

jxi � x(ti)j � Ch (4.14)

となることを示すことができる。

こんなのは当たり前と思う人もいるかもしれないが、なかなかそうでもない。証明の方針としては、
例によって具体的に xi+1を構成しておく：

xi+1 = xi + hf(xi; ti) (4.15)

今、真の解との差が欲しいので、こちらも書いておくと

x(ti+1) = x(ti) +

Z ti+1

ti

f(x(t); t)dt = x(ti) + hf(x(ti); ti) + O(h2) (4.16)

差をとれば
xi+1 � x(ti+1) = xi � x(ti) + h[f(xi; ti)� f(x(ti); ti)]�O(h2) (4.17)

絶対値をとれば

jxi+1 � x(ti+1)j � jxi � x(ti)j+ jh[f(xi; ti)� f(x(ti); ti)]j+Ah2 (4.18)

ここで A は定数である。今、
ei = xi � x(ti) (4.19)

とおいて、さらにリプシッツ条件から変形して

jei+1j � jeij(1 + hM) +Ah2 (4.20)
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ここで、明らかに e0 = 0 なので、容易に（！）わかるように

jeij � Ah2
i�1X
k=0

(1 + hM)k =
Ah

M
[(1 + hM)i � 1] (4.21)

ここで、 nh = te � ts であったことを思い出すと

(1 + hM)i � 1 � eM(te�ts) � 1 (4.22)

結局、

jyi � y(ti)j � Ah

M
[e(te�ts)M � 1] (4.23)

となる。

というわけで、一応、誤差の上限が存在して、それが hに比例するということが示された。なお、
上限の形をみるとなかなか嫌な格好をしていることがわかる。つまり、時刻依存性が etMの形をし
ているので、積分を先に進めていくと、かならず誤差が指数関数的に増大していくことになる。こ
れは、言い換えれば、長時間積分した場合の精度については理論的にはなかなか難しい問題がある
ということである。この問題については、より詳しくはまたあとで扱うことにしよう。

なお、このような、ある時間範囲で積分したあとの誤差のことを「大域誤差」という。これに対し、
１ステップだけ積分したあとの誤差を局所誤差、あるいは局所離散化誤差という。

4.6 後退オイラー法

オイラー法では、
xi+1 = xi + hf(xi; ti) (4.24)

という風に、 ti のところの量だけを使って xi+1を計算した。これの変形として、

xi+1 = xi + hf(xi+1; ti+1) (4.25)

というものを考えることができよう。これでは、 ti+1のところの量が使われる。

この場合、左辺値が右辺に入っているので、全体として xi+1 についての代数方程式になっている。
この方程式を解くことによって新しい時刻での値がわかるという仕掛けになる。

このようなやり方のことを一般に陰的公式 implicit scheme と呼ぶ。それに対して、方程式を解か
なくても新しい時刻での値が直接計算できるものを、陽的公式 explicit scheme と呼ぶ。

この方法は、精度（収束性）についてはオイラー法と変わらないが、一々方程式をとかないといけ
ないので計算はずっと大変になる。が、それ以上にメリットがある場合もあり、そういった問題に
は後退オイラー法、あるいはそれに由来するようないろいろな方法が使われる。

4.7 もう少し賢い方法

オイラー法は、すでに述べたように 1次収束しかしない。つまり、計算精度をあげていこうとする
と、それに比例して計算量が増えてしまう。また、ステップ数が大きくなるので丸め誤差の影響が
出てくる。それでは、もう少し賢い方法はないのであろうか？
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もちろん、賢い方法はいろいろあるわけである。この講義では、主に以下の 3 つのクラスの公式を扱
う。ほかのものもないわけではないが、実用になっているのはほぼこの３つに限られるからである。

1. ルンゲ・クッタ法
2. 線形多段階法
3. 補外法

とりあえず、次回（ともう一回くらい？）でルンゲ・クッタ法を扱う。
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第5章 ルンゲ・クッタ法

ルンゲ・クッタ法というのは、ある一般的な形に書ける公式のクラスであるが、ちょっとわかりに
くいのでまず例をあげておこう。

5.1 二次のルンゲ・クッタ法

以下のような計算法を考える

k1 = xi +
h

2
f(xi; ti)

xi+1 = xi + hf(k1; ti + h=2) (5.1)

これは二次の公式になっている。

5.2 公式の次数について

ここで、局所離散化誤差という概念を導入する。これは以下のように定義される。 (ti; xi) から出
発した数値解が xi+1であったとし、また厳密解が x(t)であるとする。これは、あくまでも xi から
の解|局所的な解|であって、初期条件からの解ではないことに注意して欲しい。この時に、数値
解の局所離散化誤差が m次であるとは、

x(ti+1) = xi+1 +O(hm) (5.2)

という関係を満たすこと、言い換えれば、ある定数 Aが存在して、

jx(ti+1)� xi+1j � Ahm (5.3)

なる関係を満たすことである。Aは方程式に依存してよいが、hには依存しない必要がある。

なお、ある公式が m次の局所離散化誤差を持つ時、大域誤差は m� 1次になる。これは、先にやっ
たオイラー法の一次収束の証明とまったく同様に行なうことができる。従って、誤差について議論
するには、とりあえず局所離散化誤差がわかればいいということになる。

オイラー法の局所離散化誤差は、
xi+1 = xi + hf(xi; ti) (5.4)

と、ti での xの真の解のテイラー展開

x(ti + h) = xi + h
dx

dt
+
h2

2

d2x

dt2
+ O(h3) (5.5)

を比べてみればわかるように、O(h2)になっている。
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上に書いた方法はどうなっているかというのを考えると、少し計算すればわかるように、O(h3) に
なっている。従って、局所で 3次、大域誤差で 2次になるわけである。

これは、例えば 1 次では必要な精度を実現するのに 100万ステップ必要であったものが、大雑把に
いってその平方根の 1000 ステップで済むということになる。

5.3 RK法の一般形

2次の Runge-Kutta 法とは、以下のようなものであった。

k1 =
h

2
f(xi; ti)

xi+1 = xi + hf(xi + k1; ti + h=2) (5.6)

これについては、図的な説明というものが可能である。元の点からまずオイラー法と同様に接線を
引く。が、これを次の時刻まで延ばすのではなく、ステップの半分のところで止める。で、ここで
もう一回微分方程式の右辺を評価する。ここでの導関数の値を使って、もとのところ (ti; xi) から
直線を引くわけである。

t

x

t
i

x
i

step 1

step 2

t
i+1

h

実は、2次精度を実現する RK型の公式というのはこれ一つではない。以下のようなものも可能で
ある。

k1 = hf(xi; ti)

k2 = hf(xi + k1; ti+1)

xi+1 = xi +
k1 + k2

2
(5.7)

さらに、これらの公式を含む一般的な公式を与えることもできる。

もっと一般には、以下の形に書くことができる。
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xn+1 = xn + h
sX

i=1

biki

ki = f(xn + h
sX

j=1

aijkj ; tn + cih) (5.8)

自然数 s を段数（number of stages）という。 aij, bi, ci はパラメータであるが、a と c は普通

ci =
sX

j=1

aij (5.9)

となるようにとる。これは、一般にそうでないような公式は不可能ではないがあまりいいことがな
い（精度がよくならない）からである。

と、こう、式に書いてしまうとすぐにはわからないが、例えば s = 2の場合に書き下してみると

xn+1 = xn + h(k1b1 + k2b2)

k1 = f(xn + h(a11k1 + a12k2); tn + c1h)

k2 = f(xn + h(a21k1 + a22k2); tn + c2h) (5.10)

と、まあ、こんな感じになる。こちらを良く見ればすぐにわかるように、

1. aij (j � i) がすべて 0ならば、k1から順に計算していくことができる。つまり、「陽的」公式
になっている。

2. aij (j > i) が 0のときは、各 ki についての式に ki だけが入ってくる。これを半陰的 (semi-

implicit) 公式という。この場合には、まず k1 についての方程式をといて、次に k2 についての
を解いて、、、と順番に計算出来る。

3. 上のような制約が全くない時は、「陰的」公式ということになる。このときは、すべての ki に
対する（一般には非線形な）方程式を一度に解く必要がある。

前の後退オイラー法の場合と同様、なぜ陰的公式といった面倒なものをつくるかというのはよくわか
らないかもしれない。これについてはあとで説明するとして、まず、陽的公式の例について述べる。

5.4 古典的 Runge-Kutta法

陽的ルンゲ・クッタ法のなかでもっとも広く使われているのが「古典的」といわれる公式である。
書き下すと、

xn+1 = xn + h(k1=6 + k2=3 + k3=3 + k4=6)

k1 = f(xn; tn)

k2 = f(xn + hk1=2; tn + h=2)

k3 = f(xn + hk2=2; tn + h=2)

k4 = f(xn + hk3; tn + h) (5.11)

というものである。これは、いろいろ良い性質をもつ。例えば
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1. aij が i� j = 1 以外すべて 0なので、右辺の計算が楽である。
2. 次数が 4次であり、4段陽的公式で到達可能な最高次数を達成している
3. 係数が簡単な有理数なので、プログラムしやすい。また丸め誤差を小さくできる。

この公式が 4 次であることを示すのは、それほど簡単ではない。腕力に自信があるひとは挑戦して
みて欲しい。

5.5 陽公式の到達可能次数

理論的、あるいは実用上重要なのは、段数を決めた時に、次数がいくつまで可能かということであ
る。が、これは一般の場合には未解決であり、以下の結果しかわかっていない

s 1 2 3 4 5 6 7 8 9 10 s � 10

p 1 2 3 4 4 5 6 6 7 7 p � s� 2

ある段数で、到達可能な最高次数を達成する公式というのは一通りではない。2段 2次の場合でも、
自由パラメータが一つあって「無限個」の公式があり得るわけである。段数が増えれば自由パラメー
タの数も増える。

それではどういう公式を使うべきかというのは、精力的な研究が行なわれてきた。問題にもよるが、
例えば

1. 局所離散化誤差の係数が小さい
2. 係数の数字が簡単な有理数になる
3. 係数に 0が多い

というようなことはそれぞれ実用的には重要である。そのような条件を満たす公式が多数提案され
ている。

Dormand と Prince は、最近、段数／次数のさまざまな組合せについて、局所離散化誤差を非常に
小さくした公式を求めた。

5.6 刻み幅調節と埋め込み型公式

さて、高次の公式を使うにしても、実際に問題を解こうという上ではいろいろ考えないといけない
ことがある。もっとも重要なことは、刻み幅 h をどうやって決めるかということである。

前にやった大域誤差解析では、ある範囲で導関数（高次の公式なら一般に高次の導関数）が最大値
を持てば、その最大値と刻み幅の関数で数値解の誤差が押えられるという話をした。が、実際問題
としては、解いていくにつれて導関数の値が大きく変わるといったことは普通に起きる。このため
に、刻み幅が一定のままで計算していくというのは非常に無駄なことが多い。

無駄を減らすためには、局所誤差が小さい（解が滑らかな）ところは刻みを大きく、逆に解が急に
かわるところでは刻みを小さくしてやればよい。このような方法を可変刻み (variable step) 、ある
いは適応刻み (adaptive step) という。

例えば Runge-Kutta 法の場合、 xn から xn+1 にいくのに前に計算した情報とかなにかを使うわけ
ではないので、刻み幅は任意にとることができる。問題は、どうやって刻み幅を決めるかである。
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これにはいろいろな考え方があるが、通常使われるのは、局所離散化誤差を推定して、それがある
値以下になるようにするという方法である。

このための一つの考え方は、以下のようなものである。

1. まず、ある幅 h で積分する。
2. 次に、その同じ幅を、 h=2 ずつ 2回に分けて積分する。
3. すると、2回に分けて積分したほうがより正確な答になっていると期待できるので、二つの解
の差が誤差の推定値（大きめではあるが）となっている。

誤差の推定値が求まったら、普通は次のステップを調節する。局所離散化誤差の次数がわかってい
るから、それに応じてステップサイズを調整すればよい。次数プログラムによっては、現在のステッ
プでの誤差が予定した値よりも大きければステップを小さくして計算し直すようになっているもの
もある。

実装（プログラムを作ること）が容易であることもあって、この方法はわりと広く使われている。
が、かなり無駄が多い方法であるというのも確かである。というのは、単に誤差の推定のためだけ
に、 50% の無駄な計算をしているからである。

もうちょっとうまい方法はないかということで、以下のようなことを考えた人がいる。

一般に、 RK型の公式では、最終的な値は

xn+1 = xn +
sX

i=1

biki (5.12)

の形になっている。ここで、 ki は全部そのまま使って、 bi を別の b0iに置き換えた

x0 = xn +
sX

i=1

b0iki (5.13)

で、局所離散化誤差が元の公式よりも大きいが、むやみと大きくはない（例えば、一次次数が低い）
ものがあれば、元の公式との差を誤差の推定に使うことができる。

この形の公式のことを埋め込み型 embedded公式という。最初に提案した人の名前をとって Runge-

Kutta-Fehlberg 公式ということも多い。これもいろいろ提案されているが、上の Dormand-Prince

公式はすべて埋め込み型であり、これが最近はもっとも広く使われている。精度が高いものが必要
な時は、 8次の公式が使われる。これらは

http://www.unige.ch/math/folks/hairer/software.html

から入手できる (Fotran と C がある)。
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第6章 陰的ルンゲクッタ公式

陰的公式については、以下の強力な結果が知られている：

「s段陰的公式の到達可能次数は 2s である。」

これのため、いくらでも次数の高い公式をつくることができる。陽的な場合には 8次よりも高次の
ものはほとんど知られていないのとは対照的である。

これは単なる存在証明ではなく、実際に 2s 次の公式が構築されている。これは実はユニークに決
まり、「陰的ガウス公式」と呼ばれるものがそれである。以下、陰的ガウス公式と、それに関係した
いくつかの公式についてその導出の原理と計算法を簡単に説明しよう。

6.1 ガウス型数値積分

ガウス型公式について述べる前に、まずそれと非常に関係の深い数値積分公式について説明して
おく。

数値積分とは、一変数であれば
y = f(x) (6.1)

と、微分方程式ではなく単に関数として与えられたものに対して、ある固定区間 (ts; te)での定積分
を数値的に求めることである。一般に、解析的に積分ができないようなものを計算しないといけな
いことはよくあるので、そういうものが必要になることは多い。

数値積分法として、すでに皆さんが知っているであろうものは、たとえば

�台形公式
�シンプソン公式
�ロンバーグ加速

といったものであろう（知らない人は適当な数値計算の教科書で勉強したほうがいいかも）。なお、
ロンバーグ加速については後でもう少し詳しく説明する。

例えば台形公式は、等間隔に区間を分けたとして、ある部分区間での積分を

si =
h[f(xi) + f(xi+1)]

2
(6.2)

と、両端を結んだ台形の面積で近似するということに相当する。これに対して、もっとましな方法
というのを理論的に考えられないであろうか？

一つの方法は、区間の中の点をいくつかとって、それらを通る補間多項式を作り、それを積分する
ことである。中の点を等間隔にとったものをニュートン・コーツ型の公式という。

さて、一般に補間するための点を p個とった時、 p� 1次の多項式を持ってくればそのすべての点



28 第 6章 陰的ルンゲクッタ公式

を通るように出来る。ニュートン・コーツ型の公式はそのような最小次数多項式を使うものである。
例えばもとの関数が実際に p� 1 次以下の多項式ならば、厳密に正しいものが求まる。

この補間の原理を説明しておく。例えば補間に使う点が (x1; :::xi; :::xn) とあるとすれば、以下のよ
うな多項式を考える

pi(t) =
(x� x1)(x� x2):::(x� xi�1)(x� xi+1):::(xi � xn)

(xi � x1)(xi � x2):::(xi � xi�1)(xi � xi+1):::(xi � xn)
(6.3)

この多項式は、 x = xi で 1、それ以外のすべての xjで 0になる。従って、補間多項式は

fn(x) =
X

pi(x)yi (6.4)

とすればいい。

数値積分に使うには、あらかじめ pi(t)の積分を求めておいて、それと yiを掛けて和をとるだけであ
る。等間隔でなく点をとることで精度をあげることはできないかというのが、ここでの問題である。

ここで、一般的に、不等間隔に点をとってなんとかするという観点から考えることもできるが、な
かなか難しいので答のほうから考えていく。

答は、「ガウス・ルジャンドルの多項式の零点を点にとると、次数を最大にできる」というものであ
る。ガウス・ルジャンドルの多項式は、有限区間で帰納的に定義できる直交関数系である。つまり、
最初の項を定数として、k番目の項は k次多項式であって、それまでの項すべてと直交するように
とるのである。つまり、関数基底 (1; x; x2; :::xk::)にグラム・シュミットの直交化を適用したものが
ガウス・ルジャンドルの多項式である。

6.2 数値積分に関する話の続き

ニュートン・コーツ型の公式の一般形についてはすでに説明したが、あれでは具体的なことが良く
わからないと思うので例によって次数が低いものを構成してみる。

y = f(x) (6.5)

を区間 [x0; x1]（これは、すでに適当に分割したあとの狭い区間であると思って欲しい）で数値的
に積分するのに、例えば関数を 1度だけ計算するとすれば、以下のようにいろいろなものが考えら
れる

hf(x0) 左端で関数を計算

hf(x1) 右端で関数を計算

hf((x0 + x1)=2) 中点で関数を計算

(6.6)

これらは、それぞれ、その区間で関数の値が定数であると近似して、その定数を積分したというふ
うに解釈できる。もちろん、中点以外の任意の点をとることも考えられる。

計算精度という観点からは、中点をとることには非常に特別な性質がある。つまり、この場合だけ
局所誤差が O(h3) になるのである。これは、テイラー展開の 1次の項が積分すると消えることから
容易に示すことができる。というわけでこれには名前がついていて、中点公式という。
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さて、それでは、2度計算していいとすればどうであろうか？普通に考えつくのは先週も書いた台
形公式である。つまり、関数を

f1(x) = f(x0) +
f(x1)� f(x0)

h
(x� x0) (6.7)

で近似して、それを積分して求まる

si =
h[f(xi) + f(xi+1)]

2
(6.8)

を積分の値として使うわけである。

台形公式の局所誤差は O(h3) であり、中点公式と同じである。2点も使って、1点しか使わない中
点公式と同じでは意味がないと思う人もいるかもしれないが、実はそうでもない。1区間だけを考
えるとたしかに台形公式は 2点使うが、ある区間の左端はもちろんその左の区間の右端なので、関
数の値は同じだからである。つまり、全体を n個の区間に分けた時、中点公式では n回関数を計算
するが、台形公式ではそれより 1多い n+ 1回計算するだけである。

区間の端ではない、一般的な位置に点をとるとすればどうであろうか？以下、面倒なので区間 [�1; 1]
で C1級関数

f(x) =
1X
k=0

f (k)

k!
xk (6.9)

の積分をするということにする（適当な変数変換をすればいつでもこう置き換えられる)。

積分した結果は

S = 2
X

k=0;2;4;:::

f (k)

(k + 1)!
(6.10)

となって、テイラー展開の偶数項しか現れないことに注意して欲しい。

2点の x座標を � と � としたとき、一般的には数値積分の近似式が

S 0 = w�f(�) +w�f(�) (6.11)

の形になる。これで、上の積分を近似するわけだが、0次の項が消えるために w� + w� = 2, また
奇数次の項が出てこないために w� = w� かつ� = �� である必要があることはすぐにわかるであ
ろう。

というわけで w� = w� = 1と決まってしまったので、あと出来ることは � の値を決めることだけ
である。式 6.11を書き直すと

S 0 = f (2)�2 +
f (4)

12
�4 + ::: (6.12)

となるので、

� =
1p
3

(6.13)

とすれば、f (3)までの項を一致させられるということがわかる。

台形公式は � = 1 に相当し、 f 0 までしか消えていないので、ずいぶん精度が上がっていることが
わかるであろう。そのかわり、区間の端の点の再利用が出来ないので、中点公式に比べて計算量が
2倍になっているということに注意しておく。

もうちょっと頑張って 3点にしてみよう。等間隔に点をとるなら両端と中点であり、このときは 2次
曲線で近似して局所誤差は 3次となる。これはいうまでもなくシンプソンの公式である。



30 第 6章 陰的ルンゲクッタ公式

不等間隔の時何が実現できるかだが、ここでは具体的に形を書かない。2点の場合と同様な考察か
ら、区間の中点を 1つ、両側に 1点づつとると、こんどは f (5)までの項を一致させられるというこ
とがわかる。

ここまでの話だと、

�両端を含む n点の等間隔補間で積分公式を作ると、n� 1次の多項式近似になって局所誤差は n

次
�不等間隔で積分公式を作ると、なんだかよくわからないが 2n次

となるような気がする。等間隔の場合はまあいいとして、不等間隔の場合にそううまくいくのであ
ろうか？

6.3 ガウス型公式の次数

前回の資料の最後に書いたように、ガウス型（あるいは、ガウス・ルジャンドル型）積分公式は、
ルジャンドル多項式の零点を点にとるものである。ルジャンドル多項式は有限区間 [�1; 1]で与えら
れる直交関数系である。その k番目の項 Pkは k次多項式であり以下の性質を持つ。

Z 1

�1
Pk(x)Pl(x) = �kl

2

2k + 1
(6.14)

定義はいろいろあるが、

Pn(x) =
1

2n � n!
dn

dxn
(x2 � 1)n (6.15)

と書かれることが多い。

Pnの零点とは、Pn(x) = 0の解のことである。n次ルジャンドル多項式の場合実区間 [�1; 1]に n個
必ず零点がある。これを以下 x1; x2; :::xnとする。

さて、以下でガウス型公式の次数について考える。n点使った時に 2n次になる、いいかえれば 2n�1
次までの多項式については厳密な値を与えるということが予想されるので、これを示すという方針
で考えていく。

任意の 2n� 1次多項式 F2n�1(x) に対して、Pnの全ての零点で値が一致するような n� 1次多項式
Ln�1(x)を構成することができる。これを使うと、

F2n�1 = Pnqn�1 + Ln�1 (6.16)

と書ける。ここで、 qn�1 は n� 1次の多項式である。これを区間 [�1; 1]で積分すると、もちろん
Z 1

�1
F2n�1dx =

Z 1

�1
Pnqn�1dx+

Z 1

�1
Ln�1dx (6.17)

であるが、右辺の第一項の qn�1 は n� 1次多項式であり、n次ルジャンドル多項式 Pnは n� 1次
以下の任意の多項式と直交するので、この積分は 0になる。つまり、

Z 1

�1
F2n�1dx =

Z 1

�1
Ln�1dx (6.18)

となるわけである。というわけで Fの積分を計算するには Lの積分を求めればいい。ところが、L

は n� 1次なので、 n 点での値が決まれば一意に決まり、積分出来てしまう。
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結局、Pn の零点での値を使えば、 F2n�1の積分が計算できたことになる。

さらに厳密な話としては、 2n� 1次よりも高次の項がある関数を近似して積分したときにどのよう
な誤差項が入ってくるかという議論が必要になるが、これは省略する。

一般に、特異点を持たないような性質のよい関数の時には、ガウス型積分公式は非常に強力な方法
であるといえる。

なお、一般の次数の場合、ガウス型公式は

S =
nX

k=1

Wkf(xk) (6.19)

の形をとる。これらの定数の値については適当な参考書を見ること

6.4 微分方程式への積分公式の適用

さて、ここまで数値積分の話をしたわけだが、微分方程式の数値解法と数値積分はもちろん非常に
良く似たものである。が、大きな違いは、数値積分では被積分関数が

y = f(x) (6.20)

と、独立変数の陽な関数として与えられていたのに対し、微分方程式では

dx

dt
= f(x; t) (6.21)

と積分された結果自体に被積分関数がよっていることである。このために、話がすこし複雑になる。

例えば、もっとも簡単な中点公式の場合を考えてみよう。数値積分の場合には、単に

S = hf((x0 + x+ 1)=2) (6.22)

であった。微分方程式の場合、問題は (t0 + t1)=2 での x の値を我々はまだ知らないということで
ある。

この困難は、数値積分が近似多項式の積分として与えられたということを思い出せば一応解決でき
る。中点公式の場合、数値積分ではこれは f を f((x0 + x + 1)=2)で近似するということに相当し
た。同様なアイディアを微分方程式に適用すれば、微分方程式の場合、 f を定数で近似し、その結
果解である x を一次式で近似する、つまり

x̂(t) = x0 + f(x̂(t0 + h=2); t0 + h=2)(t� t0) (6.23)

という近似をする。これから、問題の中点での値を x1=2と書くと

x1=2 = x0 + f(x1=2; t0 + h=2)h=2 (6.24)

と書けるわけで、これは x1=2に対する代数方程式になっている。これを解けば数値解も求まるわけ
である。

一般には、n次のルジャンドル多項式から導かれる公式では、f の n� 1次近似多項式を構成する
ことになる。これを前節と同様 Ln�1とし、零点を tk とすれば、tkでの「解」 xkが

xk = x0 +

Z tk

ts
Ln�1(t)dt; k = 1; 2; :::n (6.25)
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がなり立ち、さらに
Ln�1(tk) = f(xk; tk); k = 1; 2; :::n (6.26)

がなり立つように xk と L を決め、それを積分して te での解が求まるということになる。

と書くと非常に大変そうだが、係数をあらかじめ計算しておけば上の手続きが陰的ルンゲクッタ公
式として表現できる。これで、例えば 4 段で 8 次の公式が実現出来るわけである。

6.5 代数方程式の扱い

さて、上のようなわけで陰的公式というものが構成できるということはわかったが、これを実際に
使うには、 xk に対する代数方程式をとかないといけない。この解き方について簡単に説明してお
こう。

代数方程式といっても、ここで扱うものはほとんど必ず

x = f(x) (6.27)

の形、すなわち、ある関数の不動点を求めるという形になっている。この時は、以下のような反復
を繰り返すことによって解くという方法が考えられる。

xnew = f(xold) (6.28)

これを直接代入法という。

これは容易にプログラム出来て、実際に広く使われる方法である。が、理論的にはいろいろ怪しい。
つまり、

�収束するかどうか
�収束の速さ

というような観点からみて使いものになるのかどうかというのは明らかではない。

しかし、陰的ルンゲクッタから出てくる方程式の場合、これで結構うまくいくことが多い。それが
なぜかということを示す前に、一般に直接代入の収束の速さを調べておこう。

方程式 (6.27)の解が x であるとき、直接代入法での古い近似解と新しい近似解それぞれの真の解
との差は

eold = xold � x

enew = xnew � x (6.29)

(6.30)

となる。下の方を変形し、f を展開すれば

enew = f(xold)� f(x) � df

dx
(xold � x) (6.31)

となる。従って、

�収束するためには jdf=dxj < 1であればよい。
� jdf=dxjが小さいほど速く収束する。
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ということがわかる。

話を陰的ルンゲクッタに戻そう。

また、もっとも簡単な中点公式（陰的中点公式）で考えてみる。解くべき式は、� = h=2 として

x = x0 + f(x; t0 + �)� (6.32)

と書ける。例によってリプシッツ連続条件

jf(t; x)� f(t; x0)j � Ljx� x0j (6.33)

がなり立つとしてよいので、中点公式 6.32の右辺の x による微分が L� で押えられるということが
わかる。つまり、刻み幅を 1=L に比べて小さくとればいいということになる。

なお、これでは済まないような場合もある。これについては後の「硬い」方程式のところで扱うこ
とにする。

6.6 ガウス型以外の陰的公式

陰的ガウス公式は、段数に対して理論上可能な最大次数を達成する、ある意味で「最良」の公式で
ある。が、実用上はいろいろ不便な点もある。例えば、

�最小の段数で最高の次数（精度）を達成しているので、係数に自由度がなくいわゆる「埋め込
み型」の公式が構成できない。

�端の点を使わないので、前のステップでの計算結果の再利用が出来ない。
�完全陰的法なので、計算が大変である

などの問題がある。それぞれの点について改良された沢山の方法が知られている。特に最初の 2つ
については Lobatto-IIIa/b ペアという方法が最近提案され、広く使われるようになりつつある。半
陰的法については別に述べる。
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これまでの数回で、広く使われている公式の一つであるルンゲ・クッタ型公式についてその原理と
実例を簡単に説明した。今日は、同様に広く使われている公式である線形多段階法についてその原
理をまとめる。

7.1 線形多段階法の考え方

ルンゲ・クッタ法は「一段階法」と呼ばれるクラスに属する。一段階法とは、ここでは、 ti におけ
る解 xi がわかっていれば、それだけから次の時刻 ti+1での解 xi+1 が求まるものである。

これに対し、 ti での情報だけでなく、その前のステップでの情報（導関数の値や解そのものの値）
を記憶しておいて、それを使おうというのが多段階法である。これにより、余計な計算をしないで
計算精度をあげようというわけである。

7.2 アダムス法

線形多段階法のなかでもっとも広く使われているのは、アダムス法といわれるクラスの公式である。
この原理は、いくつかのステップでの導関数（微分方程式の右辺） f の値を憶えておいて、それを
通る補間多項式を作り、それを積分して解を求めようというものである。

f

t

i
i-1i-2

i-3 i+1

上の図に概念を示す。ここでは、前回の積分公式と同様にラグランジュ補間（ニュートン補間）を
して多項式を作る。で、その作った多項式を積分する。例えば、点 i から i+ 1まで積分するのに、
点 i� p から iまでの関数値を使うとすれば、p次の多項式で

P (tj) = fj = f(xj; tj) (i� p � j � i) (7.1)
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を満たすものを作る。で、i+ 1での解 xi+1は

xi+1 = xi +

Z ti+1

ti

P (t)dt (7.2)

で与えられる。刻み hが定数であるとすれば、pを決めれば上の式を

xi+1 = xi + h
pX

l=0

apjfi�l (7.3)

の形に書き直せる。

簡単な例として、p = 1の場合を考えてみよう。この時、補間多項式は一次であって

P (t) = fi � fi�1 � fi
h

(t� ti) (7.4)

となって、これを積分すれば、結局

xi+1 = xi +
h

2
(3fi � fi�1) (7.5)

となる。

一般に、アダムス法では任意段数の公式が構成でき、その次数は段数に等しいことがわかっている。
これは、ルンゲ・クッタなどに比べればはるかによい性質をもっているということでもある。

7.3 出発公式

アダムス法はいくらでも高次の公式が作れ、計算量もあまり多くないということがわかっているが、
必ずしも広く使われているというわけでもない。その理由はいろいろあるが、一つは、

「どうやって計算を始めるべきかよくわからない」

ということである。つまり、初期値問題としてはもちろん t0 における x0しか知らないのに、多段
階法ではその前の時刻での解が必要になるわけである。これに対する対応策はいくつかあるが、時
間刻み一定の場合には、基本的にはルンゲ・クッタなどの別な方法で解を求めておくというやりか
たが普通である。

というわけで結局プログラムを書く手間が 2倍以上になるというのが、多段階法の実用上の問題で
ある。

7.4 陰的アダムス法

さて、前に述べた公式では、補間多項式を陽的に求めた。すなわち、時刻 i とそれより以前の値だ
けを使っていた。これに対し、陰的な補間多項式、つまり ti+1での関数の値を使った公式というも
のも考えられる。刻み hが定数であるとすれば、pを決めれば前と同様に

xi+1 = xi + h
p�1X
l=�1

bpjfi�l (7.6)
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の形に書けることになる。また手をぬいて p = 1の場合を考えれば、これは単に台形公式

xi+1 = xi +
h

2
(fi + fi+1) (7.7)

となる。

陰的公式の場合、例によってどうやって代数方程式を解くかが問題になる。通常の方法は、

�初期値として同じ次数の陽的アダムス法の解を持ちいる。
�そのあとは直接代入法で反復する。

というものである。ただし、特に線形多段階法の場合、反復を繰り返さないことが多い。反復回数
を 1回とか 2回に固定してしまうのである。以下で、なぜそれでいいか、また、そもそもなぜ陰的
公式を使うかということを考えてみる。

なお、このやり方を、予測子・修正子法と呼ぶ。線形多段階法はほとんどこの形で使われるため、
線形多段階法のことをさして予測子・修正子法と呼ぶ人もいる。

7.5 誤差

線形多段階法の誤差の問題を考えるには、補間多項式の主要誤差が陽的公式と陰的公式でどう違う
かということを考える必要がある。線形多段階法の、特に大域誤差の理論は難しいので、以下局所
誤差について考える。局所誤差を考える時に、xi+1 以外の値には数値誤差を含まないとして考える。
この扱いでとりあえず大体のことはわかる。

一般に、厳密解は独立変数 tによるテイラー展開を持つとしてよいので、p次の補間多項式で近似
したときの主な誤差は p+ 1次の成分から出てくる。

補間多項式自体の誤差については、以下のような定理が知られている。証明はそれほど難しくない
ので、やってみること。

定理：(p+ 1)個の標本点 x0; :::xp での、関数 f(x)の値 fi = f(xi) を標本値とする最小次数補間多
項式 P (x)は以下の性質を持つ：

任意の xに対して、 x0; :::xp および x を含む最小の閉区間に� が存在し、

f(x)� P (x) =
!(x)

(p+ 1)!
f (p+1)(�) (7.8)

ここで、
!(x) = (x� x0)(x� x1) � � � (x� xp) (7.9)

である。

ここで、 f (p+1)(�)が問題の区間で一定であると思えば、誤差は!(x)を積分したもので与えられる。

hでの等間隔補間の場合について、 [xp�1; xp]での積分誤差（陰的アダムス公式の誤差）と [xp�1; xp]

での誤差（陽的アダムス公式の誤差）の係数を、いくつかの p の場合について下の表にまとめてお
く (実際の誤差は Aph

p+2f (p+1)と書ける）。

すぐにわかるように、陰的公式の誤差は圧倒的に小さい。このために、同じ刻み幅であれば陰的公
式のほうがそれだけ精度がいいことになる。



38 第 7章 線形多段階法

表 7.1: アダムス法の誤差

公式 p = 1 p = 2 p = 3

陽的 5/12 3/8 251/720

陰的 �1=12 �1=24 �19=720

が、初期推定として陽的公式を使った場合、精度という観点からは、一回だけ導関数を評価して直接
代入したもの (Predict-Evaluate-Correct, PEC) 、あるいは反復をもう一回だけするもの [P(EC)2]

で十分であり、完全に収束させてもあまり意味がない。これは、精度の向上が、圧倒的とはいえせ
いぜい 1-2桁であるからである。

つまり、反復を繰り返しても、陰的公式の値に近付くが別に真の解には近付かないのである。

7.6 ニュートン補間とアダムス公式の実用的導出

さて、補間公式の構成について、まえに説明したのはラグランジュ補間の公式をそのまま使う方法
であった。これはこれで別にいけないわけではないのだが、もう少しスマートな方法があるので、
それを紹介しておく。

補間したい関数 f(x) が、標本点 (x0; x1; :::xn) で、関数値 (f0; f1; :::fn) をとるとする。これを、以
下のような形の多項式

P (x) = a0 + a1(x� x0) + a2(x� x0)(x� x1):::+ an(x� x0) � � � (x� xn�1) (7.10)

という形に書くことを考える。これを、 apまでをとったものは x0 � � �xp までを通る最低次補間多
項式になっているように構成することにする。で、低い次数から順に作っていく。付け加える新し
い項は、それまでに使った点すべてで 0になるので、新しい点で標本と一致するように ai の値を決
めればいい。

まず、n = 0 については、 a0 = f0 とすればいいのは明らかであろう。次に n = 1 であるが、

P (x1) = f0 + a1(x1 � x0) = f1 (7.11)

から

a1 =
f1 � f0
x1 � x0

(7.12)

となる。同様に、 a2を求めると、

a2 =
f [0; 2]� f [0; 1]

x2 � x1
(7.13)

ただし、

f [i; j] =
fi � fj
xi � xj

(7.14)

である。

さて、段々式が繁雑になるが、もうちょっとの辛抱である。上の形は、

a2 =
f [2; 1]� f [1; 0]

x2 � x0
(7.15)
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というふうにも書き直せることに注意しよう。これは、(1; 2)を通る補間式の一次の係数と、 (0; 1)

を通る補間式の係数の差みたいなものになっている。

ここで、天下りに、 k 階差商 (divided di�erence) Dk;l (0 � l � n� k) というものを導入する。
これは以下のように定義される。

D0;l = fl (0 � l � n) (7.16)

Dk;l =
Dk�1;l �Dk�1;l+1

xl � xl+k
(7.17)

実は、このように定義された D が、
Dk;0 = ak (7.18)

を満たす、求める係数であることを示すことが出来る。

証明には、Dk;lが、 xlから始まる k + 1点を通る補間多項式の係数であるということを用いる。定
義により

Dk;0 =
Dk�1;0 �Dk�1;1

x0 � xk
(7.19)

であるの。ここで、帰納法を使って証明することにすると、

Pk�1(x) = D0;0 +D1;0(x� x0) + � � �+Dk�1;0(x� x0) � � � (x� xk�2) (7.20)

は、 x0; � � �xk�1 を通る k � 1次補間多項式であり、また、

P 0k�1(x) = D0;1 +D1;1(x� x1) + � � �+Dk�1;1(x� x1) � � � (x� xk�1) (7.21)

は、x1; � � �xk を通る k�1次補間多項式であるとしてよい。この 2つの線形結合によって、x0; � � � xk
を通る補間多項式を作るには、

Pk =
(x� x0)P

0
k�1 � (x� xk)Pk

xk � x0
(7.22)

とすればよい。ここで、Dk�1;0とDk�1;1は、それぞれ Pk�1と P 0k�1 の最高次の係数であることに
注意すると、 Pkの最高次の係数 (これは akに等しい) は、Dk;0で与えられることがわかる。

さて、
Qk(x) = D0;0 +D1;0(x� x0) + � � �+Dk;0(x� x0) � � � (x� xk�1) (7.23)

という多項式を考えると、これは x0; � � �xk�1 で Pkと一致し、さらに最高次の係数も一致している
ので、結局 Qk = Pk であることがわかる。つまり、Qk(x) が求める補間多項式であり、Dk;0がそ
の最高次の係数ということになる。

7.7 時間刻みを変える時

さて、なぜ上のような面倒な話をしたかというと、アダムス法において時間刻みを変える方法の概
念を説明するためである。

時間刻み一定であれば、すでに述べたようにあらかじめ係数を求めておいて、前の関数値の線形結
合で変化を計算できる。しかし、刻みを変えたい場合にはそうはいかない。この時の、もっとも一
般的で強力な方法は、上の差商を使って補間多項式を計算し、さらにそれを現在の時間刻みで積分
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した形の係数を求める、すなわち、毎回積分公式を作り直すという方法である。差商の形でデータ
をとっておくと、上の漸化式を使ってDを順番に更新することができる。これは Krogh 型の公式
と呼ばれ、かなり広い範囲の問題について、もっとも効率が良い公式であることがわかっている。
（特別に高い精度を要求する場合は、次回に述べる外挿法のほうがよいこともある）

上の方法で時間刻みを変えられるなら、出発公式は不必要になることに注意しておく。つまり、最
初は 1次の予測子、2次の修正子から出発して、ステップ毎に次数をあげていけばいい。ステップ
サイズは次数を考慮して決めておく。

7.8 計算中の誤差評価

ステップを変えるのは上のような理由で大変だが、そのかわり誤差評価はルンゲ・クッタに比べて
容易である。予測子・修正子型の公式の場合、この 2つの間の差がかなり良い誤差の推定値（もち
ろん大きめだが）になっているので、これを使ってやればいい。

7.9 ルンゲ・クッタとの比較

必要な精度を決めた時、ほとんどどんな場合でも、線形多段階法のほうがルンゲ・クッタ法よりも
少ない計算量で答を得ることが出来るということが実験的にも、また誤差の係数をつかった理論的
な解析からもわかっている。

ルンゲ・クッタ公式が優れているのは、基本的にはその使いやすさにおいてのみであるといってよ
い。が、まあ、使いやすさというのは実際的になかなか重要であることも確かである。
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この節では、数値解の公式の最後ということで、外挿法について紹介する。まず、そのための準備
として、密接に関係した数値積分における外挿の考え方を説明し、それから常微分方程式の数値解
法としての補外法についてその考え方を説明する。

8.1 数値積分における外挿

陰的ルンゲ・クッタとガウス・ルジャンドル多項式による数値積分の関係にみるように、数値積分
と常微分方程式の数値解法には密接な関係がある。理論的には、これは結局リプシッツ条件のもと
で、常微分方程式の数値解は数値積分で近似できるということから来る。

線形多段階法も、多項式近似した上で数値積分する方法というふうに理解できる。このような方法
で非常に高い次数を達成しようとすると、計算量、メモリの必要量がどんどん増えてしまって現実
的ではなくなる。また、あとで述べるように安定性や収束性の問題もおきてきて、非常に高次の方
法というのはかならずしも実用的ではない。

では、もう少しうまい方法はないかというのが問題である。

例えば、数値積分において、簡単な台形公式を使った場合を考えてみる。これで刻み幅をいろいろ
変えれば、誤差は大雑把にいって刻み幅 h の 2乗に比例するはずである。

つまり、例えばある刻み幅 h1 と、別の刻み幅 h2 で計算した答の誤差は、それぞれ、ある（共通
の）定数 C を使って

eh1 = Ch21

eh2 = Ch22 (8.1)

と書けるような気がする。これをさらに言い換えると、積分の近似値 S(h) が、真の値 S を使って

S(h1) = S + Ch21

S(h2) = S + Ch22 (8.2)

さて、この式から、「Sを求める」ことが出来る。つまり、

S =
h22S(h1)� h21S(h2)

h22 � h21
(8.3)

としてやると、「真の値」が求まってしまう。

図にするとこんな感じかな：

要するに、 h2 に対して誤差が一次式で書けると信じて、 h! 0 での積分の値を求めてやるわけで
ある。
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h h

S

h 22
2

2

S(h )

S(h )

"S"

1

1

2

もちろん、これで本当の真の値が求まるわけではない。というのは、いうまでもなく上の誤差が Ch2

という形で書けるという仮定が厳密には正しくないからである。これは誤差の主要項であるに過ぎ
ないので、この項を消せば次の項が出てくる。具体的に次の項を考えてみると、

S(h1) = S + C2h
2
1 + C4h

4
1

S(h2) = S + C2h
2
2 + C4h

4
2 (8.4)

と書けるとすれば、これから求めた「真の値」は

S 0 = S � C4h
2
1h

2
2 (8.5)

となって、結局 4 次にしかなっていないということがわかる。

なお、ここで 2 次の項の次が 3次ではなくて 4次になるとしたが、これは台形公式でも中点公式で
もなりたつ特別な性質である。

さて、こうなると、次は C4 の項も消せないかという欲が出てくるであろう。実はそういうことも
出来るわけで、そのためには h1 と h2 の 2個ではなく、さらにもう一つ別の刻み幅で積分してやれ
ばいい。そうすると、

S(h1) = S + C2h
2
1 + C4h

4
1

S(h2) = S + C2h
2
2 + C4h

4
2

S(h3) = S + C2h
2
3 + C4h

4
3 (8.6)

と近似して、 C1 と C2 の両方を決めた上で S の高精度の推定値を作ることが出来る。これは、結
局 S(h)を h2 の関数として 2次多項式近似していることになる。

8.2 多項式近似の一般論

ここでやるのは、結局前回やった線形多段階法の場合と同様に、多項式補間を作るということであ
る。が、線形多段階法の場合とは違って、補間多項式をもう一度積分するとかそういう必要はない。
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この時は、特別な計算法（ネヴィユのアルゴリズム）として知られる方法を使うことが出来る。

まず、一般的な場合についてネヴィユのアルゴリズムを示しておく。標本点 x0; x1; � � �xn (ただし、
これらは降順または昇順にならんでいる必要がある) での補間したい関数 f の値を f0; f1; � � � fn と
する時、 Ti;jを以下のように定義する

Ti;0 = fi (0 � i � n) (8.7)

Ti;j =
(x� xi�j)Ti;j�1 � (x� xi)Ti�1;j�1

xi � xi�j
(8.8)

すると、一般に Tk;k というのが、点 x1 から xk までを使った k次補間多項式の x での値という
ことになる。特に、 Tn;n は全部の点をつかった、もっとも精度が高いことが期待される近似値に
なる。

特に、 x = 0 のところでの値を求めるなら、上の式で x = 0 とすればいいから、

Ti;j = �xi�jTi;j�1 � xiTi�1;j�1
xi � xi�j

= Ti;j�1 +
Ti;j�1 � Ti�1;j�1
xi�j=xi � 1

(8.9)

という形になる。

結局、表に示すように、左と左上の値から次のを計算できることになる。

x0 T0;0 = f0

x1 T0;1 = f1 T1;1

x2 T0;2 = f2 T1;2 T2;2

x3 T0;3 = f3 T1;3 T2;3 T3;3
... ... ... ... ... ...

このやりかたで作った補間値が、 n 次まで正しいということは前回と同様に証明できる。

この方法を使えば、任意の標本点数をつかっていくらでも高次の補間多項式をつくり、いくらでも
高精度の近似値をえることができるということになる。このような、パラメータ h のいくつかの値
で近似値を求め、その補間多項式から h = 0 での値を推測する方法のことを一般にリチャードソン
の補外という。

なお、数値積分の話として考えると、積分 Sが

S(h) = S + a1h+ a2h
2 + ::: (8.10)

というように奇数次もあるような展開をもつならば、補間多項式は n 次にしかならないが、台形公
式のように偶数次しか持たない場合には h2 の多項式として近似値を作ることができる。この時は
次数が 2n次になることに注意して欲しい。

8.3 ロンバーグ加速

数値積分の場合にもっとも普通に使われるのは、台形公式とリチャードソン補外の組合わせであり、
これにはロンバーグ積分法という特別な名前がついている。ロンバーグ法の場合、h を半分にして
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いく。これは、台形公式では h を半分にした時に、元の h で計算した値はそのまま使えるので、計
算量が得になるからである。結局、普通の台形公式と同じ計算量ではるかに高い計算精度が達成で
きることになる。

8.4 グラッグ法

リチャードソン補外の考えを常微分方程式に適用しようというのがグラッグ法である。以下のこと
に注意したい：

�台形公式は陰的公式になってしまうので、あまり使いたくない
�数値積分の場合と違って、刻みを半分にしても前の値は使えない

これらの問題のために、常微分方程式に対して補外法が使えるということが初めて示されたのは
1965 年と比較的最近のことである。（線形多段階法やルンゲ・クッタ法は前世紀から使われている）

陽的な公式で、誤差に奇数次の項がないものを構成できるかというと、これは実は可能であるとい
うことが知られている。もっとも普通に使われるのは、陽的中点公式と呼ばれる以下の公式である。

xi+1 = xi�1 + 2hf(xi; ti) (8.11)

これは、前回述べた線形多段階法の一つである。これと、前進オイラー法による出発公式

x1 = x0 + hf(x0; t0) (8.12)

を組み合わせたものは（ステップ数が偶数なら））、 h2 による漸近展開をもつことが知られている。
従って、この組合せを使うと、リチャードソン補外によって超高精度の積分公式を作れる。これを
通常グラッグ法と呼ぶ。

8.5 いくつかの話題

補外法はまだ比較的新しい方法であり、理論的に良くわかっていないことも多々ある。ここでは、
そのいくつかの問題点について簡単に触れる。

8.5.1 振動と平滑化

次週以降の話題の先取りになるが、陽的中点公式は安定ではないということが知られている。ここ
で、安定ではないとは、安定な線形常微分方程式に適用した時に、数値解が 0にいかないというこ
とである。

このことが問題かどうかははっきりしていないが、理論的にはそういう問題を押えるはずである方
法というものが知られている。
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8.5.2 有理式補外

これまで、補間にはいつでも多項式を使ってきたが、これはもちろんもとの関数がよい性質（近く
に特異点がないこと）を持っていることを必要とする。これに対し、有理関数補間をすれば、近く
に特異点があってもうまくいく（かもしれない）。というわけで、有理関数で近似すればいいことが
あるのではないかという話になる。

有理関数となると一意には決まらないが、通常は分子と分母が等しい次数になるように作る。補外
法にこれをつかったものを Bulirsch-Stoer 法と呼び、ライブラリなどではこれが実装されたものが
多い。が、グラッグ法に比べて圧倒的にいいかというと、そうでもないようである。

8.6 時間刻みのとりかた

ここで時間刻みというと、 2 つの意味がある。つまり、初期値問題を解く時に、通常は比較的小さ
な区間（これを H とする）に全体を分けて、この H に対して補外法を使う。これは、Hを無制限
に大きくとるといろいろ微妙な問題が起きるからである。

この H を決めたとしても、さらに、そのなかで h（の列）をどうとるかという問題がある。

通常は、 hi のとり方を適当に決める（例えば、 1=2 にしていく、あるいは大体 1=1:5 程度にして
いく等）。で、誤差を見ながら H のほうを変える。誤差推定には、例えば、最終的な補外の値と、
一つ点が少ないものとの差を使うのが実用的である。
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今日は、「安定性」について考える。数値解について考えるまえに、まず微分方程式の安定性につい
て考えておこう。というのは、元の微分方程式が安定でなければ、数値解が安定とか不安定とかいっ
てもなにが不安定なのか良くわからないからである。考える微分方程式はとりあえず一般的な形

dy

dx
= f(x; y) (9.1)

としておく。（これまで、時間発展ということで独立変数に t を使っていたが、ちょっと表記が混乱
しているところもあるのでここからは独立変数を x, 従属変数を y とする。）

9.1 定常解の局所的安定性

さて、安定性というものを定義しないといけない。そのために、まず、「定常解の安定性」というも
のを考えることにする。定常解とは、要するにあるy0 というものがあって、

f(x;y0) = 0 (9.2)

を満たすもののことである。まあ、 x が微分方程式の右辺に入っていると、特別な条件の下でなけ
れば定常解はないので、以下

dy

dx
= f(y) (9.3)

の形、つまり右辺に x が入らないものを考える。これを自律型という。この時はもちろん定常解の
満たす方程式は

f(y0) = 0 (9.4)

ということになる。

さて、この解が局所的に安定かどうかというのは、以下のような意味であると考えられるであろう。

「なんらかの理由（外乱とか）で、定常解から少し離れたところに解がいった時に、もとの解にも
どる」ということをさして安定であるという。

ちょっと図に例を示してみよう。左の図のように、盛り上がったところの一番上にボールかなにかを
おいたら、ぴったり頂上におけばそれは止まっている。つまり、頂上は定常解である。しかし、す
こしでも頂上、すなわち定常解からずれたらそのままころげおちてしまう。これは不安定な定常解
ということになろう。

これにたいし、右の図のように谷底ならば、すこしずれたらもとのところの戻ろうとする。さらに、
摩擦や空気抵抗があるから、そのうちにもとのところに止まる。これは安定解ということになる。

仮に、厳密に水平な面が広がっていたとすれば、少し動かすと動かしたところでそのまま止まって
いることになるであろう。これは中立安定状態ということになる。
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Unstable Neutral Stable

上の説明は直観的ではあるが、ちょっと怪しいところがある。この場合どんな方程式を考えている
のであろうか？例えば以下のような方程式ということになろう：

d2y

dx2
= f(y)� �

dy

dx
(9.5)

ここで、 f(y) は地面からの力であり、第二項は抵抗による力である。抵抗は速度に比例するとい
うことにしておく。これは yと dy=dx の 2変数の方程式である。

さて、これの定常解（この場合平衡解という言葉をつかうことのほうが多い）の回りで、解がどう
振舞うかを調べてみることにする。平衡解は

y = y0

y0 = 0 (9.6)

である。今、

Y0 = y � y0 (9.7)

Y1 = y0 (9.8)

とおいて元の微分方程式を書き直す。この時、 f が

f(y0 + Y0) = kY0 +O(Y 2
0 ) (9.9)

と近似出来ることに注意すると、

dY0
dx

= Y1;
dY1
dx

= kY0 � �Y1 (9.10)

あるいは、行列形式なら �
Y 00
Y 01

�
=

�
0 1

k ��
��

Y0

Y1

�
(9.11)

ということになる。これはもちろん以下の形の解を持つ

Y = C0Y 0 exp�0 + C1Y 1 exp�1 (9.12)

ここで、 �0 と�0は行列 Aの固有値である（今、縮退している場合とかはちょっと置いておく。式
は特別になるが振舞いはたいして変わらない）。固有方程式は

�2 + ��� k = 0 (9.13)

の形をとる。ここで、� > 0 としておく（抵抗が速度と逆方向に働く）とすれば、k の値によって
解の振舞いは 5つの領域に分かれる。

� k > 0 の時：固有値はどちらも実数であり、片方は正でもう片方は負である。最終的には正の
固有値のほうが効いて、平衡点から遠ざかっていく
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� k = 0 の時。固有値の一つが 0、もう一つが負である。0に対応する固有解は定数である。もう
一方は減衰する。

� 0 > k > kc = ��2=4 の時。固有値はどちらも負の実数である。x!1 で Y ! 0 が任意の初
期条件についてなり立つ。つまり安定である。

� k = kc のとき。固有値が縮退し、解が (C1 + C2x) exp�x の形になる。安定。
� k < kc のとき。固有値は複素数だが、実部は負。安定。

固有値が実数か複素数かの違いは、解が振動的になるかどうかである。

一般の微分方程式でも、定常解があればその回りで線形化することで同様な議論ができることにな
る。安定であるということの条件は、全ての固有値の実部が負であるということである。

なお、念のため注意しておくが、一般の場合には、複素固有値で実部が正というばあいもありえる。
上の例ではそれが起きなかったのは、 � > 0 という条件をつけたからである。これを外す（負性抵
抗）と、k < 0 の時に振動しながら平衡値から遠ざかっていく解が現れる（振動的発散）。

9.2 特別な場合|散逸のない系

さて、上の方程式で � = 0 としたものを考えると、これは k < 0で固有値が純虚数になる（k � 0

なら非負の実数）固有値が純虚数の時には解は振幅一定の単振動になり、初期に与えた摂動がその
まま残る。

このような系は安定平衡点を持たないが、実用上は特別に重要である。というのは、理想化された
古典力学系（ハミルトン系）はすべてこのような、安定平衡点を持たない系であるからである。こ
の場合には安定性の意味が変わる。これについては後で扱うことにしたい。

9.3 非線形領域での解

ハミルトン系については別に扱うとして、安定平衡点を持たないような非線形の連立常微分方程式
系はどのように振舞うのであろうか？非常に大雑把にいうと、2つのケースに分かれる。

9.3.1 極限周期軌道を持つ場合

van der Pol方程式などが良い例であろう。平衡点はあり、局所的には不安定である。が、これは局
所的に負性抵抗があることによっていて、大域的には抵抗は正になっている。従って、平衡点の近
くでは回りながら遠ざかり、遠くでは回るのは同じだが逆に平衡点に近付く。どこか途中に、それ
以上平衡点から遠ざかりも近付きもしない極限解（極限周期軌道、 limit cycle）があり、すべての
解がいつかはそこにいく。多変数の場合には 2重周期とかで単純な一本の軌道ではないが、とにか
く可能な位相空間の、次元が下がった部分空間のなかだけを運動する。
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9.3.2 カオス的な場合

3変数以上の場合でないと起こらないが、上のようなリミットサイクルを持たず、なんだかよくわ
からない動きをする。解が動く空間の次元がもとの可能な範囲に比べて下がらない（が、エルゴー
ド的になるとは限らない）。

9.3.3 リヤプノフ指数

非線形方程式の場合、上のような周期軌道についてそれが安定かどうかということを問題にするこ
とができる。つまり、少し軌道からそらしてやって、だんだんもとの軌道にもどれば安定、はなれ
ていけば不安定ということになるのである。これはリヤプノフ指数というものを考えることで判定
できる。これについては詳しくは触れないが、要するに軌道にそって線形化して、その解の固有値
を調べるということに相当する。

系がカオス的になるためには最大リヤプノフ指数が正である必要がある。これが十分条件かどうか
はわかっていない。
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これから数値解の安定性というものを考える。もとの解が定常解を持てば、数値解の安定性という
のは要するにその定常解がやはり安定である、つまりそこから少し離れたところから出発すると、
必ずその定常解にいくということである。

極限周期軌道を持つ場合にも安定性の概念を拡張することができる。が、これについてはあまり詳
しくはここでは扱わない。とりあえず、もとの方程式が線形で安定な定常解を持つ場合に、数値解
の安定性とはどういうことかを考えていこう。

10.1 陽的オイラー法の安定性

一変数線形常微分方程式
y0 = �y (� < 0) (10.1)

を、前進（陽的）オイラー法
yi+1 = yi + hy0jy=yi (10.2)

で積分する場合を考えてみる。すぐにわかるように、

yi+1 = yi(1 + h�) (10.3)

から、
yn = y0(1 + h�)n (10.4)

となる。安定であるとは n!1 で yn ! 0 となることであるから、その条件は

j1 + h�j < 1 (10.5)

つまり

h < �2

�
(10.6)

ということになる。

すこし考えてみるとすぐにわかるように、h� < �1 の数値解は解としてはむちゃくちゃなものであ
るが、まあ、それでも安定ではある。

さて、多変数の場合はどうなるかということを考えると、結局、線形の場合は対角化してしまえば
一変数の場合と全く同じで、各変数が安定であればいい。ただし、少し違うのは、複素数の固有値
が発生するということである。このために、安定性条件が式 (10.5)から簡単にならない。そこで、
通常、 �h = h�とおいてこれがどういう範囲であれば安定かという議論をする。

一変数（実固有値）の場合には、安定であるのは�hが開区間 (�2; 0) にある場合である。複素数の固
有値のときは、複素平面上で考えると、�hが中心 (�1; 0)、半径 1 の円の内部で安定ということにな
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る。なお、上のような、元の方程式に安定解がある時に数値解がそこにいくという性質を、特に「絶
対安定性」ということがあり、�hの複素平面上で絶対安定である領域のことを絶対安定領域という。

前進オイラー法の絶対安定領域はあまり広くない。が、それが問題にならないような場合も結構多
いということがわかるであろう。普通は h は jh�j << 1 となるようにとる。この時は、不安定にな
るのは固有値の虚部が実部に比べて大きい場合に限られる。

10.2 後退オイラー法の安定性

後退（陰的）オイラー法
yi+1 = yi + hy0jy=yi+1 (10.7)

で積分する場合を考えてみる。すぐにわかるように、

yi+1 = yi
1

1� h�
(10.8)

から、
yn = y0(1� h�)�n (10.9)

となる。� < 0; h > 0なので j1� h�j > 1であり、後退オイラー法の絶対安定領域は左半平面全体
であるということがわかる。言い替えれば、

後退オイラー法は数値不安定を起こすことはない。

これは、前進オイラー法に比べた後退オイラー法の目覚しい特徴である。

10.3 線形多段階法の安定性に関する一般論

一般に線形多段階法についてはオイラー法と同様な扱いができる。つまり、使う公式を決めたら、
それで一変数線形の方程式を解いて見る。すると、それが一般に yn = �n の形をとる。 � は、安定
性多項式と呼ばれる、要するに yi を �i で置き換えてできる代数方程式の根である。このとき、絶
対安定である条件は、すべての � の絶対値が 1 より小さいということになる。

例えば、前回の補外法のところで出てきた中点公式

yi+2 = yi + 2hf(xi+1; yi+1) (10.10)

を考えてみよう。安定性多項式は
�2 � 2�h� � 1 (10.11)

となり、実解が 2つある。すぐにわかるように、 �h 6= 0 ならば必ず解の一つは絶対値が 1 より大
きいので、中点公式には絶対安定領域がない、言い替えればかならず不安定であるということがわ
かる。

これにたいし、アダムス法はちゃんと絶対安定領域を持つ。但し、次数が上がるにつれて小さくな
るし、陽公式の安定領域は陰公式のそれよりもずっと狭い。
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10.4 陽的ルンゲ・クッタ公式の安定性

ルンゲ・クッタ公式についても、線形多段階法の場合と同様に絶対安定領域を求めることが出来る。
陽的公式については、以下の面白い結果が知られている

� 4次までの公式（段数と次数が等しいもの）の絶対安定領域は、次数だけで決まる。
� 4次まででは高次の公式のほうが安定領域が広い。

特に、3次以上の公式では、絶対安定領域が右半平面に張り出す。これは、言い替えれば、本当な
ら振動的に発散するか一定振幅で無限に振動するはずの系が、数値解では振動的に収束するという
ことであって必ずしも正しい振舞いというわけではないが、それでいいような場合も多い。

5次以上では、公式によって安定領域が違う。精度と安定領域のどちらを優先するかでさまざまな
公式が作られている。

10.5 陰的ルンゲ・クッタ公式の安定性

陰的ルンゲクッタについては、陽的公式よりもはるかに強い結果が得られている:陰的ガウス公式の
安定領域は、左半平面全体である。また、Radau 公式、Lobatto 公式についても同様である。

これは、陰的公式、とくに full-implicit な公式の重要な利点の一つである。

10.6 補外法の安定性

良くわかっていない。 h のとりかたを決めれば、ルンゲ・クッタの一種とみなせるので、そういう
研究はある。具体例では、割と狭いという結果が得られているようである。
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さて、硬い微分方程式とは何かということだが、例えば以下のような化学反応系を考えてみる

2A ! B

B ! C (11.1)

各物質の濃度を y1; y2; y3と書くことにすれば、それぞれの従う方程式は、例えば

dy1=dt = �2k1y21 + 2k2y2

dy2=dt = k1y
2
1 � (k2 + k3)y2 + k4y3

dy3=dt = k3y3 � k4y3 (11.2)

というようなものになる。

係数がたくさんあって面倒なので、以下 k1 = k2, k3 = k4 とし、初期条件として

y1 = 1; y2 = y3 = 0 (11.3)

という場合だけを考えることにする。

図 11.1 に、 k1 = 1; k3 = 20 として、前進オイラー法および後退オイラー法で解いた場合の数値解
の例を示す。この時の定常解は y1 = 0:3904; y2 = y3 = 0:1524 というところになる。グラフに示し
ているのは y1 と y2 である。

滑らかに収束しているのは、前進オイラー法で �t = 0:025 ととったものと後退オイラー法で�t =

0:05 ととったものである。これに対し、振動的に発散してしまっているのは前進で �t = 0:05 の場
合である。非常に点が荒く、途中での誤差が大きいが最終的には真の値にいっているのは、後退オ
イラー法で�t = 0:5と極端に刻みを大きくしたものである。

なお、この計算例では、保存則
y1
2
+ y2 + y3 =

1

2
(11.4)

を利用して、方程式から y3 を消している。

化学反応系のような非線形の方程式系では、上の例のように速度定数が大きく違うということはそ
れほど珍しいことではない。上の例では k3 = 20であるが、これが何桁も大きい場合というのもあ
る。こういった場合にどういう方法を使うべきかというのが今日考えていきたいことである。

11.1 「硬さ」の定義

最初に見たように、例えば化学反応系などでタイムスケールが非常に違うと具合の悪いことが起き
るわけであるが、この具合の悪さというのは具体的にはなにかというのが問題である。
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図 11.1: 化学反応系の数値計算

例によって、方程式が線形の場合について考える。非線形の場合は、局所的に線形化することで硬
さを定義することになる。非斉次の線形常微分方程式

y = Ay + (x) (11.5)

の一般解は

y = �(x) +
NX
j=1

cj exp�jx (11.6)

で与えられる。ここで、� は方程式 (11.5) を満たす特殊解である。

さて、この方程式が安定であるとすれば、固有値 �j はすべて実部が負である。ところで、前回の
安定性領域についての議論で見たように、大抵の数値解法は絶対安定性領域が左側に有界である。
これは、言い替えると、時間刻み h を、適当な定数 M を使って

h < M max j<�j j (11.7)

という制限を満たすようにとらないといけないということを意味する。 M は実際には安定性領域
の左側の限界値ということになる。

さて、こういった問題で、どのあたりまで計算しないといけないかというのを考えると、実部の絶
対値が最小の固有値に対応する成分が十分小さくなるまでということになる。従って、必要なステッ
プ数は、

s =
max j<�j j
min j<�jj

(11.8)
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に比例する程度ということになる。つまり、この値が大きいと、計算が非常に大変になるのである。
この値のことを硬さ sti�ness といい、これが「非常に大きい」ときに方程式が硬いという。

どれくらい大きい時に硬いというかは曖昧であるが、 104 を越えると硬いといって間違いない。実
用上は、 106 を越えることも珍しくない。

なぜ「硬い」といわれるかという歴史的な事情を紹介しておくと、このような問題は、さいしょ機
械制御系、つまり、モーターで棒かなにかを回してその先の位置をセンサでフィードバックして制
御するようなもので発見された。棒を振り回すとこれは変形するが、棒が「硬い」ほどその変形の
周期が短くなる、つまり固有値の絶対値が大きくなるわけである。

なお、この例からわかるように、本当は固有値の虚数部分も問題である。

非線形方程式
y = f(x;y) (11.9)

の場合には、そのヤコビアン@f=@y によって局所的に線形化した方程式について硬さを定義する、
つまりはヤコビアンの固有値から決まるということになる。

11.2 A-安定性

さて、この硬さというのが問題かどうかということであるが、仮にある公式の絶対安定領域が左半
平面 <z < 0 全体を含んでいれば、硬かろうがなんだろうが問題ではないということはすぐにわか
るであろう。この、絶対安定領域が左半平面を含むという性質を、ダールキストは A-安定性と名付
けた。

A-安定性については、ダールキスト自身による次の否定的な結果がある

�陽的ルンゲ・クッタ法は A-安定でない。
�陽的線形多段階法は A-安定でない。
�陰的線形多段階法で A-安定であるものの次数は 2 以下である。
� A-安定である陰的線形多段階法のうち、局所誤差がもっとも小さいものは台形公式である。

証明は面倒なので省略する。

これに対し、陰的ルンゲ・クッタ公式については以下の素晴らしい結果が知られている

�対称な p 段 2p 次公式（陰的ガウス公式）はすべて A-安定である。

さらに、Radau 公式、 Lobatto 公式など、端点を含む代わりに次数が低い公式についても同様な
結果が得られている。

11.3 安定な公式を使う上での問題

前節で見たように陰的ガウス法は A-安定であり、基本的にはこれを使えば方程式が硬いということ
による問題は起きないといっていい。が、実用上は、この方法にはあまり嬉しくない特性、つまり、
大規模な非線形代数方程式を解かなければいけないという特性がある。

もちろん、線形多段階法のところで考えたような逐次（直接）代入法で答が収束すれば、これはた
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いした問題ではない。しかし、実はこれはうまくいかない。つまり、前に見たように陰的ルンゲ・
クッタに対する逐次代入が収束する条件はリプシッツ連続条件

jf(x; y)� f(x; y0)j � Ljy � y0j (11.10)

が成り立っている時に、h < C=L (C は公式によって決まる定数だが、1 に近い)で与えられた。と
ころが、 L は定義から固有値の絶対値の最大値に等しいので、結局陽的な公式と同じように最大固
有値でタイムステップが決まってしまい、逐次代入法ではA-安定性が失われてしまうのである。

それではいったいどうすればいいかということだが、要するに逐次代入なんていう手抜きな方法を
使わないで、もうちょっとまっとうな方法を使えばいいのである。通常使われるのはニュートン法
による反復、つまり、方程式を局所的に線形化し、その線形方程式の解を新しい近似解にする方法
である。

原理を後退オイラー法の場合について説明しよう。もちろん、高次の陰的ルンゲクッタやあとに述
べる陰的線形多段階法でも理屈は同じである。後退オイラー法の場合、解くべき方程式は

ynew � hf(xnew;ynew)� yold = 0 (11.11)

である。ニュートン法による i 回目の近似値をy(i)と書くことにすると、f が y(i)の回りで

f � f(x;y(i)) + @f

@y
(y(i+1) � y(i)) (11.12)

と線形化されるから、 y(i+1)を求めるには以下の方程式

�
I � h

@f

@y

�
(y(i+1) � y(i)) = hf(xnew;y

(i)) + yold � y(i) (11.13)

を解けばいいわけである。

すぐにわかるように、ニュートン法は方程式が線形であれば硬さに無関係に一回で収束する。つま
り、逐次代入法とは違ってA-安定性を保てる。

方程式が非線形の場合にうまくいくか、また、どれくらいの反復回数でうまくいくかというのはな
かなか難しい問題である。良く知られているように、ニュートン法は二次収束する、つまり、初期
推定が十分に良ければ誤差が一回反復するとまえの誤差の 2乗程度まで小さくなるという性質（こ
れは、2 次の項の大きさからすぐに証明できる）があるので、うまい初期値が得られれば反復回数
は少ない。

が、うまい初期値をとる一般的な方法はない。例えば陽的ルンゲクッタや陽的な線形多段階法で初
期値を作ることも考えられるが、これは系が硬い時には悪い推定値を出す可能性もあるからである。
比較的うまくいくのは、なにも考えないでy(0) = yold とする、また陰的ガウス公式であれば途中の
値についてもそうする方法である。

なお、もともとのニュートン法ではヤコビアンを反復毎に計算し直すが、これらの方法を実装する
時には、「収束しているうちはヤコビアンをそのまま使う」という方法で計算量を減らすのが普通
である。

11.4 完全陰的ルンゲクッタ以外の方法

ここまでで見たように、ガウス法などの陰的ルンゲクッタは硬い方程式にたいして非常によい性質
をもつが、一つ大きな問題がある。それは、ニュートン法で解く方程式の大きさが、元の方程式の
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本数 N と公式の段数 p の積Np に比例するということである。

ニュートン法で方程式を解くときに、 LU分解（普通のガウスの消去法のことと思っていい）を使
うとすれば、計算量が行列の次元の 3乗で増える。つまり、公式の段数の 3乗ということになる。
これでは、せっかく高い次数の公式が作れるといっても実用性は低い。

ニュートン法ででてくる線形化した方程式自体を、LU分解ではなく適当な反復法、たとえば Gauss-

Seidel 法、 SOR、共役勾配 (CG)法といったもので解くことも考えられるが、これらを使うとまた
A-安定性が失われたりすることになる。

これらの問題をあるていど回避するため、非常にさまざまな公式群が研究されている。以下にその
例をあげる

11.4.1 ギアの後退差分公式 (BDF)

前に述べたように、計算量と精度の関係を見た時に線形多段階法はルンゲクッタに比べてかなり良い
のが普通である。従って、線形多段階法で比較的よい性質をもつものはないかということを考える。

ダールキストの結果によって、A-安定では 2次以上にならないということがわかってしまっている
ので、A-安定の条件のほうをちょっと緩めてみる。緩め方にはいろいろあるが、ギア (C. W. Gear)

の提案は、図 11.2のように原点近くで虚部が大きいところでは不安定でもいいということにしよう
というものである。

Re z

Im z

図 11.2: 硬安定の定義

ギアはこのような領域で安定であることを硬安定ということにした。さらに、以下の形の公式

�0yi + �1yi+1 + ��nyi+p = h�fi+p (11.14)

であれば、 p � 6 の場合には硬安定な公式が存在することを示した。

係数の表は適当な参考書をみること。

実際のプログラムの例は例えば http://www.netlib.org/ode/cvode.tar.gz といったものを見て
みること。
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11.4.2 半陰的ルンゲクッタ

これは無数にある。名前だけをあげると、ローゼンブロック法、 DIRK, MIRK, SIRK, SDIRK と
いったものがあり、現在盛んに研究されている。

まあ、実用上は、完全陰的なガウスや Radau 公式では問題があるという場合でなければ、わざわ
ざこれらの方法を使う意味はあまりないように思う。

11.5 課題

だいぶいろんなことをやったので、いくつか課題を出しておく。レポートとしては、どこまでやる
かは各人の自由であるが、採点基準にはどれだけやったかが入ることはいうまでもないであろう。

1. 4次まで（まあ、出来なければ 3次とかでもいいけど）の陽的ルンゲクッタ公式に対して、安
定性を決める多項式（いわゆる安定性因子）を求め、さらに複素平面上での絶対安定領域を図
に示せ。

2. 陰的中点公式の安定性について議論せよ。
3. 2段 4次の陰的ガウス公式について
(a) ルジャンドル多項式の 0 点をとるということから公式を導け。
(b)実際に線形系に適用して、4次精度であることと A-安定であることを確かめよ。
(c) 2変数以上の場合に適用出来るプログラムを作り、適当な非線形方程式を解いてみよ。例え
ば van der Pol 方程式で極度に非線形性の強い場合について、4次の古典的ルンゲクッタと
解の精度、信頼性等を比較してみよ。

4. ローレンツのカオス

dx=dt = �10(x+ y)

dy=dt = �xz + rx� y

dz=dt = xy � 8z=3 (11.15)

について、
(a) パラメータ r を変化させた時の定常解の安定性の変化を解析的に調べよ。
(b)適当な数値解法で、数値解を求めてみよ。
(c) 求まった答が正しいといえるかどうか、またいえるとすればいかなる意味においてかを議論
せよ。
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前回は硬い方程式というものを扱った。これは、わりといろんなところに出てくるので、とりあえ
ずそういうものがあるということは憶えておくといいことがあるかもしれない。

今日もそういう類の話である。今日の相手は「ハミルトン系」、要するに古典力学系である。が、ハ
ミルトン力学ということで話を始めると、解析力学がどうで正準変換がこうだからとかいう難しい
話にたちどころになってしまう。このへんは僕もよく知らないし、それだけで一学期分の講義にな
るくらいのものなので、ちょっと違う方向からいってみよう。

12.1 簡単な例題

古典力学系のもっとも簡単な例といえば、一次元調和振動子、つまり、運動方程式では

d2x

dt2
= �kx (12.1)

である。これの解はもちろん単振動するものであり、それは固有値が純虚数であるからである。

さて、前にも少し述べたように、このような、固有値が純虚数である、いいかえれば中立安定な場
合、安定性解析はちょっと厄介になる。というのは、通常の意味で安定というのは、数値解がいつ
かは原点にいってしまうということ、いいかえればエネルギーが保存しないということを意味する
からである。

つまり、例えば前回でてきた安定領域のある公式では、ほとんどのもので虚軸上の一定範囲では数
値解が「安定」になってしまう。つまり、本当の解はいつまでも振動を続けるのに、数値解は減衰
してしまうのである。もちろん、タイムステップを大きくとれば、絶対安定でない限り安定領域か
ら外れるのが普通（BDFのようにそうでないものもあるが）であり、振動しながら広がっていくよ
うな解になる。安定領域に虚軸を含まないような公式（例えば前進オイラー公式）の場合では、か
ならず軌道が広がっていくことになる。つまり、虚数軸が安定性限界になっていない限り、必ず軌
道から一方的に外れていってしまうのである。

つまるところ、線形系では安定性限界が虚数軸である（数値解に純虚数の固有値がある）というの
が、数値解が厳密に振動的であるための必要十分条件ということになる。この時、数値解はもとの
系の性質をある意味で良く表しているといえるであろう。

実は多変数の場合や非線形の場合でも本質的な事情は変わらない。ただし、こちらはまだいろいろ
理論的にはっきりわかっていないことがある。が、大雑把にいうと同じような事情が成り立ってい
る。つまり、もとが周期解であるときに、大抵の積分法では周期解から一方的にずれていく、つま
り、保存量であるはずのエネルギー等が保存しなくなる。

もちろん、エネルギーが厳密には保存しないということが問題であるかどうかというのも実は難し
い問題である。というのは、保存しないといってももちろん数値解の精度では保存しているわけだ
から、それでかまわないのではないかと考えられるからである。
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数値解の精度で保存しているというので十分かどうかというのは、実は扱う問題によって違ってく
る。さらに、同じ問題（方程式系）であっても、その問題のどの側面を解析したいかによっても変
わってくる。実際にどういうことが問題になるかはまた次回ということにして、今日はとりあえず
古典力学系向けの方法とはどんなものかということを概観する。

12.2 2階の微分方程式向きの方法

12.2.1 Stormer-Cowell 法

さて、前の節ではすこし難しい（というか、抽象的な）話をしたが、もうちょっと具体的にどんな
解法があるのかということを考えてみる。比較的古くから研究され、実用にも使われているのは、2

階の微分方程式

dv

dt
= f(x)

dx

dt
= v (12.2)

に特化した解法である。一般的な方法は、これをそのままいままでに説明してきたいろいろな解法で
解くということだが、 v は x の微分に過ぎないので、例えば線形多段階法の場合にはこれはちょっ
と無駄な気がする。つまり、例えばアダムス法で加速度の多項式近似が求まっているとすれば、そ
れを 1回積分すれば速度の変化量がもとまり 2回積分すれば位置の変化量がもとまるからである。
この考え方に基づく方法を Stormer-Cowell 法という。この方法の場合、普通は

xi+1 � 2xi + xi�1 = h2
pX

k=�1

�kfi�k (12.3)

という形に書いて、 v を明示的に変数として持たないことが多いが、これは慣習によるものであま
り意味はない。

この方法を普通の方法と比べてみると、計算量（といっても、 f の計算自体は変わらないが）、メ
モリ必要量とも 1=2になっていることがわかる。計算速度等が問題になる場合には、アダムス法で
はなくこちらを使うべきであるということはいうまでもないであろう。

この型の公式は高精度が必要な天体の軌道計算などに広く使われている。ここでは 14次とか 16 次
の超高次の公式が使われるのが普通である。

さて、例によってもっとも簡単な場合というのを見てみよう。もっとも簡単なのは右辺が fiだけの
場合、つまり

xi+1 � 2xi + xi�1 = h2fi (12.4)

というものであり、これを特に Verlet method ということがある。

この方法は Stormer-Cowell 法のなかでもっとも簡単なものだが、後でみるように非常に特別な性
質がありもっとも広く使われている。

12.2.2 Runge-Kutta-Nystroem 法

ルンゲ・クッタについても同様に 2階の方程式専用の公式がある。ここでも、計算量が減る他、到
達可能次数が一般に 1階の方程式用の方法よりも高いということが知られている。この型の公式を
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普通 Runge-Kutta-Nystroem 法と呼ぶ。

陰的な公式の場合は、ガウス公式や Lobatto 公式に比べてよい振舞いをするものはいまのところ知
られていない。陽的なものは多数しられていて、かなり良く研究されている。

12.2.3 外挿法

外挿法についても同様なことを考えられるはずであるが、私の知る限りそのような方法は文献には
出てこない。

12.3 リープフロッグ公式

ハミルトン系のシミュレーションの例には例えば以下のようなものがある

�プラズマシミュレーション
�（古典）分子動力学
�銀河動力学

これらはいずれも、古典的な多体問題として定式化される。プラズマの場合は磁場も入るのでちょっ
と面倒だが、それを無視すれば運動方程式が

mi
d2xi
dt2

=
X
j 6=i

f ij (12.5)

つまり、ある粒子 i の加速度は他のすべての粒子からの力の合計ということになる。もちろん、古
典力学系は他にもいろいろあるが、基本的なアプローチは似たようなものである。

このような問題に対して、もっとも普通に使われる公式は以下の leapfrog といわれるものである。

vi+1=2 = vi�1=2 +�ta(xi) (12.6)

xi+1 = xi +�tvi+1=2 (12.7)

これでは速度と位置がずれた時間でしか定義されないが、出発用公式として

v1=2 = v +�ta(x0)=2 (12.8)

を使い、さらに終了用公式として

vi = vi�1=2 +�ta(xi)=2 (12.9)

を使うことで最初と最後を合わせることが出来る。この形は、実は

xi+1 = xi +�tvi +�t2a(xi)=2 (12.10)

vi+1 = vi +�t[a(xi) + a(xi+1)]=2 (12.11)
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と数学的に等価である（証明してみること）また、以下のようにも書ける

vi+1=2 = vi +�ta(xi)=2 (12.12)

xi+1 = xi +�tvi+1=2 +�t2a(xi)=2 (12.13)

vi+1 = vi+1=2 +�ta(xi+1)=2 (12.14)

さらにまた、速度を消去して xi�1, xi, xi+1 の関係式の形でかいてあることもあるかもしれない。こ
の時は前回紹介した Stormer-Cowell 公式のもっとも簡単なものと一致する。なお、すべて違う名
前がついていたりするが、結果は丸め誤差を別にすれば完全に同じである。時々、これらが違うも
のであるかのように書いてある教科書があるので注意すること。

この公式は局所誤差が O(�t3)、大域誤差がO(�t2)である。

さて、局所誤差という観点からはこれは決して良い公式というわけではないが、現実にはこの公式
は非常に広く使われている。

これは、別にもっとよい方法を知らないからとかではなく、実はこの方法がいくつかの意味で非常
に良い方法であるからである。いくつかの意味とは、例えばエネルギーや角運動量のような保存量
が非常によく保存するということである。これらの保存量については多くの場合に誤差がある程度
以上増えない。

この、ある程度以上誤差が増えないというのは目覚しい性質である。通常の方法では、エネルギー
の誤差は時間に比例して増えていく。従って、長時間計算をしようとすればそれだけ正確な計算を
する必要がある。ところが、エネルギーの誤差は溜っていかないのならば、かならずしも精度を上
げる必要はないとも考えられる。

もちろん、エネルギーが保存していればそれだけで計算が正しいということにはならない。が、理
論的には、いくつかの重要な結果が得られている。まず、

1. leapfrog は symplectic method のもっとも簡単なものの一つである。
2. leapfrog は symmetric method のもっとも簡単なものの一つである。

Symplectic method については、以下のようなことが知られている

1. symplectic method は、すくなくともある種のハミルトニアンに対して使った場合に、それに
近い別のハミルトン系に対する厳密解を与えることがある。

2. 周期解を持つハミルトン系に対して使った場合に、どんな量でも誤差が最悪で時間に比例して
しか増えない。

3. 時間刻を変えると上のようなことは成り立たなくなる

これに対し、 symmetric method については以下のようなことが知られている

1. 周期解を持つ時間対称な系に対して使った場合に、どんな量でも誤差が最悪で時間に比例して
しか増えない。

2. 時間刻を変えてもうまくいくようにすることも出来る。

以下、まず数値例でこれらの性質を確認し、それからなぜこのようなうまい性質を持つのかについ
て直観的な説明を与えよう（厳密な説明／証明には力学系の積分可能性に関するかなり深い知識が
必要となる）。今週はシンプレクティック公式を扱う。
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12.4 数値例

12.4.1 調和振動子

能書きを聞いていても良くわからないので、実例を見てみよう。まず、簡単な例として調和振動子

d2x

dt2
= �x (12.15)

を leap frog と 2階のルンゲクッタで解いた例を示す。初期条件は (x; v) = (1; 0) で、時間刻みは
1=4 である。

軌道とエネルギーを図に示す。非常に特徴的なのは、 leap frog ではエネルギーが周期的にしか変
化しないのに対し、ルンゲクッタでは単調に増えていることである。

図 12.1: 調和振動子の数値積分。左：軌道。右：エネルギー。破線は 2次のルンゲクッタ、実線は
leapfrog の結果

ルンゲクッタでは単調に変化するというのは前に説明した通り（2階のルンゲクッタでは虚軸を安
定領域に含まないため）である。さて、これに対し、 leapfrog ではエネルギーが変化していないが、
これはどういうことなのであろう？

実は、この調和振動子の場合には、 leapfrog 公式は以下の量

H 0 =
1

2
(x2 + v2)� h2

4
x2 (12.16)

を保存するということを確かめることが出来る。つまり、 (x; v) で与えられる位相平面の上で考え
ると、 leapfrog 公式の解は上の式で与えられる楕円の上にのっているのである。このために、エネ
ルギーの誤差がある値よりも大きくなり得ないことになる。
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12.4.2 非線形振動

では、非線形振動ではどうだろう？簡単な例として

d2x

dt2
= �x3 (12.17)

を leap frog と 2階のルンゲクッタで解いた例を示す。初期条件は (x; v) = (1; 0) で、時間刻みは
1=8 である。

軌道とエネルギーを図に示す。調和振動の場合と同様に、 leap frog ではエネルギーが周期的にし
か変化しないのに対し、ルンゲクッタでは単調に増えている。

図 12.2: 非線形振動の数値積分。左：軌道。右：エネルギー。破線は 2次のルンゲクッタ、実線は
leapfrog の結果

この場合も保存量があるので、頑張れば求まるかもしれない。

12.5 シンプレクティック公式

さて、 leapfrog 公式は、上で見たようにハミルトン系に対してエネルギー誤差が有界に留まるとい
う大きな特長がある。が、2次精度でしかない。もっと高次の方法はないのだろうか、またあると
すればどういう原理で作れるのだろうか。

高次の方法を構成する一つのアプローチが、シンプレクティック公式といわれるものである。これ
はなにかというと、積分公式がシンプレクティック写像になるように作るということである。

と、これでは意味がわかりませんね。シンプレクティック写像とは、ようするに正準変換のことで
ある。正準変換とはなにかというのは解析力学の入門書をみて欲しいが、直観的には、力学系を不
変に保つ、つまり変換まえの座標系で求めた軌道を変換したものと、変換後の座標系での力学系の
軌道が厳密に同じになるようなものである。

ハミルトン力学系の解そのもの（ある時刻 t での座標から、 t+ h での座標に移す変換）もシンプ
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レクティックである。まあ、だから、シンプレクティックになっているような積分公式は、そうでな
いものに比べてなんとなく力学系の性質にあっているような気はする。

で、いいたかったことは何かっていうと、上の leapfrog 公式はこのシンプレクティック性を満たし
ているということだった。詳しくは、「数理科学」1995年 6月号にのった吉田による解説記事でも
みてもらうことにして、ここでは高次の公式にはどんなものがあるかという話をしておく。

12.5.1 陽解法

陽解法の組み立て方はいろいろある。一つは、 RKN 系の公式で、係数をシンプレクティック性を
満たすように決めるということである。これはここ 10年で無数に論文がでた。4次、あるいは 6次
の公式としては、吉田や鈴木による作用素分解に基づく公式が良く知られている。

これらの方法の原理は、要するに上の leap frog をタイムステップを変えていくつか組合わせると
いうものである。うまくタイムステップを組み合わせると誤差の高次の項を消すことができるわけ
である。3段 4次の公式、7段 6次の公式等が吉田によって導かれている。

なお、実は陽解法はハミルトニアンが T (p) + V (q) の形の場合にしか使えないが、大抵の問題はこ
う書けることはいうまでもないであろう。

また、RKN 系の公式を力任せに構成する試みもあり、4次から 8次までの公式が作られている。計
算精度という観点からはこちらのほうが leapfrog を組合わせるものよりも圧倒的にいいということ
がわかっている。

12.5.2 陰解法

陰的ルンゲクッタについては、係数がある特別な条件を満たせばシンプレクティックになるという
ことがわかっている。いろいろな公式が知られているが、特に今まで何度もでてきた陰的ガウス法
が次数に無関係にシンプレクティックであるということがわかっている。これは他の観点からも「最
良」な公式であるので、それ以外の方法を使う必要はそれほどないであろう。なお、ハミルトン系
は普通 non-sti� なので、逐次代入法で収束させることができ、収束も速い。

12.5.3 シンプレクティック公式の意味

さて、シンプレクティックであるということと、「良い」ということの間にはちゃんとした理論的な
関係があるのであろうか？一応あるということになっている。つまり、あるハミルトニアン H で表
される系をシンプレクティックな p 次の公式を使って積分した解は、別のハミルトニアン H 0で与え
られるシステムの厳密解になっていて、H と H 0 の間に

H = H 0 + hp+1Hp +O(hp+2) (12.18)

という関係がある（H 0を求める数列が収束すれば）ということがわかっている。

なお、例えば上の調和振動子の場合には実際に数列が収束し、H 0 が求まっている。が、これは極め
て例外的な場合で、一般の場合には収束するかどうかも明らかではないようである。

収束するかどうか明らかではないのでは、使っていいことがあるという保証はないではないかと思
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うかもしれない。理論的にはその通りなのであるが、実際にはいろいろな問題に適用されて、従来
の方法よりも高い精度が得られるということが確認されている。

12.6 シンプレクティック公式の問題点と対応

さて、式 (12.18) をみるとわかるように、シンプレクティック公式に付随するハミルトニアンH 0 に
は時間刻み h が入っている。従って、h をふらふら変えると H 0 も変わって、結果的に求まった数
値解は一つの力学系の軌道ではないなんか変なものになってしまう。ということは、可変時間刻み
にするとシンプレクティック公式はうまく働かないのではないかということが想像される。

じつはその通りで、例えばシンプレクティックで埋め込み型のルンゲクッタというものを作って、実
際に時間刻みを変えてみた人がいる。その結果、普通のルンゲクッタよりも良くならないというこ
とが発見された (1992年頃)。問題によってはこれは致命的な欠陥となるので、さまざまな対応法が
精力的に研究されているのが現状である。が、あまり一般的にうまくいく方法というのは見つかっ
ていないようである。つまり、 sti� な問題の場合にあったような、万能な公式というのはシンプレ
クティック公式に関する限り知られていない。

なお、シンプレクティック公式において普通に時間刻みを変えると、それはシンプレクティックで
はなくなるということが Gear と Skeel により一般に証明されている。彼らの結果は、時間刻みも
含めて考えると、写像が時間方向に歪んだもの（もとの位置によって時間刻みが変わるため）にな
り、そのために元の公式がシンプレクティックであれば時間刻みを変えると必ずシンプレクティック
でなくなるというものである。

それでは、時間刻みを変えるのは絶対に不可能かというと、以下のような考えかたでの研究が進め
られている。ハミルトニアン H を

H = H1 +H2 + � � � (12.19)

と複数の項の和にわけ、それぞれについて違う時間刻みを与えることで実効的に時間刻みを変える
というものである。これについては来週か再来週にもう少し詳しく触れることにしたい。

もう一つのシンプレクティック公式の問題点は、「写像」であるということから一段法、具体的には
ルンゲクッタ型の公式であるので、局所誤差に対する計算量という観点からは線形多段階法に比べ
て必ず悪いということである。

一般に多段階法についてシンプレクティック性のようなものがありえるかどうかというのは、現在
研究が進みつつあるが良くわかっていない。

12.7 問題

1. 上に紹介した吉田による解説記事を参考に、 4 次および 6 次のシンプレクティックな RK 法を
プログラムしてみよ。また、書いたプログラムを使って
� 一次元調和振動子
� ケプラー問題

など、厳密解のわかっているハミルトン系の数値解を求め、特に長時間積分の時の誤差をシン
プレクティックでない公式での解と比較せよ。また、ステップサイズと積分時間への誤差の依
存性を実験的に求め、理論的に予測される結果とあうかどうか調べよ。



12.8. 対称型公式 69

2. 2次および 4次の陰的ガウス法について同様なことを試みよ。

12.8 対称型公式

12.8.1 対称型公式とは

さて、まず対称型公式とはなにかということだが、まず時間反転に対する対称性というものを定義
しておこう。時間反転に対する対称性とは、常微分方程式

dy

dx
= f(x; y) (12.20)

に対する一段法
yi+1 = F (xi; yi; f;�x) (12.21)

が、
yi = F (xi+1; yi+1;�f;�x) (12.22)

を満たすこと、つまり、直観的には、ある微分方程式系があって、それを 1ステップ分数値解を求
めたとする。で、そこから逆に戻ると厳密に元の値に戻るということである。（ここでは丸め誤差は
ないものとする）

で、一段法の場合には、この意味で対称なものを対称型公式ということにする。

具体例で考えてみよう。例えば前進オイラー法は対称型ではない。これは、いった先で導関数を計
算すれば、一般にもとのところでの導関数とは違うから当然であろう。前進オイラー法が対称では
ないのだから、その逆写像である後退オイラー法も対称型ではないことになる。

では、対称型にはどういうものがあるかということだが、明らかに対称型であるものとしては、台
形公式

yi+1 = yi +
h

2
(fi + fi+1) (12.23)

がある。これが上の対称性を満たしていることはいうまでもない。

さて、なぜこの型の公式を考えるかということであるが、これは実はそれほど簡単な話ではない。
実験的には以下のようなことが知られている。

�ハミルトン系に対して対称型公式を使った場合、エネルギーや角運動量などの保存量の誤差が
ある範囲内にとどまる

�時間刻みを変えても上の性質を保つことが出来る

前のほうの性質はシンプレクティック公式と同じであるが、後の方の性質はシンプレクティック公
式よりもある意味でよいものである。

理論的な話は来週に回して、今日はとりあえず対称型公式にはどんなものがあるかという話をして
おこう。

さて、一階の方程式に対する一段法という制限をつけた場合、つまり、ルンゲクッタ法の場合、対
称な公式はかならず陰的公式になる。逆に、陰的公式であれば対称型のものを作るのは容易である。
つまり、ルンゲクッタ法を与える行列 A とかベクトル b, cが対称になっていればいい。
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何度もでてきたので予想されるかもしれないが、陰的ガウス法は対称型公式でもある。

一階の系に対する一段法では、そういうわけですでに紹介してきた陰的 RK のほかにうまい方法が
あるわけではない。それでは、

�ハミルトン系専用の解法ではどうだろうか
�多段法ではどうなっているのだろう
�それ以外の方法はないのだろうか

以下、順番に考えていくことにする。

12.8.2 ハミルトン系用の陽的対称型RK公式

実は、前回にすでに述べたように、 leapfrog 公式は対称型でありしかも陽公式である。で、前回紹
介した leapfrog の組合わせで作られる公式も、実はすべて対称型になっている。

12.8.3 対称型線形多段法

さて、一段法という枠を外してみよう。2階の方程式用の線形多段階法としては、すでに Stormer-

Cowell 法について述べた。が、これは対称型ではない。

というようなことをいう前に、線形多段階法に対する対称性の定義を与える必要がある。ここでは、
以下のように定義しておこう。2階の方程式用の線形多段階法は、一般に

�0xi+p + � � ��pxi = h2(�0fi+p + � � ��pfi) (12.24)

という形に書くことができる。 �0 = 0 なら陽的であるし、そうでなければ陰的公式である。ここ
で、対称型であるとは、係数が

�i = �p�i; �i = �p�i (12.25)

を満たすということである。 leap frog をこの形にしたものは、前に出てきた通り

xi+1 � 2xi + xi�1 = h2fi (12.26)

というものであり、これが上の対称性の定義を満たしていることはいうまでもないであろう。

上の意味で対称な公式は、実際に時間反転に対して対称であるということに注意しておこう。つま
り、(xi; :::xi+p�1)から上の式で xi+p を求めたとする。時間を逆転させた解を考えて、(xi+p; :::xi+1)
から xi を求めるということを考えても、使う式が時間が逆転していないものと同じになっている
のである。

Stormer-Cowell が対称ではないというのはこの意味、つまり、(xi; :::xi+p�1) から xi+p を求める式
と (xi+p; :::xi+1) から xi を求める式が同じものではないということである。

このような公式は、 1970 年代から知られていたが、注目されるようになったのは 1990 年代に入っ
てからである。特にトロント大の Quinlan, Tremaineらが 14次までの対称型公式を導いた。表 12.1

にその値を示しておく。

なお、非常に最近（今年）になって、国立天文台の福島によって、Quinlan & Tremaineによるもの
よりもはるかに良い性質を持つものが導かれている。これについては原理も合わせて後で触れる。
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表 12.1: Quinlan & Tremaine 1990 による対称型公式の係数

12.8.4 エルミート型公式

一般に対称型というわけではないが、4次の対称型公式を導く特別な方法としてエルミート型（あ
るいはエルミート・オブレヒホフ型）と呼ばれる公式のクラスについてここで触れておこう。

エルミート型公式は、線形多段階法のアダムス型公式の一つの一般化である。どのような意味にお
いて一般化であるかというと、アダムス型と同じように補間多項式を積分することで新しい時刻で
の値を求めるところは同じである。違うところは、アダムス型公式では補間多項式を作るのに関数
の値を使う（ラグランジュ・ニュートン補間）が、エルミート型公式では、関数の導関数の値も使
うのである（エルミート補間）。

もっとも単純な発想としては、テイラー法というものがある。つまり、微分方程式

dy

dx
= f(x; y) (12.27)

というものがあったとしたら、
df

dx
=

@f

@x
+
@f

@y

dy

dx
(12.28)

という関係式を使って f の全微分を求めることが出来、同様に高次の導関数もどんどん計算してい
くことが出来る（微分が式で書ければ）。これらを使って直接テイラー級数を評価して近似解を求め
るのである。

高次の導関数が簡単に求められる場合（例えば線形な系とか）には、この方法はかなり強力である。
線形多段階法やルンゲクッタに比べて誤差項の係数がずっと小さく、タイムステップが大きくとれ
るからである。

が、多くの問題において、高階導関数の直接計算は現実的ではない。これは、計算量が指数関数的
に爆発するのが普通だからである。とはいえ、f の一階導関数や二階導関数くらいならば指数関数
的といってもたかがしれている。しかしながら、これではテイラー法では 2次や 3次の公式しか作
れない。実用的な公式としては、（leap frog のような特別に良い性質をもっているとかいうのでな
ければ）もうちょっと高次のものが必要である。

そこで考えられるのが、高階導関数を使ってさらにルンゲ・クッタ型とか線形多段階法のような公
式を作ることである。例によってもっとも簡単な場合というのを考えると、それは yi と yi+1 のと
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ころで f の一階導関数の値を使うもの（高次導関数を使わないものであれば台形公式に相当）の一
般化ということになろう。

台形公式は、2次の陰的アダムス型公式と考えることができる。つまり、 f を線形補間してそれを
積分しているわけである。これに対し、 f と f 0 = df=dx を使う補間というのはどういうものかと
いうことを考えてみると、これは 3次多項式を構成できることがわかる。具体的には、導関数の近
似多項式を

f(x0 + h) = f0 + ah+
b

2
h2 +

c

3!
h3 (12.29)

としたとき、

a = f 00

b =
�6(f0 � f1)� 2�x(2f 00 + f 01)

�x2

c =
12(f0 � f1) + 6�x(f 00 + f 01)

�x3
(12.30)

という形で係数を求めることが出来る。さらに、上の近似多項式を積分してやれば、結局

x1 = x0 +
h

2
(f0 + f1) +

h2

12
(f 00 � f 01) (12.31)

という形の公式が得られる。これは台形公式と同じく陰的公式である。対称型であることは明らか
であろう。

この公式は実装が簡単であるわりには精度が高く、また対称型であるというよい性質をもつことも
あり、良く使われるようになりつつあるようである。収束させるための反復には普通の逐次代入が
使える。

12.8.5 対称型一段公式における時間刻みの変更

対称型一段公式には、対称性を保ったままで時間刻みを変更できるというシンプレクティック公式
では（普通の意味では）なかった良い性質がある。以下では、どのようにしてそれが可能であるか
を簡単に述べておく。

今、任意の対称型一段法があって、その時間刻みを与える関数として h(x; y) が与えられていると
する。ここで h(x; y) はなんでもいいが、これも一段法である、つまり前のステップの値とかを必
要としないものであるとする。

一般に、 h(x; y) によって刻み幅を決めて求めていった数値解は、時間反転に対する対称性を満た
していない。つまり、1ステップ積分してから、逆に戻すと、タイムステップが変わってしまうた
めにもとのところに戻らない。このことのために、例えば周期軌道の場合に誤差が周期的にならな
いということが起こるわけである。

刻み幅を変えつつ時間反転に対する対称性を保つ一つの方法は（これ以外の方法もあるかもしれな
いが、今のところ知られていない）、 h(x; y) 自体に対称性を持たせることである。つまり、一段
法を

y1 = y0 + h(x0; y0)F (x0; y0) (12.32)

という形に書いた時、
h(x0; y0) = h(x1; y1) (12.33)
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がなりたつことを保証するように h を決めるのである。具体的には、上の対称性が成り立っていな
いような時間刻みの式 h があった時に、

hs =
h(x0; y0) + h(x1; y1)

2
(12.34)

によって対称化した時間刻みを作ればいいことになる。この場合時間刻み自体が陰的に決まること
になるが、とにかく対称性という要求は満たされるのである。

12.8.6 対称型一段公式における時間刻みの変更:別のアプローチ

さて、時間刻みの変更にはもう一つ全く違ったアプローチがある。 h(x; y) が時間刻みを与える関
数であるとすると、新しい独立変数 s を

ds = h(x; y)dx (12.35)

によって導入し、元の微分方程式
dy

dx
= f(x; y) (12.36)

を s を独立変数として書き直す。 x はいまや従属変数なので、方程式

dx

ds
=

1

h(x; y)
(12.37)

を積分して求める必要があるが、この変換された方程式は s の刻み幅一定で解けることになる。こ
の場合には時間刻みを陰的に決める必要はない。

が、この方法を使った場合、リープフロッグのような陽的方法は多くの場合に使えない。これは、
変換したあとの系はハミルトン系になるという保証はないし、そうなるように変換を選んだとして
もハミルトニアンがリープフロッグが使える特別な形（ p と q が分離しているもの）になるとは限
らないからである。

さらに、元の方程式を書き直す必要があるので、プログラムを書くのは結構大変な作業になること
が多いということも、この方法の問題点ではある。

というわけで、前の時間刻みを陰的に変える方法とどちらがいいかは時と場合による。時間刻みの
関数 h(x; y) が簡単なもので良ければ、方程式の書換えも単純でありこっちの方法の方が良い結果
が得られる。が、 hが簡単ではない場合（例えば、埋め込み型RK公式から誤差推定が得られ、そ
れを一定値に保つように刻みを決める）には、前節で述べた方法を使うしかない。
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第13章 ハミルトン系用の解法の安定性と「正
しさ」

13.1 線形安定性と P-安定

ハミルトン系の安定性とかいっても、一般的な議論がそんなにできるわけではなくて、多様な数値
積分法に対する安定性のちゃんとした解析が出来ているのは結局線形の問題（調和振動）の場合と
いうことになる。というわけで、まず、調和振動の場合の理論の枠組について説明しておこう。

13.1.1 多段階法に対する周期性区間

まず、先週紹介した対称型多段階法について、線形安定性の意味をあきらかにしておこう。一階の
方程式の場合には、線形安定性とは線形方程式の解がいつかは原点に向かうこと、つまり、線形の
方程式に対応する差分方程式の解の実部が負であるということであった。

しかし、ハミルトン系の場合にはこれが数値解がもとの解を表現しているということの適切な条件
とはいい難いというのはすでに述べた通りである。というのは、調和振動の場合では明らかなよう
に、真の解というのは無限に振動が続くのに対し、線形安定性の意味で安定な数値解は原点にむかっ
て落ちていくことになるからである。このため、例えばエネルギーは保存し得ない。

というわけで、調和振動の方程式
d2x

dt2
= �!20x (13.1)

に、（2階の方程式用の）多段階法

�0xi+p + � � ��pxi = h2(�0fi+p + � � ��pfi) (13.2)

を適用した場合の解について考えてみる。今、

H = h!0 (13.3)

とおけば、数値解法から得られる差分方程式は
pX

i=0

(�i +H2�i)xn�i = 0 (13.4)

と書くことができる。この差分方程式の一般解は、

xn =
pX

s=1

Asr
n
s (13.5)

ここで、 rs は代数方程式

(r;H2) = �(r) +H2�(r) = 0 (13.6)
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の解であり、 � と � はそれぞれ第一特性多項式、第二特性多項式とよばれるものであり、定義は

�(r) =
pX

i=0

�ir
p�i

�(r) =
pX

i=0

�ir
p�i

である。なお、面倒なので方程式 (13.6) は重根を持たないということにしておく。

さて、一般解が (13.5)の形で与えられるということは、つまり、数値解が一定の振幅で振動を続け
るための条件は、方程式 (13.6) のすべての解の絶対値が 1 に等しい、つまり

jrsj = 1 (13.7)

ということである。そんな都合のいいことが本当にあるのだろうか？

13.1.2 例： leapfrog 公式

というわけで、例によって leap frog 公式

xi+2 � 2xi+1 + xi = h2fi (13.8)

に適用してみることにする。

�(r) = r2 � 2r + 1

�(r) = r (13.9)

となるので、 2� = 2�H2 とおけば、方程式 (13.6) は

r2 � 2�r + 1 = 0 (13.10)

となる。これについては、すぐにわかるように複素数解の絶対値はかならず 1 なので、解の絶対値
が 1 である条件というのは単に複素数解をもつ条件ということになり、少し計算すれば

0 � H2 � 4 (13.11)

であればよいということがわかる。つまり、 h!0 � 2 ということである。従って、周期の 1/3 より
少し小さいくらいの刻み幅をとっておけば、解が振動的であるという性質が保存されているという
ことがわかる。

なお、上の、解の絶対値が 1 であるような Hの領域を、周期性区間 interval of periodicity という。

13.1.3 P-安定性

さて、線形安定性の時に A-安定性という概念を導入したように、周期性についても同様なことが
考えられよう。つまり、周期性区間が非負の実数軸全体を含むということを特に P-安定であるとい
う。P-安定についても、A-安定と同様なダールキストによる以下の結果が知られている：

� P-安定な線形多段階法の次数は 2 を越えることが出来ない。
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なお、 P-安定な公式は以下の形になる：

xi+2 � 2xi+1 + xi =
h2

4
(fi+2 + 2fi+1 + fi) (13.12)

これは実は台形公式である。

13.1.4 有限の周期性区間を持つ多段階法

さて、P-安定な公式というのは台形公式だけなわけだが、実用上は P-安定でなくても、周期性区間
が極端に小さくなければ使えるであろう。つまり、 H の最大値が解の周期に対して周期性をたも
つ最大のステップの大きさを与えるので、まあ、それが存在して極端に小さくなければいいではな
いかということになる。そのような、有限の周期性区間をもつ線形多段階法をつくる方法として現
在のところ唯一しられているのが、前回出てきた対称型公式である。Quinlan & Tremaine に従っ
て概要を説明すると、数値解が xn = einh! の形をしているとして、これが従う方程式はもちろん

h2!20 =
�0e

ip!h + � � ��p
�0eip!h + � � ��p

(13.13)

となるが、右辺の分母分子に e�ip!h=e を掛けてみると、対称型公式で �p�i = �i とかの性質がある
と、ちょうどそれらの項の虚部が打ち消し合うので、結局任意の ! について右辺が実数ということ
になる。

あとは、実際に値が正であれば、周期性区間に入っているということになる。

周期性区間がどこまでであるかというのは、公式を決めて数値計算してみないとよくわからない。
これについてはまだそんなに研究されていなくて、最近福島によって系統的な研究がでたばかりで
ある。

福島の結果では、陽公式の場合には周期性区間を大きくすると誤差定数が大きくなってしまう。が、
陰公式ではそのような問題はなく、次数に無関係に周期性区間が 1 程度あるものが見つかっている。

13.1.5 ルンゲクッタの場合

さて、ルンゲクッタの場合にも、上と全く同様に周期性区間とか P-安定性とかを考えることができ
る。もうそれほど驚くべきことではないと思うが、例によって以下のようなことがわかっている

�対称型ルンゲクッタは有限の周期性区間を持つ。
�陰的ガウス法は P-安定である。

なお、陰的ガウス法以外にも P-安定な公式は知られているが、ここでは紹介しない。

13.2 線形問題の場合の数値解と真の解の関係

というわけで、線形のハミルトニアンをもつ場合、つまりは調和振動の場合には、周期性区間とか
P-安定とかいった概念が定義できる。この時、真の解と数値解の関係はどうなっているかというこ
とを考えてみる。



78 第 13章 ハミルトン系用の解法の安定性と「正しさ」

どちらも調和振動になっているわけなので、厳密解と数値解で違うのは周期だけである。詳しい説
明は省くが、厳密解と数値解の角振動数に対して、

! = !0 +O(hp) (13.14)

という関係があることが証明されている。つまり、周期性区間に入っている場合、周期自体の誤差
が押えられているのである。

この場合、例えば位置や速度の大域誤差というものを考えた時、ずっと前にやったような時刻の指
数関数的に増える誤差評価ではなく、時間の 1 次式でしか増えない精密な誤差評価が可能になる。
つまり、大域誤差の意味で求まった解がどの程度正しいかということが（丸めを別にすれば）厳密
に議論できることになる。

13.3 非線形問題の場合

13.3.1 周期解の場合

非線形問題の場合の数値解の振舞いの解析は、線形問題の場合に比べてはるかに困難になる。この
根本的な理由は、前にやった安定性の場合と同様、数値解が真の解に近いかどうかということが、
真の解が「可積分」でないとうまく定義できないからである。

ここで、可積分というのは、もとのハミルトン力学系の性質として解析的な解を持つということで
ある。これがじゃあいったいどういうことかというのは、やりはじめるとそれだけで 1学期かかる
ので、興味がある人は「力学」（大貫良夫、吉田春夫、岩波書店）でも見てもらうことにする。

とはいえ、定義を与えないと話が進まない。ある力学系が可積分であるというのは自由度の数と等
しい数の保存量を持つことである。この時は、位相空間内での軌道が（多重）周期軌道になる。い
いかえれば、カオス的にはならない。逆に、可積分でないということとカオス的であるということ
はほぼ対応する。（もちろん微妙な場合というのがあるが）

さて、非線形の場合でも、厳密解が周期解ならばシンプレクティック公式や対称型公式で求めた数
値解も周期解になるということが非常に最近になって証明された。ここではこの証明がどういうも
のかは触れないが、この場合には厳密解と数値解の間の差が線形の場合とおなじように O(hp) で押
えられるということになる。従って、数値解がどの程度正しいかということに関しては非常に正確
に押えられる。

13.3.2 非周期解の場合

さて、なぜわざわざ数値計算をするかということを考えてみると、多くの場合には可積分ではない
から数値計算するのである。可積分ならば数値計算しなくても解が求まるはずだからである。

しかし、この場合には、数値解の正しさというものの意味はあまり自明ではなくなる。というのは、
もともとの厳密解の場合にも「正しい解」というものの意味が明確ではなくなるからである。

可積分でないということとカオス的ということはほぼ対応すると考えて良いので、以下カオス的
である場合について考える。カオス的であるための必要条件は、リヤプノフ指数が正であることで
あった。

リヤプノフ指数が正であるというのはどういうことかというと、非常に近い初期条件から出発した
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厳密解の間の距離が、指数関数的に広がるということである。従って、仮に数値解が本当に厳密解
通りのものを求めていたとしても、初期条件に誤差があればそれが指数関数的に拡大し、しばらく
すれば真の解から大きくずれてしまうといったことが起きる。

この場合、数値計算をする目的により、どのような解に意味があるか、また、どのような計算が可
能かということが違ってくる。

まず、何が不可能かということを明確にしておこう。初期条件が有限の精度でしか知られていなけ
れば、その誤差が指数関数的に増大するため、仮に無限に高い精度で数値計算したとしても、ある
時刻での解の精度には限度があり、その限度が時間の指数関数で悪くなっていく。従って、誤差の
指数関数的な成長のタイムスケールの例えば 10 倍とか 30倍を越えて正確な軌道を求めるというこ
とは原理的に不可能である。

従って、可能なことは以下の 2つということになる。

�指数関数のタイムスケールよりも短い範囲で正確な軌道を求める。
�指数関数のタイムスケールよりずっと長いところで、なんだかよくわからないけど数値解を求
める。

第一の場合にはなにを計算しているかは明確であり、誤差も精密に評価出来る。つまり、リヤプノ
フ指数が前にやったリプシッツ連続の条件の値そのものなので、誤差の上界が大域誤差の式でほぼ
正確に押えられるのである。この場合にはそれほど議論するべきことはない。

それでは、第二の場合についてはどうであろうか？

こちらは、実は理論的にも実験的にもまだ良くわかっていないのが現状である。シンプレクティッ
ク法の場合には、それで求まった解が元のハミルトニアンH に近い H 0 で表される系の厳密解に
なっていることがあるという話をしたが、そのようなものが具体的に求まっているのは実は可積分
な系に限られていて、非可積分なハミルトン力学系に対してシンプレクティック法を使った時に良
いことがある、つまり H 0 が存在するかどうかはわかっていない。つまり、形式的に級数で書ける
ものの、それが収束するかどうかは知られていない。

しかし、それにも関わらず、実験的には多くの場合に良い結果が得られている。では、ここで、良
いというのはどういう意味かというと、単に保存量であるとわかっているもの、例えばエネルギー
や、系によっては角運動量といったものの誤差が成長していかない、つまり有界に留まるというこ
とである。

このことがもっとも良く知られているのは分子動力学計算である。分子動力学計算というのは、例
えば水とかタンパク質とかいったマクロな物質の物性や非平衡な変化を、ミクロな分子一つ一つの
軌道を時間積分して計算することで調べようというものである。もちろん、実際の水を構成してい
る分子の数はあまりの多いので、そのまま計算することはできず、せいぜい 1000個とか 10,000 個
程度の分子から出来た系について計算していろいろ調べるということになる。

この時、分子一つの軌道については、それが隣の分子までのの距離を動くくらいの時間が上のリヤ
プノフ指数に入ってくることがわかっている。これは具体的には 10�14秒程度である。これに対し
て、数値計算で熱平衡状態の分布関数を求めるといった場合には 10�10 乗程度、非平衡の変化の場
合も同程度の計算が必要になる。

従って、計算は指数関数のタイムスケールの 1万倍程度することになり、誤差は「分子がどこにあ
るかは全くわからない」という程度には大きい。つまり、例えばある分子の位置を初期条件で最後
の 1ビットだけ変えただけで、計算が終った時のその粒子の位置は全く変わってしまう。
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この場合に計算結果に意味があるといえるかどうかは実はまだ理論的にははっきりしていない。分
子動力学計算の一つの目的は、熱平衡状態での系の性質（温度と圧力の関係とか、拡散係数など）
を決めることであり、この場合には数値解が厳密解である必要はなく、それがエルゴード性を満た
していればいい。ところが、このエルゴード性というのが、そもそも元のハミルトン系が満たして
いるかどうかがまだ一般にはわかっていないという代物である。数値解が同なっているかなんてこ
とは従っていっそうわからないのである。

そういう意味では、分子動力学計算に代表されるような、系の統計力学的な性質を直接シミュレー
ションによって調べるという方法の理論的な正当性は明らかではない。この根本的原因は、しかし、
統計力学自体の理論的な正当性が明らかではないところにある。

つまり、カオスになっているような系の長時間計算では、理論的には意味がある答が出ているとい
う保証はない。実験的にはうまくいく、つまり統計的な性質が理論的に予測できるものについては
良く一致するということがわかっていて、広く使われているのであるが。

13.4 振動的に硬い方程式系

さて、最後に、振動的に硬い方程式系というものに対して簡単に触れておこう。これは、要するに、
実数で高い振動数を持つような自由度がある系である。具体的な例では、例えば分子動力学計算の
場合、分子内部での振動、変形は、分子全体が回転したり重心が動いたりするのに比べ何桁も速い。

前にやった硬い方程式用の解法はこの場合には使えない。というのは、これでは数値解では振動が
減衰してしまうからである。

この場合には、普通の硬い方程式のような汎用でうまい方法があるわけではない。最近研究が進み
つつあるのは、ハミルトニアンを自由度毎に分けて、それぞれ別の時間刻みを使う方法である。振
動数の大きな自由度の数が少なければ、これで劇的に計算量を減らすことができる。

13.5 レポート問題追加

1. 以下の自由パラメータを持つ対称型線形多段階法

yk+2 � 2yk+1 + yk = h2[(1� �)(fk+2 + fk)=2 + �fk+1] (13.15)

に対して、
(a) Interval of Periodicity を求めよ
(b)次数を求めよ。 2 より高くなることはあるか？
2. 以下のポテンシャルの下での一次元振動について

V (r) = �1=
p
r2 + �2 (13.16)

(a) 等時間刻みの 4次シンプレクティック法（例えば吉田の方法）を使って時間積分することを
試みよ。安定な解を得るためにはステップサイズがどの程度である必要があるか？なお、計
算例としては例えば � = 0:01; r(0) = 1; dr=dtjt=0 = 0 としてみよ。

(b)適当な方法で可変時間刻みにして、精度と計算量（ステップ数）の関係を等時間刻みの場合
と比較せよ。
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3. 重力多体問題
d2xi
dt2

=
X
j 6=i

�mjrij

r3ij
(13.17)

は特別な初期条件を除いては安定な軌道を持たない。数個の粒子の場合について適当な初期条
件からいろいろな方法で数値積分し、しばらく計算した後での答を比較してみよ。さらに、結
果が「正しい」ということができるのはどういう場合かを考察せよ。

締め切りは 9月 11日、提出先は牧野の研究室 (15-704B)の前においたポストか、または電子メイ
ルで makino@grape.c.u-tokyo.ac.jp あてに。


