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Example C.13    One-Sided Test About a Mean
A sample of 25 from a normal distribution yields x = 1.63 and s = 0.51. Test

 H0: m … 1.5, 
 H1: m 7 1.5.

Clearly, no observed x  less than or equal to 1.5 will lead to rejection of H0. Using the borderline 
value of 1.5 for m, we obtain

Proba2n(x - 1.5)
s

7
5(1.63 - 1.5)

0.51
b = Prob(t24 7 1.27).

This is approximately 0.11. This value is not unlikely by the usual standards. Hence, at a 
significant level of 0.11, we would not reject the hypothesis.

C.7.3    SPECIFICATION TESTS

The hypothesis testing procedures just described are known as classical testing procedures. 
In each case, the null hypothesis tested came in the form of a restriction on the alternative. 
You can verify that in each application we examined, the parameter space assumed 
under the null hypothesis is a subspace of that described by the alternative. For that 
reason, the models implied are said to be nested. The null hypothesis is contained within 
the alternative. This approach suffices for most of the testing situations encountered in 
practice, but there are common situations in which two competing models cannot be 
viewed in these terms. For example, consider a case in which there are two completely 
different, competing theories to explain the same observed data. Many models for 
censoring and truncation discussed in Chapter 19 rest upon a fragile assumption of 
normality, for example. Testing of this nature requires a different approach from the 
classical procedures discussed here. These are discussed at various points throughout 
the book, for example, in Chapter 19, where we study the difference between fixed and 
random effects models.

A P P E N D I X  D

§
Large-Sample Distribution Theory

D.1	 INTRODUCTION

Most of this book is about parameter estimation. In studying that subject, we will usually be 
interested in determining how best to use the observed data when choosing among competing 
estimators. That, in turn, requires us to examine the sampling behavior of estimators. In a 
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few cases, such as those presented in Appendix C and the least squares estimator considered 
in Chapter 4, we can make broad statements about sampling distributions that will apply 
regardless of the size of the sample. But, in most situations, it will only be possible to make 
approximate statements about estimators, such as whether they improve as the sample size 
increases and what can be said about their sampling distributions in large samples as an 
approximation to the finite samples we actually observe. This appendix will collect most 
of the formal, fundamental theorems and results needed for this analysis. A few additional 
results will be developed in the discussion of time-series analysis later in the book.

D.2	 LARGE-SAMPLE DISTRIBUTION THEORY1

In most cases, whether an estimator is exactly unbiased or what its exact sampling 
variance is in samples of a given size will be unknown. But we may be able to obtain 
approximate results about the behavior of the distribution of an estimator as the sample 
becomes large. For example, it is well known that the distribution of the mean of a sample 
tends to approximate normality as the sample size grows, regardless of the distribution of 
the individual observations. Knowledge about the limiting behavior of the distribution 
of an estimator can be used to infer an approximate distribution for the estimator in a 
finite sample. To describe how this is done, it is necessary, first, to present some results 
on convergence of random variables.

D.2.1    CONVERGENCE IN PROBABILITY

Limiting arguments in this discussion will be with respect to the sample size n. Let xn be 
a sequence random variable indexed by the sample size.

DEFINITION D.1  Convergence in Probability
The random variable xn converges in probability to a constant c if 
limnS ∞Prob( � xn - c � 7 e) = 0 for any positive e.

Convergence in probability implies that the values that the variable may take that 
are not close to c become increasingly unlikely as n increases. To consider one example, 
suppose that the random variable xn takes two values, zero and n, with probabilities 
1 - (1/n) and (1/n), respectively. As n increases, the second point will become ever 
more remote from any constant but, at the same time, will become increasingly less 
probable. In this example, xn converges in probability to zero. The crux of this form of 
convergence is that all the mass of the probability distribution becomes concentrated at 
points close to c. If xn converges in probability to c, then we write

	 plim xn = c.	 (D-1)

1A comprehensive summary of many results in large-sample theory appears in White (2001). The results discussed 
here will apply to samples of independent observations. Time-series cases in which observations are correlated are 
analyzed in Chapters 20 and 21.
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THEOREM D.1  Convergence in Quadratic Mean
If xn has mean mn and variance sn

2 such that the ordinary limits of mn and sn
2 are c 

and 0, respectively, then xn converges in mean square to c , and

plim xn = c.

THEOREM D.2  Chebychev’s Inequality
If xn is a random variable and c and e are constants, then Prob( � xn - c � 7 e) …
E[(xn - c)2]/e2.

THEOREM D.3  Markov’s Inequality
If yn is a nonnegative random variable and d is a positive constant, then 
Prob[yn Ú d] … E[yn]/d.
Proof: E[yn] = Prob[yn 6 d]E[yn � yn 6 d] + Prob[yn Ú d]E[yn � yn Ú d]. 
Because yn is non-negative, both terms must be nonnegative, so 
E[yn] Ú Prob[yn Ú d]E[yn � yn Ú d]. Because E[yn � yn Ú d] must be greater than 
or equal to d, E[yn] Ú Prob[yn Ú d]d, which is the result.

We will make frequent use of a special case of convergence in probability, convergence 
in mean square or convergence in quadratic mean.

A proof of Theorem D.1 can be based on another useful theorem.

To establish the Chebychev inequality, we use another result [see Goldberger (1991, 
p. 31)].

Now, to prove Theorem D.1, let yn be (xn - c)2 and d be e2 in Theorem D.3. Then, 
(xn - c)2 7 d implies that � xn - c � 7 e. Finally, we will use a special case of the 
Chebychev inequality, where c = mn, so that we have

	 Prob( � xn - mn � 7 e) … sn
2/e2.	 (D-2)

Taking the limits of mn and sn
2 in (D-2), we see that if

	 lim
nS ∞

E[xn] = c, and lim
nS ∞

Var[xn] = 0,	 (D-3)

then

plim xn = c.

We have shown that convergence in mean square implies convergence in probability. 
Mean-square convergence implies that the distribution of xn collapses to a spike at plim 
xn, as shown in Figure D.1.
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FIGURE D.1    Quadratic Convergence to a Constant, u.

Example D.1  �  Mean Square Convergence of the Sample Minimum in 
Exponential Sampling

As noted in Example C.4, in sampling of n observations from an exponential distribution, for 
the sample minimum x(1),

lim
nS ∞

E[x(1)] = lim
nS ∞

 
1
nu

= 0

and

lim
nS ∞

Var[x(1)] = lim
nS ∞

 
1

(nu)2
= 0.

Therefore,

plim x(1) = 0.

Note, in particular, that the variance is divided by n2. This estimator converges very rapidly 
to 0.

Convergence in probability does not imply convergence in mean square. 
Consider  the simple example given earlier in which xn equals either zero or n 
with probabilities 1 - (1/n) and (1/n). The exact expected value of xn is 1 for all n, 
which is not the probability limit. Indeed, if we let Prob(xn = n2) = (1/n) instead, the 
mean of the distribution explodes, but the probability limit is still zero. Again, the 
point xn = n2 becomes ever more extreme but, at the same time, becomes ever less 
likely.

The conditions for convergence in mean square are usually easier to verify than 
those for the more general form. Fortunately, we shall rarely encounter circumstances 
in which it will be necessary to show convergence in probability in which we cannot 
rely upon convergence in mean square. Our most frequent use of this concept will be in 
formulating consistent estimators.
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THEOREM D.4  Consistency of the Sample Mean
The mean of a random sample from any population with finite mean m and finite 
variance s2 is a consistent estimator of m.
Proof: E[xn] = m and Var[xn] = s2/n. Therefore, xn converges in mean square 
to m, or plim xn = m.

COROLLARY TO THEOREM D.4  Consistency of a Mean of Functions
In random sampling, for any function g(x), if E[g(x)] and Var[g(x)] are finite 
constants, then

	 plim 
1
n

 a
n

i = 1
g(xi) = E[g(x)].� (D-5)

Proof: Define yi = g(xi) and use Theorem D.4.

DEFINITION D.2  Consistent Estimator
An estimator unn of a parameter u is a consistent estimator of u if and only if

	 plim unn = u.� (D-4)

Theorem D.4 is broader than it might appear at first.

Example D.2    Estimating a Function of the Mean
In sampling from a normal distribution with mean m and variance 1, E[ex] = em+1/2 and 
Var[ex] = e2m+2 - e2m+1. (See Section B.4.4 on the lognormal distribution.) Hence,

plim 
1
n

 a
n

i = 1
exi = em + 1/2.

D.2.2    OTHER FORMS OF CONVERGENCE AND LAWS OF LARGE NUMBERS

Theorem D.4 and the corollary just given are particularly narrow forms of a set 
of results known as laws of large numbers that are fundamental to the theory of 
parameter estimation. Laws of large numbers come in two forms depending on the 
type of convergence considered. The simpler of these are “weak laws of large numbers” 
which rely on convergence in probability as we defined it above. “Strong laws” rely on 
a broader type of convergence called almost sure convergence. Overall, the law of large 
numbers is a statement about the behavior of an average of a large number of random 
variables.
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THEOREM D.5  Khinchine’s Weak Law of Large Numbers
If xi, i = 1, c, n is a random (i.i.d.) sample from a distribution with finite mean 
E[xi] = m, then

plim xn = m.

Proofs of this and the theorem below are fairly intricate. Rao (1973) provides one.

THEOREM D.6  Chebychev’s Weak Law of Large Numbers
If xi, i = 1, c, n is a sample of observations such that E[xi] = mi 6 ∞  
and Var[xi] = si

2 6 ∞  such that sn
2/n = (1/n2)Σisi

2 S 0 as n S ∞ , then 
plim(xn - mn) = 0.

DEFINITION D.3  Almost Sure Convergence
The random variable xn converges almost surely to the constant c if and only if

Proba lim
nS ∞

 xn = cb = 1.

Notice that this is already broader than Theorem D.4, as it does not require that the 
variance of the distribution be finite. On the other hand, it is not broad enough, because 
most of the situations we encounter where we will need a result such as this will not 
involve i.i.d. random sampling. A broader result is

There is a subtle distinction between these two theorems that you should notice. The 
Chebychev theorem does not state that xn converges to mn, or even that it converges to 
a constant at all. That would require a precise statement about the behavior of mn. The 
theorem states that as n increases without bound, these two quantities will be arbitrarily 
close to each other—that is, the difference between them converges to a constant, zero. 
This is an important notion that enters the derivation when we consider statistics that 
converge to random variables, instead of to constants. What we do have with these two 
theorems are extremely broad conditions under which a sample mean will converge in 
probability to its population counterpart. The more important difference between the 
Khinchine and Chebychev theorems is that the second allows for heterogeneity in the 
distributions of the random variables that enter the mean.

In analyzing time-series data, the sequence of outcomes is itself viewed as a random 
event. Consider, then, the sample mean, xn. The preceding results concern the behavior 
of this statistic as n S ∞  for a particular realization of the sequence x1, c, xn. But, if 
the sequence, itself, is viewed as a random event, then the limit to which xn converges 
may be also. The stronger notion of almost sure convergence relates to this possibility.
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This is denoted xn ¡a.s.
c. It states that the probability of observing a sequence that 

does not converge to c ultimately vanishes. Intuitively, it states that once the sequence 
xn becomes close to c, it stays close to c.

Almost sure convergence is used in a stronger form of the law of large numbers:

COROLLARY TO THEOREM D.8  (Kolmogorov)
If xi, i = 1, c, n is a sequence of independent and identically distributed random 
variables such that E[xi] = m 6 ∞  and E[ � xi � ] 6 ∞ , then xn - m ¡a.s.

0.

The variance condition is satisfied if every variance in the sequence is finite, but this 
is not strictly required; it only requires that the variances in the sequence increase at a 
slow enough rate that the sequence of variances as defined is bounded. The theorem 
allows for heterogeneity in the means and variances. If we return to the conditions of 
the Khinchine theorem, i.i.d. sampling, we have a corollary:

Note that the corollary requires identically distributed observations while the theorem 
only requires independence. Finally, another form of convergence encountered in the 
analysis of time-series data is convergence in rth mean:

THEOREM D.8  Markov’s Strong Law of Large Numbers
If {zi} is a sequence of independent random variables with E[zi] = mi 6 ∞  and if 
for some 0 6 d 6 1, a ∞

i = 1 E[ � zi - mi � 1 + d]/i1+d 6 ∞ , then zn - mn converges 
almost surely to 0, which we denote zn - mn ¡a.s.

0.2

2The use of the expected absolute deviation differs a bit from the expected squared deviation that we have 
used heretofore to characterize the spread of a distribution. Consider two examples. If z ∼ N[0, s2], then 
E[ � z � ] = Prob[z 6 0]E[-z � z 6 0] + Prob[z Ú 0]E[z � z Ú 0] = 0.7979s. (See Theorem 18.2.) So, finite 
expected absolute value is the same as finite second moment for the normal distribution. But if z takes values 
[0, n] with probabilities [1 - 1/n, 1/n], then the variance of z is (n - 1), but E[ � z - mz � ] is 2 - 2/n. For 
this case, finite expected absolute value occurs without finite expected second moment. These are different 
characterizations of the spread of the distribution.

THEOREM D.7  Kolmogorov’s Strong Law of Large Numbers
If xi, i = 1, c, n is a sequence of independently distributed random variables 

such that E[xi] = mi 6 ∞  and Var[xi] = si
2 6 ∞  such that a

∞

i = 1
si

2/i2 6 ∞  as 

n S ∞  then xn - mn ¡a.s.
0.
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DEFINITION D.4  Convergence in rth Mean
If xn is a sequence of random variables such that E[ � xn � r] 6 ∞  and 
limnS ∞ E[ � xn - c � r] = 0, then xn converges in rth mean to c. This is denoted 
xn ¡r.m.

c.

THEOREM D.9  Convergence in Lower Powers
If xn converges in rth mean to c, then xn converges in sth mean to c for 
any s 6 r. The proof uses Jensen’s Inequality, Theorem D.13. Write 
E[ � xn - c � s] = E[( � xn - c � r)s/r] … E[( � xn - c � r)]}s/r and the inner term con-
verges to zero so the full function must also.

THEOREM D.10  Generalized Chebychev’s Inequality
If xn is a random variable and c is a constant such that with E[ � xn - c � r] 6 ∞  and 
e is a positive constant, then Prob( � xn - c � 7 e) … E[ � xn - c � r]/er.

THEOREM D.11  Convergence in rth mean and Convergence in Probability
If xn ¡r.m.

c, for some r 7 0, then xn ¡p
c. The proof relies on Theorem 

D.10. By assumption, limnS ∞E[ � xn - c � r] = 0 so for some n sufficiently large, 
E[ � xn - c � r] 6 ∞ . By Theorem D.10, then, Prob( � xn - c � 7 e) … E[ � xn - c � r]/er 
for any e 7 0. The denominator of the fraction is a fixed constant and the numera-
tor converges to zero by our initial assumption, so limnS ∞Prob( � xn - c � 7 e) = 0, 
which completes the proof.

Surely the most common application is the one we met earlier, convergence in means 
square, which is convergence in the second mean. Some useful results follow from this 
definition:

We have considered two cases of this result already, when r = 1 which is the Markov 
inequality, Theorem D.3, and when r = 2, which is the Chebychev inequality we looked 
at first in Theorem D.2.

One implication of Theorem D.11 is that although convergence in mean square is a 
convenient way to prove convergence in probability, it is actually stronger than necessary, 
as we get the same result for any positive r.

Finally, we note that we have now shown that both almost sure convergence and 
convergence in rth mean are stronger than convergence in probability; each implies the 
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latter. But they, themselves, are different notions of convergence, and neither implies 
the other.

THEOREM D.13  Inequalities for Expectations
Jensen’s Inequality. If g(xn) is a concave function of xn, then 
g(E[xn]) Ú E[g(xn)]. Cauchy–Schwarz Inequality. For two random variables, 
E [ � xy � ] … {E[x2]}1/2 {E[y2]}1/2.

DEFINITION D.5  Convergence of a Random Vector or Matrix
Let xn denote a random vector and Xn a random matrix, and c and C denote a 
vector and matrix of constants with the same dimensions as xn and Xn, respectively. 
All of the preceding notions of convergence can be extended to (xn, c) and (Xn, C) 
by applying the results to the respective corresponding elements.

THEOREM D.12  Slutsky Theorem
For a continuous function g(xn) that is not a function of n,

	 plim g(xn) = g(plim xn).� (D-6)

D.2.3    CONVERGENCE OF FUNCTIONS

A particularly convenient result is the following.

The generalization of Theorem D.12 to a function of several random variables is 
direct, as illustrated in the next example.

Example D.3    Probability Limit of a Function of x and s2

In random sampling from a population with mean m and variance s2, the exact expected value 
of xn

2/sn
2 will be difficult, if not impossible, to derive. But, by the Slutsky theorem,

plim 
xn

2

sn
2 =

m2

s2.

An application that highlights the difference between expectation and probability limit 
is suggested by the following useful relationships.

Although the expected value of a function of xn may not equal the function of the 
expected value—it exceeds it if the function is concave—the probability limit of the 
function is equal to the function of the probability limit.
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THEOREM D.14  Rules for Probability Limits
If xn and yn are random variables with plim xn = c and plim yn = d, then

	 plim(xn + yn) = c + d, (sum rule)� (D-7)

	 plim xnyn = cd,  (product rule)� (D-8)

	 plim xn/yn = c/d if d ≠ 0.  (ratio rule)� (D-9)

If Wn is a matrix whose elements are random variables and if plim Wn = 	, then

	 plim Wn
-1 = 	-1. (matrix inverse rule)� (D-10)

If Xn and Yn are random matrices with plim Xn = A and plim Yn = B, then

	 plim XnYn = AB. (matrix product rule)� (D-11)

The Slutsky theorem highlights a comparison between the expectation of a random 
variable and its probability limit. Theorem D.12 extends directly in two important 
directions. First, though stated in terms of convergence in probability, the same set of 
results applies to convergence in rth mean and almost sure convergence. Second, so 
long as the functions are continuous, the Slutsky theorem can be extended to vector 
or matrix valued functions of random scalars, vectors, or matrices. The following 
describe some specific applications. Some implications of the Slutsky theorem are now 
summarized.

DEFINITION D.6  Convergence in Probability to a Random Variable
The random variable xn converges in probability to the random variable x if 
limnS ∞ Prob( � xn - x � 7 e) = 0 for any positive e.

D.2.4    CONVERGENCE TO A RANDOM VARIABLE

The preceding has dealt with conditions under which a random variable converges to a 
constant, for example, the way that a sample mean converges to the population mean. 
To develop a theory for the behavior of estimators, as a prelude to the discussion of 
limiting distributions, we now consider cases in which a random variable converges not 
to a constant, but to another random variable. These results will actually subsume those 
in the preceding section, as a constant may always be viewed as a degenerate random 
variable, that is one with zero variance.

As before, we write plim xn = x to denote this case. The interpretation (at least the 
intuition) of this type of convergence is different when x is a random variable. The notion 
of closeness defined here relates not to the concentration of the mass of the probability 
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mechanism generating xn at a point c, but to the closeness of that probability mechanism 
to that of x. One can think of this as a convergence of the CDF of xn to that of x.

DEFINITION D.9  Convergence in Distribution
xn converges in distribution to a random variable x with CDF F(x) if 
limnS ∞ � Fn(xn) - F(x) � = 0 at all continuity points of F(x).

Once again, we have to revise our understanding of convergence when convergence is 
to a random variable.

Theorem D.15 raises an interesting question. Suppose we let r grow, and suppose that 
xn ¡r.m.

x and, in addition, all moments are finite. If this holds for any r, do we conclude 
that these random variables have the same distribution? The answer to this longstanding 
problem in probability theory—the problem of the sequence of moments—is no. 
The sequence of moments does not uniquely determine the distribution. Although 
convergence in rth mean and almost surely still both imply convergence in probability, 
it remains true, even with convergence to a random variable instead of a constant, that 
these are different forms of convergence.

D.2.5    CONVERGENCE IN DISTRIBUTION: LIMITING DISTRIBUTIONS

A second form of convergence is convergence in distribution. Let xn be a sequence of 
random variables indexed by the sample size, and assume that xn has cdf Fn(xn).

THEOREM D.15  Convergence of Moments
Suppose xn ¡r.m.

x and E[ � x � r] is finite. Then, limnS ∞E[ � xn � r] = E[ � x � r].

DEFINITION D.7  Almost Sure Convergence to a Random Variable
The random variable xn converges almost surely to the random variable x if and 
only if limnS ∞Prob( � xi - x � 7 e for all i Ú n) = 0 for all e 7 0.

DEFINITION D.8  Convergence in rth Mean to a Random Variable
The random variable xn converges in rth mean to the random variable x if and only 
if limnS ∞E[ � xn - x � r] = 0. This is labeled xn ¡r.m.

x. As before, the case r = 2 is 
labeled convergence in mean square.
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DEFINITION D.10  Limiting Distribution
If xn converges in distribution to x, where Fn(xn) is the CDF of xn, then F(x) is the 

limiting distribution of xn. This is written xn ¡d
x.

This statement is about the probability distribution associated with xn; it does 
not imply that xn converges at all. To take a trivial example, suppose that the exact 
distribution of the random variable xn is

Prob(xn = 1) =
1
2

+
1

n + 1
, Prob(xn = 2) =

1
2

-
1

n + 1
.

As n increases without bound, the two probabilities converge to 1
2, but xn does not 

converge to a constant.

The limiting distribution is often given in terms of the pdf, or simply the parametric 
family. For example, “the limiting distribution of xn is standard normal.”

Convergence in distribution can be extended to random vectors and matrices, although 
not in the element by element manner that we extended the earlier convergence forms. 
The reason is that convergence in distribution is a property of the CDF of the random 
variable, not the variable itself. Thus, we can obtain a convergence result analogous to 
that in Definition D.9 for vectors or matrices by applying definition to the joint CDF for 
the elements of the vector or matrices. Thus, xn ¡d

x if limnS ∞ � Fn(xn) - F(x) � = 0 
and likewise for a random matrix.

Example D.4    Limiting Distribution of tn− 1
Consider a sample of size n from a standard normal distribution. A familiar inference problem 
is the test of the hypothesis that the population mean is zero. The test statistic usually used 
is the t statistic:

tn - 1 =
xn

sn/2n
,

where

sn
2 = a n

i = 1(xi - xn)2

n - 1
.

The exact distribution of the random variable tn - 1 is t with n - 1 degrees of freedom. The 
density is different for every n:

	 f(tn - 1) =
Γ(n/2)

Γ[(n - 1)/2]
 [(n - 1)p]-1/2 J1 +

tn - 1
2

n - 1
d

-n/2

,� (D-12)

as is the CDF, Fn - 1(t) = L
t

-∞
fn - 1(x) dx. This distribution has mean zero and variance 

(n - 1)/(n - 3). As n grows to infinity, tn - 1 converges to the standard normal, which is written

tn - 1 ¡d
N[0, 1].
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For the random variable with t[n] distribution, the exact mean and variance are zero 
and n/(n - 2), whereas the limiting mean and variance are zero and one. The example 
might suggest that the limiting mean and variance are zero and one; that is, that the 
moments of the limiting distribution are the ordinary limits of the moments of the finite 
sample distributions. This situation is almost always true, but it need not be. It is possible 
to construct examples in which the exact moments do not even exist, even though the 
moments of the limiting distribution are well defined.3 Even in such cases, we can usually 
derive the mean and variance of the limiting distribution.

Limiting distributions, like probability limits, can greatly simplify the analysis of a 
problem. Some results that combine the two concepts are as follows.4

3See, for example, Maddala (1977a, p. 150).
4For proofs and further discussion, see, for example, Greenberg and Webster (1983).

THEOREM D.16  Rules for Limiting Distributions
1.	 If xn ¡d

x and plim yn = c, then

	 xnyn ¡d
cx,� (D-13)

which means that the limiting distribution of xnyn is the distribution of cx. Also,

	 xn + yn ¡d
x + c,� (D-14)

	 xn/yn ¡d
x/c, if c ≠ 0.� (D-15)

2.	 If xn ¡d
x and g(xn) is a continuous function, then

	 g(xn) ¡d
g(x).� (D-16)

This result is analogous to the Slutsky theorem for probability limits. For an example, 
consider the tn random variable discussed earlier. The exact distribution of tn

2 is F[1, n]. 
But as n ¡ ∞ , tn converges to a standard normal variable. According to this result, 
the limiting distribution of tn

2 will be that of the square of a standard normal, which is 
chi-squared with one degree of freedom. We conclude, therefore, that

	 F[1, n] ¡d
chi@squared[1].� (D-17)

We encountered this result in our earlier discussion of limiting forms of the standard 
normal family of distributions.

3.	 If yn has a limiting distribution and plim (xn - yn) = 0, then xn has the same limiting 
distribution as yn.

DEFINITION D.11  Limiting Mean and Variance
The limiting mean and variance of a random variable are the mean and variance of 
the limiting distribution, assuming that the limiting distribution and its moments exist.
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THEOREM D.17  Cramer–Wold Device
If xn ¡d

x, then c′xn ¡d
c′x for all conformable vectors c with real valued 

elements.

The third result in Theorem D.16 combines convergence in distribution and in 
probability. The second result can be extended to vectors and matrices.

Example D.5  T  he F Distribution
Suppose that t1,n and t2,n are a K*1 and an M*1 random vector of variables whose 
components are independent with each distributed as t with n degrees of freedom. Then, as 
we saw in the preceding, for any component in either random vector, the limiting distribution 
is standard normal, so for the entire vector, tj,n ¡d

zj, a vector of independent standard 

normally distributed variables. The results so far show that 
(t1,n
=  t1,n)/K

(t2,n
=  t2,n)/M

¡d
F[K, M].

Finally, a specific case of result 2 in Theorem D.16 produces a tool known as the Cramér–
Wold device.

By allowing c to be a vector with just a one in a particular position and zeros elsewhere, 
we see that convergence in distribution of a random vector xn to x does imply that each 
component does likewise.

D.2.6    CENTRAL LIMIT THEOREMS

We are ultimately interested in finding a way to describe the statistical properties of 
estimators when their exact distributions are unknown. The concepts of consistency 
and convergence in probability are important. But the theory of limiting distributions 
given earlier is not yet adequate. We rarely deal with estimators that are not consistent 
for something, though perhaps not always the parameter we are trying to estimate. 
As such,

if plim unn = u, then unn ¡d
u.

That is, the limiting distribution of unn is a spike. This is not very informative, nor is it at 
all what we have in mind when we speak of the statistical properties of an estimator. (To 
endow our finite sample estimator unn with the zero sampling variance of the spike at u 
would be optimistic in the extreme.)

As an intermediate step, then, to a more reasonable description of the statistical 
properties of an estimator, we use a stabilizing transformation of the random variable 
to one that does have a well-defined limiting distribution. To jump to the most common 
application, whereas

plim unn = u,

we often find that

zn = 2n (unn - u) ¡d
f(z),
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where f(z) is a well-defined distribution with a mean and a positive variance. An 
estimator which has this property is said to be root-n consistent. The single most 
important theorem in econometrics provides an application of this proposition. A basic 
form of the theorem is as follows.

THEOREM D.18  Lindeberg–Levy Central Limit Theorem (Univariate)
If x1, c, xn are a random sample from a probability distribution with finite mean 
m and finite variance s2 and xn = (1/n)a n

i = 1 xi, then 2n (xn - m) ¡d
N[0, s2].

A proof appears in Rao (1973, p. 127).

THEOREM D.19  Lindeberg–Feller Central Limit Theorem (with Unequal 
Variances)
Suppose that {xi}, i = 1, c, n, is a sequence of independent random variables 
with finite means mi and finite positive variances si

2. Let

mn =
1
n

 (m1 + m2 + g + mn), and sn
2 =

1
n

 (s1
2 + s2

2 + g, sn
2).

If no single term dominates this average variance, which we could state as 
limnS ∞max(si)/(2nsn) = 0, and if the average variance converges to a finite 
constant, s2 = limnS ∞sn

2, then 2n (xn - mn) ¡d
N[0, s2].

The result is quite remarkable as it holds regardless of the form of the parent 
distribution. For a striking example, return to Figure C.3. The distribution from which the 
data were drawn in that figure does not even remotely resemble a normal distribution. In 
samples of only four observations the force of the central limit theorem is clearly visible 
in the sampling distribution of the means. The sampling experiment Example D.6 shows 
the effect in a systematic demonstration of the result.

The Lindeberg–Levy theorem is one of several forms of this extremely powerful 
result. For our purposes, an important extension allows us to relax the assumption 
of equal variances. The Lindeberg–Feller form of the central limit theorem is the 
centerpiece of most of our analysis in econometrics.

In practical terms, the theorem states that sums of random variables, regardless of their 
form, will tend to be normally distributed. The result is yet more remarkable in that it does 
not require the variables in the sum to come from the same underlying distribution. It requires, 
essentially, only that the mean be a mixture of many random variables, none of which is large 
compared with their sum. Because nearly all the estimators we construct in econometrics 
fall under the purview of the central limit theorem, it is obviously an important result.

Proof of the Lindeberg–Feller theorem requires some quite intricate mathematics 
[see, e.g., Loeve (1977)] that are well beyond the scope of our work here. We do note an 
important consideration in this theorem. The result rests on a condition known as the 
Lindeberg condition. The sample mean computed in the theorem is a mixture of random 
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FIGURE D.2    The Exponential Distribution.
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variables from possibly different distributions. The Lindeberg condition, in words, states 
that the contribution of the tail areas of these underlying distributions to the variance 
of the sum must be negligible in the limit. The condition formalizes the assumption in 
Theorem D.19 that the average variance be positive and not be dominated by any single 
term. [For an intuitively crafted mathematical discussion of this condition, see White 
(2001, pp. 117–118).] The condition is essentially impossible to verify in practice, so it is 
useful to have a simpler version of the theorem that encompasses it.

Example D.6  T  he Lindeberg–Levy Central Limit Theorem
We’ll use a sampling experiment to demonstrate the operation of the central limit theorem. 
Consider random sampling from the exponential distribution with mean 1.5—this is the setting 
used in Example C.4. The density is shown in Figure D.2.

We’ve drawn 1,000 samples of 3, 6, and 20 observations from this population and 
computed the sample means for each. For each mean, we then computed zin = 2n (xin - m), 
where i = 1, c, 1,000 and n is 3, 6, or 20. The three rows of figures in Figure D.3 show 
histograms of the observed samples of sample means and kernel density estimates of the 
underlying distributions for the three samples of transformed means. The force of the central 
limit is clearly visible in the shapes of the distributions.

THEOREM D.20  Liapounov Central Limit Theorem
Suppose that {xi} is a sequence of independent random variables with finite 
means mi and finite positive variances si

2 such that E[ � xi - mi � 2 + d] is finite 
for some d 7 0. If sn is positive and finite for all n sufficiently large, then 2n (xn - mn)/sn ¡d

N[0, 1].
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FIGURE D.3    The Central Limit Theorem.
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This version of the central limit theorem requires only that moments slightly larger than 
two be finite.

Note the distinction between the laws of large numbers in Theorems D.5 and D.6 
and the central limit theorems. Neither asserts that sample means tend to normality. 
Sample means (i.e., the distributions of them) converge to spikes at the true mean. It is 
the transformation of the mean, 2n(xn - m)/s, that converges to standard normality. To 
see this at work, if you have access to the necessary software, you might try reproducing 
Example D.6 using the raw means, xin. What do you expect to observe?
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THEOREM D.18A  Multivariate Lindeberg–Levy Central Limit Theorem
If x1, c, xn are a random sample from a multivariate distribution with finite mean 
vector M and finite positive definite covariance matrix Q, then2n (xn - m) ¡d

N[0, Q],

where

xn =
1
n

 a
n

i = 1
xi.

To get from D.18 to D.18A (and D.19 to D.19A) we need to add a step. Theorem 
D.18 applies to the individual elements of the vector. A vector has a multivari-
ate normal distribution if the individual elements are normally distributed and 
if every linear combination is normally distributed. We can use Theorem D.18 
(D.19) for the individual terms and Theorem D.17 to establish that linear combi-
nations behave likewise. This establishes the extensions.

THEOREM D.19A  Multivariate Lindeberg–Feller Central Limit Theorem
Suppose that x1, c, xn are a sample of random vectors such that 
E[xi] = Mi, Var[xi] = Qi, and all mixed third moments of the multivariate distri-
bution are finite. Let

mn =
1
n

 a
n

i = 1
 mi and Qn =

1
n

 a
n

i = 1
 Qi.

We assume that

lim
nS ∞

 Qn = Q,

where Q is a finite, positive definite matrix, and that for every i,

lim
nS ∞

(nQn)-1Qi = lim
nS ∞

¢ an
i = 1

 Qi≤-1

 Qi = 0.

We allow the means of the random vectors to differ, although in the cases that we 
will analyze, they will generally be identical. The second assumption states that 
individual components of the sum must be finite and diminish in significance. 
There is also an implicit assumption that the sum of matrices is nonsingular. 
Because the limiting matrix is nonsingular, the assumption must hold for large 
enough n, which is all that concerns us here. With these in place, the result is2n(xn - mn) ¡d

N[0, Q].

For later purposes, we will require multivariate versions of these theorems. Proofs 
of the following may be found, for example, in Greenberg and Webster (1983) or Rao 
(1973) and references cited there.

The extension of the Lindeberg–Feller theorem to unequal covariance matrices 
requires some intricate mathematics. The following is an informal statement of the 
relevant conditions. Further discussion and references appear in Fomby, Hill, and 
Johnson (1984) and Greenberg and Webster (1983).
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D.2.7    THE DELTA METHOD

At several points in Appendix C, we used a linear Taylor series approximation to analyze 
the distribution and moments of a random variable. We are now able to justify this usage. 
We complete the development of Theorem D.12 (probability limit of a function of a 
random variable), Theorem D.16 (2) (limiting distribution of a function of a random 
variable), and the central limit theorems, with a useful result that is known as the delta 
method. For a single random variable (sample mean or otherwise), we have the following 
theorem.

Notice that the mean and variance of the limiting distribution are the mean and 
variance of the linear Taylor series approximation:

g(zn) ≃ g(m) + g′(m)(zn - m).

The multivariate version of this theorem will be used at many points in the text.

THEOREM D.21  Limiting Normal Distribution of a Function
If 2n(zn - m) ¡d

N[0, s2] and if g(zn) is a continuous and continuously differ-
entiable function with g′(m) not equal to zero and not involving n, then

	 2n[g(zn) - g(m)] ¡d
N[0, {g′(m)}2 s2].� (D-18)

THEOREM D.21A  Limiting Normal Distribution of a Set of Functions
If zn is a K*1 sequence of vector-valued random variables such that 2n(zn - M) ¡d

N[0, �] and if c(zn) is a set of J continuous and continuously 
differentiable functions of zn with C(M) not equal to zero, not involving n, then

	 2n[c(zn) - c(M)] ¡d
N[0, C(M)�C(M)′],� (D-19)

where C(M) is the J*K matrix 0c(M)/0M′. The jth row of C(M) is the vector of 
partial derivatives of the jth function with respect to M′.

D.3	 ASYMPTOTIC DISTRIBUTIONS

The theory of limiting distributions is only a means to an end. We are interested in the 
behavior of the estimators themselves. The limiting distributions obtained through the 
central limit theorem all involve unknown parameters, generally the ones we are trying 
to estimate. Moreover, our samples are always finite. Thus, we depart from the limiting 
distributions to derive the asymptotic distributions of the estimators.
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DEFINITION D.12  Asymptotic Distribution
An asymptotic distribution is a distribution that is used to approximate the true 
finite sample distribution of a random variable.5

5We differ a bit from some other treatments—for example, White (2001), Hayashi (2000, p. 90) —at this point, 
because they make no distinction between an asymptotic distribution and the limiting distribution, although the 
treatments are largely along the lines discussed here. In the interest of maintaining consistency of the discussion, 
we prefer to retain the sharp distinction and derive the asymptotic distribution of an estimator, t by first obtaining 
the limiting distribution of 2n(t - U). By our construction, the limiting distribution of t is degenerate, whereas 
the asymptotic distribution of 2n(t - U) is not useful.

By far the most common means of formulating an asymptotic distribution (at least 
by econometricians) is to construct it from the known limiting distribution of a function 
of the random variable. If 2n[(xn - m)/s] ¡d

N[0, 1],

then approximately, or asymptotically, xn ∼ N[m, s2/n], which we write as

xn ∼
a

N[m, s2/n].

The statement “xn is asymptotically normally distributed with mean m and variance 
s2/n” says only that this normal distribution provides an approximation to the true 
distribution, not that the true distribution is exactly normal.

Example D.7  �  Asymptotic Distribution of the Mean of an Exponential 
Sample

In sampling from an exponential distribution with parameter u, the exact distribution of xn 
is that of u/(2n) times a chi-squared variable with 2n degrees of freedom. The asymptotic 
distribution is N[u, u2/n]. The exact and asymptotic distributions are shown in Figure D.4 for 
the case of u = 1 and n = 16.

Extending the definition, suppose that Unn is an estimator of the parameter vector U. 
The asymptotic distribution of the vector Unn is obtained from the limiting distribution:

	 2n(Unn - U) ¡d
N[0, V]	 (D-20)

implies that

	 Unn ∼
a

N cU, 
1
n

 V d .	 (D-21)

This notation is read “Unn is asymptotically normally distributed, with mean vector U and 
covariance matrix (1/n)V.” The covariance matrix of the asymptotic distribution is the 
asymptotic covariance matrix and is denoted

asy. Var[Unn] =
1
n

 V.

Note, once again, the logic used to reach the result; (D-20) holds exactly as n S ∞ . 
We assume that it holds approximately for finite n, which leads to (D-21).
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FIGURE D.4    True Versus Asymptotic Distribution.
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DEFINITION D.13  Asymptotic Normality and Asymptotic Efficiency
An estimator Unn is asymptotically normal if (D-20) holds. The estimator is 
asymptotically efficient if the covariance matrix of any other consistent, asymp-
totically normally distributed estimator exceeds (1/n)V by a nonnegative definite 
matrix.

For most estimation problems, these are the criteria used to choose an estimator.

Example D.8  �  Asymptotic Inefficiency of the Median in Normal 
Sampling

In sampling from a normal distribution with mean m and variance s2, both the mean xn and 
the median Mn of the sample are consistent estimators of m. The limiting distributions of both 
estimators are spikes at m, so they can only be compared on the basis of their asymptotic 
properties. The necessary results are

	 xn ∼
a

N[m, s2/n], and Mn ∼
a

N[m, (p/2)s2/n].� (D-22)

Therefore, the mean is more efficient by a factor of p/2. (But, see Example 15.7 for a finite 
sample result.)

D.3.1    ASYMPTOTIC DISTRIBUTION OF A NONLINEAR FUNCTION

Theorems D.12 and D.14 for functions of a random variable have counterparts in 
asymptotic distributions.
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THEOREM D.22  Asymptotic Distribution of a Nonlinear Function
If 2n(unn - u) ¡d

N[0, s2] and if g(u) is a continuous and continuously 
differentiable function with g′(u) not equal to zero and not involving n, then 
g(unn) ∼

a
N[g(u), (1/n){g′(u)}2 s2]. If Unn is a vector of parameter estimators such 

that Unn ∼
a

N[U, (1/n)V] and if c(U) is a set of J continuous functions not involving 
n, then c(Unn) ∼

a
N[c(U), (1/n)C(U)VC(U)′], where C(U) = 0c(U)/0U′.

Example D.9    Asymptotic Distribution of a Function of Two Estimators
Suppose that bn and tn are estimators of parameters b and u such thatJbn

tn
R ∼

a
NJ ¢b

u
≤, ¢sbb sbu

sub suu
≤ R .

Find the asymptotic distribution of cn = bn/(1 - tn). Let g = b/(1 - u). By the Slutsky theorem, 
cn is consistent for g. We shall require

0g
0b

=
1

1 - u
= gb, 

0g
0u

=
b

(1 - u)2
= gu.

Let � be the 2 * 2 asymptotic covariance matrix given previously. Then the asymptotic 
variance of cn is

Asy. Var[cn] = (gb gu)� ¢gb

gu

≤ = gb
2sbb + gu

2suu + 2gbgusbu,

which is the variance of the linear Taylor series approximation:

gnn ≃ g + gb(bn - b) + gu(tn - u).

D.3.2    ASYMPTOTIC EXPECTATIONS

The asymptotic mean and variance of a random variable are usually the mean and 
variance of the asymptotic distribution. Thus, for an estimator with the limiting 
distribution defined in 2n(Unn - U) ¡d

N[0, V],

the asymptotic expectation is U and the asymptotic variance is (1/n) V. This statement 
implies, among other things, that the estimator is “asymptotically unbiased.”

At the risk of clouding the issue a bit, it is necessary to reconsider one aspect of 
the previous description. We have deliberately avoided the use of consistency even 
though, in most instances, that is what we have in mind. The description thus far might 
suggest that consistency and asymptotic unbiasedness are the same. Unfortunately 
(because it is a source of some confusion), they are not. They are if the estimator 
is consistent and asymptotically normally distributed, or CAN. They may differ in 
other settings, however. There are at least three possible definitions of asymptotic 
unbiasedness:
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1.	 The mean of the limiting distribution of 2n(unn - u) is 0.

	 limnS ∞E[unn] = u.� (D-23)

2.	 plim un = u.

In most cases encountered in practice, the estimator in hand will have all three properties, 
so there is no ambiguity. It is not difficult to construct cases in which the left-hand sides 
of all three definitions are different, however.6 There is no general agreement among 
authors as to the precise meaning of asymptotic unbiasedness, perhaps because the term 
is misleading at the outset; asymptotic refers to an approximation, whereas unbiasedness 
is an exact result.7 Nonetheless, the majority view seems to be that (2) is the proper 
definition of asymptotic unbiasedness.8 Note, though, that this definition relies on 
quantities that are generally unknown and that may not exist.

A similar problem arises in the definition of the asymptotic variance of an estimator. 
One common definition is9

	 asy. Var[unn] =
1
n

 lim
nS ∞

E [{2n(unn - lim
nS ∞

E[unn])}2].	 (D-24)

This result is a leading term approximation, and it will be sufficient for nearly all 
applications. Note, however, that like definition 2 of asymptotic unbiasedness, it relies 
on unknown and possibly nonexistent quantities.

Example D.10    Asymptotic Moments of the Normal Sample Variance
The exact expected value and variance of the variance estimator in a normal sample

	 m2 =
1
n

 a
n

i = 1
(xi - x)2� (D-25)

are

	 E[m2] =
(n - 1)s2

n
,� (D-26)

and

	 Var[m2] =
m4 - s4

n
-

2(m4 - 2s4)

n2 +
m4 - 3s4

n3 ,� (D-27)

where m4 = E[(x - m)4]. [See Goldberger (1964, pp. 97–99).] The leading term approximation 
would be

Asy. Var[m2] =
1
n

 (m4 - s4).

6See, for example, Maddala (1977a, p. 150).
7See, for example, Theil (1971, p. 377).
8Many studies of estimators analyze the “asymptotic bias” of, say, unn as an estimator of a parameter u. In most 
cases, the quantity of interest is actually plim [unn - u]. See, for example, Greene (1980b) and another example in 
Johnston (1984, p. 312).
9Kmenta (1986, p.165).
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DEFINITION D.14  Order nD

A sequence cn is of order nd, denoted O(nd), if and only if plim(1/nd)cn is a finite 
nonzero constant.

DEFINITION D.15  Order less than nD

A sequence cn, is of order less than nd, denoted o(nd), if and only if plim(1/nd)cn 
equals zero.

D.4	 SEQUENCES AND THE ORDER OF A SEQUENCE

This section has been concerned with sequences of constants, denoted, for example, cn, 
and random variables, such as xn, that are indexed by a sample size, n. An important 
characteristic of a sequence is the rate at which it converges (or diverges). For example, 
as we have seen, the mean of a random sample of n observations from a distribution 
with finite mean, m, and finite variance, s2, is itself a random variable with variance 
gn

2 = s2/n. We see that as long as s2 is a finite constant, gn
2 is a sequence of constants 

that converges to zero. Another example is the random variable x(1),n, the minimum 
value in a random sample of n observations from the exponential distribution with 
mean 1/u defined in Example C.4. It turns out that x(1),n has variance 1/(nu)2. Clearly, 
this variance also converges to zero, but, intuition suggests, faster than s2/n does. On the 
other hand, the sum of the integers from one to n, Sn = n(n + 1)/2, obviously diverges 
as n S ∞ , albeit faster (one might expect) than the log of the likelihood function for 
the exponential distribution in Example C.6, which is ln L(u) = n(ln u - uxn). As a 
final example, consider the downward bias of the maximum likelihood estimator of the 
variance of the normal distribution, cn = (n - 1)/n, which is a constant that converges 
to one. (See Example C.5.)

We will define the rate at which a sequence converges or diverges in terms of the 
order of the sequence.

Thus, in our examples, gn
2 is O(n-1), Var[x(1),n] is O(n-2) and o(n-1), Sn is O(n2) 

(d equals +2 in this case), ln L(u) is O(n) (d equals +1), and cn is O(1)(d = 0). Important 
particular cases that we will encounter repeatedly in our work are sequences for which 
d = 1 or -1.

The notion of order of a sequence is often of interest in econometrics in the context 
of the variance of an estimator. Thus, we see in Section D.3 that an important element 
of our strategy for forming an asymptotic distribution is that the variance of the limiting 
distribution of 2n(xn - m)/s is O(1). In Example D.10 the variance of m2 is the sum of 
three terms that are O(n-1), O(n-2), and O(n-3). The sum is O(n-1), because n Var[m2] 
converges to m4 - s4, the numerator of the first, or leading term, whereas the second and 
third terms converge to zero. This term is also the dominant term of the sequence. Finally, 
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consider the two divergent examples in the preceding list. Sn is simply a deterministic 
function of n that explodes. However, ln L(u) = n ln u - u�ixi is the sum of a constant 
that is O(n) and a random variable with variance equal to n/u. The random variable 
“diverges” in the sense that its variance grows without bound as n increases.

A P P E N D I X  E

§
Computation and Optimization

E.1	 INTRODUCTION

The computation of empirical estimates by econometricians involves using digital 
computers and software written either by the researchers themselves or by others.1 It is 
also a surprisingly balanced mix of art and science. It is important for software users to 
be aware of how results are obtained, not only to understand routine computations, but 
also to be able to explain the occasional strange and contradictory results that do arise. 
This appendix will describe some of the basic elements of computing and a number of 
tools that are used by econometricians.2 Section E.2 describes some techniques for 
computing certain integrals and derivatives that are recurrent in econometric 
applications. Section E.3 presents methods of optimization of functions. Some examples 
are given in Section E.4.

E.2	 COMPUTATION IN ECONOMETRICS

This section will discuss some methods of computing integrals that appear frequently 
in econometrics.

1It is one of the interesting aspects of the development of econometric methodology that the adoption of certain 
classes of techniques has proceeded in discrete jumps with the development of software. Noteworthy examples 
include the appearance, both around 1970, of G. K. Joreskog’s LISREL [Joreskog and Sorbom (1981)] program, 
which spawned a still-growing industry in linear structural modeling, and TSP [Hall (1982, 1984)], which was 
among the first computer programs to accept symbolic representations of econometric models and which 
provided a significant advance in econometric practice with its LSQ procedure for systems of equations. An 
extensive survey of the evolution of econometric software is given in Renfro (2007, 2009).
2This discussion is not intended to teach the reader how to write computer programs. For those who expect 
to do so, there are whole libraries of useful sources. Three very useful works are Kennedy and Gentle (1980), 
Abramovitz and Stegun (1971), and especially Press et al. (2007). The third of these provides a wealth of expertly 
written programs and a large amount of information about how to do computation efficiently and accurately. 
A recent survey of many areas of computation is Judd (1998).
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