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if A is nonsingular. If A is singular, then there is no inverse transformation. Let J be the 
matrix of partial derivatives of the inverse functions:

J = J 0xi

0yj
R .

The absolute value of the determinant of J,

abs( � J � ) = abs¢det¢ c 0x
0y′

d ≤ ≤,

is the Jacobian determinant of the transformation from y to x. In the nonsingular case,

abs( � J � ) = abs( � A-1 � ) =
1

abs( � A � )
.

In the singular case, the matrix of partial derivatives will be singular and the determinant 
of the Jacobian will be zero. In this instance, the singular Jacobian implies that A is 
singular or, equivalently, that the transformations from x to y are functionally dependent. 
The singular case is analogous to the single-variable case.

Clearly, if the vector x is given, then y = Ax can be computed from x. Whether x 
can be deduced from y is another question. Evidently, it depends on the Jacobian. If the 
Jacobian is not zero, then the inverse transformations exist, and we can obtain x. If not, 
then we cannot obtain x.

A P P E N D I X  B

§
Probability and Distribution Theory

B.1	 INTRODUCTION

This appendix reviews the distribution theory used later in the book. A previous course 
in statistics is assumed, so most of the results will be stated without proof. The more 
advanced results in the later sections will be developed in greater detail.

B.2	 RANDOM VARIABLES

We view our observation on some aspect of the economy as the outcome or realization 
of a random process that is almost never under our (the analyst’s) control. In the current 
literature, the descriptive (and perspective laden) term data generating process (DPG) 
is often used for this underlying mechanism. The observed (measured) outcomes of the 
process are assigned unique numeric values. The assignment is one to one; each outcome 
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gets one value, and no two distinct outcomes receive the same value. This outcome 
variable, X, is a random variable because, until the data are actually observed, it is 
uncertain what value X will take. Probabilities are associated with outcomes to quantify 
this uncertainty. We usually use capital letters for the “name” of a random variable and 
lowercase letters for the values it takes. Thus, the probability that X takes a particular 
value x might be denoted Prob (X = x).

A random variable is discrete if the set of outcomes is either finite in number or 
countably infinite. The random variable is continuous if the set of outcomes is infinitely 
divisible and, hence, not countable. These definitions will correspond to the types of 
data we observe in practice. Counts of occurrences will provide observations on discrete 
random variables, whereas measurements such as time or income will give observations 
on continuous random variables.

B.2.1    PROBABILITY DISTRIBUTIONS

A listing of the values x taken by a random variable X and their associated probabilities 
is a probability distribution, f(x). For a discrete random variable,

	 f(x) = Prob(X = x).	 (B-1)

The axioms of probability require that

1.	 0 … Prob(X = x) … 1.� (B-2)

2.	 a x f(x) = 1.� (B-3)

For the continuous case, the probability associated with any particular point is zero, 
and we can only assign positive probabilities to intervals in the range (or support) of x. 
The probability density function (pdf), f(x), is defined so that f(x) Ú 0 and

1.	 Prob(a … x … b) = L
b

a
f(x) dx Ú 0.� (B-4)

This result is the area under f(x) in the range from a to b. For a continuous variable,

2.	 L
+∞

-∞
f(x) dx = 1.� (B-5)

If the range of x is not infinite, then it is understood that f(x) = 0 anywhere outside 
the appropriate range. Because the probability associated with any individual point is 0,

 Prob(a … x … b) = Prob(a … x 6 b)

 = Prob(a 6 x … b)

 = Prob(a 6 x 6 b).

B.2.2    CUMULATIVE DISTRIBUTION FUNCTION

For any random variable X, the probability that X is less than or equal to a is denoted 
F(a). F(x) is the cumulative density function (cdf), or distribution function. For a discrete 
random variable,

	 F(x) = a
 

X … x
f(X) = Prob(X … x).	 (B-6)
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In view of the definition of f(x),

	 f(xi) = F(xi) - F(xi - 1).	 (B-7)

For a continuous random variable,

	 F(x) = L
x

-∞
 f(t) dt,	 (B-8)

and

	 f(x) =
dF(x)

dx
.	 (B-9)

In both the continuous and discrete cases, F(x) must satisfy the following properties:

1.	 0 … F(x) … 1.
2.	 If x 7 y, then F(x) Ú F(y).
3.	 F(+ ∞) = 1.
4.	 F(- ∞) = 0.

From the definition of the cdf,

	 Prob(a 6 x … b) = F(b) - F(a).	 (B-10)

Any valid pdf will imply a valid cdf, so there is no need to verify these conditions 
separately.

B.3	 EXPECTATIONS OF A RANDOM VARIABLE

DEFINITION B.1  Mean of a Random Variable
The mean, or expected value, of a random variable is

	 E[x] = d a
 

x
xf(x) if x is discrete,

Lx
 xf(x) dx if x is continuous.

� (B-11)

The notation a x or 1x, used henceforth, means the sum or integral over the entire 
range of values of x. The mean is usually denoted m. It is a weighted average of the 
values taken by x, where the weights are the respective probabilities or densities. It is 
not necessarily a value actually taken by the random variable. For example, the expected 
number of heads in one toss of a fair coin is 12.

Other measures of central tendency are the median, which is the value m such that 
Prob(X … m) Ú 1

2 and Prob(X Ú m) Ú 1
2, and the mode, which is the value of x at 

which f(x) takes its maximum. The first of these measures is more frequently used than 
the second. Loosely speaking, the median corresponds more closely than the mean to 
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DEFINITION B.2  Variance of a Random Variable
The variance of a random variable is

 Var[x] = E[(x - m)2] = d a
 

x
(x - m)2 f(x) if x is discrete,

Lx
(x - m)2f(x) dx if x is continuous.

� (B-13)

the middle of a distribution. It is unaffected by extreme values. In the discrete case, 
the modal value of x has the highest probability of occurring. The modal value for a 
continuous variable will usually not be meaningful.

Let g(x) be a function of x. The function that gives the expected value of g(x) is 
denoted

	 E[g(x)] = d a
 

x
g(x) Prob(X = x) if X is discrete,

Lx
 g(x)f(x) dx if X is continuous.

	 (B-12)

If g(x) = a + bx for constants a and b, then

E[a + bx] = a + bE[x].

An important case is the expected value of a constant a, which is just a.

The variance of x, Var[x], which must be positive, is usually denoted s2. This function 
is a measure of the dispersion of a distribution. Computation of the variance is simplified 
by using the following important result:

	 Var[x] = E[x2] - m2.	 (B-14)

A convenient corollary to (B-14) is

	 E[x2] = s2 + m2.	 (B-15)

By inserting y = a + bx in (B-13) and expanding, we find that

	 Var[a + bx] = b2 Var[x],	 (B-16)

which implies, for any constant a, that

	 Var[a] = 0.	 (B-17)

To describe a distribution, we usually use s, the positive square root, which is the 
standard deviation of x. The standard deviation can be interpreted as having the same 
units of measurement as x and m. For any random variable x and any positive constant 
k, the Chebychev inequality states that

	 Prob(m - ks … x … m + ks) Ú 1 -
1
k2.	 (B-18)
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Two other measures often used to describe a probability distribution are

skewness = E[(x - m)3],

and

kurtosis = E[(x - m)4].

Skewness is a measure of the asymmetry of a distribution. For symmetric 
distributions,

f(m - x) = f(m + x),

and

skewness = 0.

For asymmetric distributions, the skewness will be positive if the “long tail” is in the 
positive direction. Kurtosis is a measure of the thickness of the tails of the distribution. 
A shorthand expression for other central moments is

mr = E[(x - m)r].

Because mr tends to explode as r grows, the normalized measure, mr /sr, is often 
used for description. Two common measures are

skewness coefficient =
m3

s3,

and

degree of excess =
m4

s4 - 3.

The second is based on the normal distribution, which has excess of zero. (The value 
3 is sometimes labeled the “mesokurtotic” value.)

For any two functions g1(x) and g2(x),

	 E[g1(x) + g2(x)] = E[g1(x)] + E[g2(x)].	 (B-19)

For the general case of a possibly nonlinear g(x),

	 E[g(x)] = 1x g(x)f(x) dx,	 (B-20)

and

	 Var[g(x)] = 1x(g(x) - E[g(x)])2f(x) dx.	 (B-21)

(For convenience, we shall omit the equivalent definitions for discrete variables in 
the following discussion and use the integral to mean either integration or summation, 
whichever is appropriate.)

A device used to approximate E[g(x)] and Var[g(x)] is the linear Taylor series 
approximation:

	 g(x) ≈ [g(x0) - g′(x0)x0] + g′(x0)x = b1 + b2x = g*(x).	 (B-22)
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If the approximation is reasonably accurate, then the mean and variance of g*(x) 
will be approximately equal to the mean and variance of g(x). A natural choice for the 
expansion point is x0 = m = E(x). Inserting this value in (B-22) gives

	 g(x) ≈ [g(m) - g′(m)m] + g′(m)x,	 (B-23)

so that

	 E[g(x)] ≈ g(m),	 (B-24)

and

	 Var[g(x)] ≈ [g′(m)]2 Var[x].	 (B-25)

A point to note in view of (B-22) to (B-24) is that E[g(x)] will generally not equal 
g(E[x]). For the special case in which g(x) is concave—that is, where g″(x) 6 0—we know 
from Jensen’s inequality that E[g(x)] … g(E[x]). For example, E[log(x)] … log(E[x]). 
The result in (B-25) forms the basis for the delta method.

B.4	 SOME SPECIFIC PROBABILITY DISTRIBUTIONS

Certain experimental situations naturally give rise to specific probability distributions. 
In the majority of cases in economics, however, the distributions used are merely models 
of the observed phenomena. Although the normal distribution, which we shall discuss 
at length, is the mainstay of econometric research, economists have used a wide variety 
of other distributions. A few are discussed here.1

B.4.1    THE NORMAL AND SKEW NORMAL DISTRIBUTIONS

The general form of the normal distribution with mean m and standard deviation s is

	 f(x �  m, s2) =
1

s22p
 e-1/2[(x - m)2/s2].	 (B-26)

This result is usually denoted x ∼ N[m, s2]. The standard notation x ∼ f(x) is used 
to state that “x has probability distribution f(x).” Among the most useful properties of 
the normal distribution is its preservation under linear transformation.

	 if x ∼ N[m, s2],  then (a + bx) ∼ N[a + bm, b2s2].	 (B-27)

One particularly convenient transformation is a = -m/s and b = 1/s. The resulting 
variable z = (x - m)/s has the standard normal distribution, denoted N[0, 1], with 
density

	 f(z) =
122p

 e-z2/2.	 (B-28)

1A much more complete listing appears in Maddala (1977a, Chapters 3 and 18) and in most mathematical 
statistics textbooks. See also Poirier (1995) and Stuart and Ord (1989). Another useful reference is Evans, 
Hastings, and Peacock (2010). Johnson et al. (1974, 1993, 1994, 1995, 1997) is an encyclopedic reference on 
the subject of statistical distributions.
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FIGURE B.1    The Normal Distribution.
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The specific notation f(z) is often used for this density and Φ(z) for its cdf. It follows 
from the definitions above that if x ∼ N[m, s2], then

f(x) =
1
s

 f c x - m

s
d .

Figure B.1 shows the densities of the standard normal distribution and the normal 
distribution with mean 0.5, which shifts the distribution to the right, and standard 
deviation 1.3, which, it can be seen, scales the density so that it is shorter but wider. (The 
graph is a bit deceiving unless you look closely; both densities are symmetric.)

Tables of the standard normal cdf appear in most statistics and econometrics 
textbooks. Because the form of the distribution does not change under a linear 
transformation, it is not necessary to tabulate the distribution for other values of m and 
s. For any normally distributed variable,

	 Prob(a … x … b) = Proba a - m

s
…

x - m

s
…

b - m

s
b ,	 (B-29)

which can always be read from a table of the standard normal distribution. In addition, 
because the distribution is symmetric, Φ(-z) = 1 - Φ(z). Hence, it is not necessary to 
tabulate both the negative and positive halves of the distribution.
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FIGURE B.2    Skew Normal Densities.
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The centerpiece of the stochastic frontier literture is the skew normal distribution.  
See Examples 12.2 and 14.8 and Section 19.2.4.) The density of the skew normal 
random variable is

f(x �m, s, l) =
2
s

 fa e
s
bΦa -le

s
b , e = (x - m).

The skew normal reverts to the standard normal if l = 0. The random variable 
arises as the density of e = svv - su � u �  where u and v are standard normal variables, in 
which case l = su/sv and s2 = sv

2 + su
2. (If su � u �  is added, then -l becomes +l in the 

density. Figure B.2 shows three cases of the distribution, l = 0, 2, and 4. This asymmetric 

distribution has mean -
sl21 + l2

 A 2
p

 and variance 
s2

1 + l2 ¢1 + l2ap - 2
p

b ≤ (which 

revert to 0 and 1 if l = 0).
These are -su(2/p)1/2 and sv

 2 + su
 2(p - 2)/p for the convolution form.

B.4.2    THE CHI-SQUARED, t, AND F DISTRIBUTIONS

The chi-squared, t, and F distributions are derived from the normal distribution. They 
arise in econometrics as sums of n or n1 and n2 other variables. These three distributions 
have associated with them one or two “degrees of freedom” parameters, which for our 
purposes will be the number of variables in the relevant sum.
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The first of the essential results is

●● If z ∼ N[0, 1], then x = z2 ∼ chi@squared[1]—that is, chi-squared with one degree 
of freedom—denoted

	 z2 ∼ x2[1].	 (B-30)

This distribution is a skewed distribution with mean 1 and variance 2. The second 
result is

●● If x1, c, xn are n independent chi-squared[1] variables, then

	 a
n

i = 1
xi ∼ chi@squared[n].	 (B-31)

The mean and variance of a chi-squared variable with n degrees of freedom are n 
and 2n, respectively. A number of useful corollaries can be derived using (B-30) and 
(B-31).

●● If zi, i = 1, c, n, are independent N[0, 1] variables, then

	 a
n

i = 1
zi

2 ∼ x2[n].	 (B-32)

●● If zi, i = 1, c, n, are independent N[0, s2] variables, then

	 a
n

i = 1
(zi/s)2 ∼ x2[n].	 (B-33)

●● If x1 and x2 are independent chi-squared variables with n1 and n2 degrees of freedom, 
respectively, then

	 x1 + x2 ∼ x2[n1 + n2].	 (B-34)

This result can be generalized to the sum of an arbitrary number of independent 
chi-squared variables.

Figure B.3 shows the chi-squared densities for 3 and 5 degrees of freedom. The 
amount of skewness declines as the number of degrees of freedom rises. Unlike the 
normal distribution, a separate table is required for the chi-squared distribution for 
each value of n. Typically, only a few percentage points of the distribution are tabulated 
for each n.

●● The chi-squared[n] random variable has the density of a gamma variable [See 
(B-39)] with

●● parameters l = 1�2 and P = n/2.
●● If x1 and x2 are two independent chi-squared variables with degrees of freedom 

parameters x1 and x1 respectively, then the ratio

	 F [n1, n2] =
x1/n1

x2/n2
	 (B-35)

has the F distribution with n1 and n2 degrees of freedom.
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FIGURE B.3    The Chi-Squared[3] Distribution.
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The two degrees of freedom parameters n1 and n2 are the “numerator and denominator 
degrees of freedom,” respectively. Tables of the F distribution must be computed for 
each pair of values of (n1, n2). As such, only one or two specific values, such as the 
95 percent and 99 percent upper tail values, are tabulated in most cases.

●● If z is an N[0, 1] variable and x is x2[n] and is independent of z, then the ratio

	 t[n] =
z2x/n

	 (B-36)

has the t distribution with n degrees of freedom.

The t distribution has the same shape as the normal distribution but has thicker tails. 
Figure B.4 illustrates the t distributions with 3 and 10 degrees of freedom with the 
standard normal distribution. Two effects that can be seen in the figure are how the 
distribution changes as the degrees of freedom increases, and, overall, the similarity 
of the t distribution to the standard normal. This distribution is tabulated in the 
same manner as the chi-squared distribution, with several specific cutoff points 
corresponding to specified tail areas for various values of the degrees of freedom 
parameter.

Comparing (B-35) with n1 = 1 and (B-36), we see the useful relationship between 
the t and F distributions:

●● If t ∼ t[n], then t2 ∼ F[1, n].

If the numerator in (B-36) has a nonzero mean, then the random variable in (B-36) 
has a noncentral t distribution and its square has a noncentral F distribution. These 
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FIGURE B.4    The Standard Normal, t[3], and t [10] Distributions.
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distributions arise in the F tests of linear restrictions [see (5-16)] when the restrictions 
do not hold as follows:

1.	 Noncentral chi-squared distribution. If z has a normal distribution with mean m 
and standard deviation 1, then the distribution of z2 is noncentral chi-squared with 
parameters 1 and m2/2.
a.	 If z ∼ N[M, �] with J elements, then z′ �-1 z has a noncentral chi-squared 

distribution with J degrees of freedom and noncentrality parameter M′�-1 M/2, 
which we denote X*

2[J, M′ �-1 M/2].
b.	 If z ∼ N[M, I] and M is an idempotent matrix with rank J, then 

z′Mz ∼ X*
2[J, M′MM/2].

2.	 Noncentral F distribution. If X1 has a noncentral chi-squared distribution 
with noncentrality parameter l and degrees of freedom n1 and X2 has a central 
chi-squared distribution with degrees of freedom n2 and is independent of X1, 
then

F* =
X1/n1

X2/n2

has a noncentral F distribution with parameters n1, n2, and l. (The denominator 
chi-squared could also be noncentral, but we shall not use any statistics with doubly 
noncentral distributions.) In each of these cases, the statistic and the distribution 
are the familiar ones, except that the effect of the nonzero mean, which induces the 
noncentrality, is to push the distribution to the right.

B.4.3    DISTRIBUTIONS WITH LARGE DEGREES OF FREEDOM

The chi-squared, t, and F distributions usually arise in connection with sums of sample 
observations. The degrees of freedom parameter in each case grows with the number of 
observations. We often deal with larger degrees of freedom than are shown in the tables. 
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Thus, the standard tables are often inadequate. In all cases, however, there are limiting 
distributions that we can use when the degrees of freedom parameter grows large. The 
simplest case is the t distribution. The t distribution with infinite degrees of freedom is 
equivalent (identical) to the standard normal distribution. Beyond about 100 degrees 
of freedom, they are almost indistinguishable.

For degrees of freedom greater than 30, a reasonably good approximation for the 
distribution of the chi-squared variable x is

	 z = (2x)1/2 - (2n - 1)1/2,	 (B-37)

which is approximately standard normally distributed. Thus,

Prob(x2[n] … a) ≈ Φ[(2a)1/2 - (2n - 1)1/2].

Another simple approximation that relies on the central limit theorem would be 
z = (x - n)/(2n)1/2.

As used in econometrics, the F distribution with a large-denominator degrees of 
freedom is common. As n2 becomes infinite, the denominator of F converges identically 
to one, so we can treat the variable

	 x = n1F	 (B-38)

as a chi-squared variable with n1 degrees of freedom. The numerator degree of freedom 
will typically be small, so this approximation will suffice for the types of applications we 
are likely to encounter.2 If not, then the approximation given earlier for the chi-squared 
distribution can be applied to n1 F.

B.4.4    SIZE DISTRIBUTIONS: THE LOGNORMAL DISTRIBUTION

In modeling size distributions, such as the distribution of firm sizes in an industry or the 
distribution of income in a country, the lognormal distribution, denoted LN[m, s2], has 
been particularly useful.3 The density is

f(x) =
122p sx

 e-1/2[(ln x - m)/s]2
, x 7 0.

A lognormal variable x has

E[x] = em + s2/2,

and

Var[x] = e2m + s2
 (es

2
- 1).

The relation between the normal and lognormal distributions is

if y ∼ LN[m, s2], ln y ∼ N[m, s2].

2See Johnson, Kotz, and Balakrishnan (1994) for other approximations.
3A study of applications of the lognormal distribution appears in Aitchison and Brown (1969).
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A useful result for transformations is given as follows:
If x has a lognormal distribution with mean u and variance l2, then

ln x ∼ N(m, s2), where m = ln u2 - 1
2 ln(u2 + l2) and s2 = ln(1 + l2/u2).

Because the normal distribution is preserved under linear transformation,

if y ∼ LN[m, s2], then ln yr ∼ N[rm, r2s2].

If y1 and y2 are independent lognormal variables with y1 ∼ LN[m1, s1
2] and 

y2 ∼ LN[m2, s2
2], then

y1y2 ∼ LN[m1 + m2, s1
2 + s2

2].

B.4.5    THE GAMMA AND EXPONENTIAL DISTRIBUTIONS

The gamma distribution has been used in a variety of settings, including the study of 
income distribution4 and production functions.5 The general form of the distribution is

	 f(x) =
lP

Γ(P)
 e-lxxP - 1, x Ú 0, l 7 0, P 7 0.	 (B-39)

Many familiar distributions are special cases, including the exponential distribution 
(P = 1) and chi-squared (l = 1

2, P = n
2). The Erlang distribution results if P is a positive 

integer. The mean is P/l, and the variance is P/l2. The inverse gamma distribution is the 
distribution of 1/x, where x has the gamma distribution. Using the change of variable, 
y = 1/x, the Jacobian is � dx/dy � = 1/y2. Making the substitution and the change of 
variable, we find

f(y) =
lP

Γ(P)
 e-l/y y-(P + 1), y Ú 0, l 7 0, P 7 0.

The density is defined for positive P. However, the mean is l/(P - 1) which is 
defined only if P 7 1 and the variance is l2/[(P - 1)2(P - 2)] which is defined only 
for P 7 2.

B.4.6    THE BETA DISTRIBUTION

Distributions for models are often chosen on the basis of the range within which the 
random variable is constrained to vary. The lognormal distribution, for example, is 
sometimes used to model a variable that is always nonnegative. For a variable constrained 
between 0 and c 7 0, the beta distribution has proved useful. Its density is

	 f(x) =
1
c

 
Γ(a + b)

Γ(a)Γ(b)
 a x

c
b
a - 1

a1 -
x
c
b
b - 1

.	 (B-40)

This functional form is extremely flexible in the shapes it will accommodate. It is 
symmetric if a = b, strandard uniform if a = b = c = 1, asymmetric otherwise, and 

4Salem and Mount (1974).
5Greene (1980a).
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FIGURE B.5    Normal and Logistic Densities.
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can be hump-shaped or U-shaped. The mean is ca/(a + b), and the variance is 
c2ab/[(a + b + 1)(a + b)2]. The beta distribution has been applied in the study of labor 
force participation rates.6

B.4.7    THE LOGISTIC DISTRIBUTION

The normal distribution is ubiquitous in econometrics. But researchers have found that 
for some microeconomic applications, there does not appear to be enough mass in the 
tails of the normal distribution; observations that a model based on normality would 
classify as “unusual” seem not to be very unusual at all. One approach has been to use 
thicker-tailed symmetric distributions. The logistic distribution is one candidate; the cdf 
for a logistic random variable is denoted

F(x) = Λ(x) =
1

1 + e-x.

The density is f(x) = Λ(x)[1 - Λ(x)]. The mean and variance of this random 
variable are zero and p2/3. Figure B.5 compares the logistic distribution to the standard 
normal. The logistic density has a greater variance and thicker tails than the normal. The 
standardized variable, z/(p/31/2) is very close to the t[8] variable.

B.4.8    THE WISHART DISTRIBUTION

The Wishart distribution describes the distribution of a random matrix obtained as

W = a
n

i = 1
(xi - M)(xi - M)′,

6Heckman and Willis (1976).
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where xi is the ith of n K element random vectors from the multivariate normal 
distribution with mean vector, M, and covariance matrix, �. This is a multivariate 
counterpart to the chi-squared distribution. The density of the Wishart random matrix is

f(W) =
exp c -

1
2

 trace(�-1 W) d � W � -1
2 (n - K - 1)

2nK/2 � � � K/2 pK(K - 1)/4 �j = 1
K Γan + 1 - j

2
b

.

The mean matrix is n�. For the individual pairs of elements in W,

Cov[wij, wrs] = n(sirsjs + sissjr).

B.4.9    DISCRETE RANDOM VARIABLES

Modeling in economics frequently involves random variables that take integer values. 
In these cases, the distributions listed thus far only provide approximations that are 
sometimes quite inappropriate. We can build up a class of models for discrete random 
variables from the Bernoulli distribution for a single binomial outcome (trial)

Prob(x = 1) = a,

Prob(x = 0) = 1 - a,

where 0 … a … 1. The modeling aspect of this specification would be the assumptions 
that the success probability a is constant from one trial to the next and that successive 
trials are independent. If so, then the distribution for x successes in n trials is the binomial 
distribution,

Prob(X = x) = ¢n
x
≤ax(1 - a)n - x, x = 0, 1, p , n.

The mean and variance of x are na and na(1 - a), respectively. If the number of trials 
becomes large at the same time that the success probability becomes small so that the mean 
na is stable, then, the limiting form of the binomial distribution is the Poisson distribution,

Prob(X = x) =
e-llx

x!
.

The Poisson distribution has seen wide use in econometrics in, for example, modeling 
patents, crime, recreation demand, and demand for health services. (See Chapter 18.) An 
example is shown in Figure B.6.

B.5	 THE DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

We considered finding the expected value of a function of a random variable. It is fairly 
common to analyze the random variable itself, which results when we compute a function 
of some random variable. There are three types of transformation to consider. One 
discrete random variable may be transformed into another, a continuous variable may 
be transformed into a discrete one, and one continuous variable may be transformed 
into another.
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FIGURE B.6    The Poisson[3] Distribution.
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The simplest case is the first one. The probabilities associated with the new variable 
are computed according to the laws of probability. If y is derived from x and the function 
is one to one, then the probability that Y = y(x) equals the probability that X = x. 
If several values of x yield the same value of y, then Prob (Y = y) is the sum of the 
corresponding probabilities for x.

The second type of transformation is illustrated by the way individual data on 
income are typically obtained in a survey. Income in the population can be expected to 
be distributed according to some skewed, continuous distribution such as the one shown 
in Figure B.7.

Data are often reported categorically, as shown in the lower part of the figure. Thus, 
the random variable corresponding to observed income is a discrete transformation 
of the actual underlying continuous random variable. Suppose, for example, that the 
transformed variable y is the mean income in the respective interval. Then

 Prob(Y = m1) = P(- ∞ 6 X … a),

 Prob(Y = m2) = P(a 6 X … b),

 Prob(Y = m3) = P(b 6 X … c),

and so on, which illustrates the general procedure.
If x is a continuous random variable with pdf fx(x) and if y = g(x) is a continuous 

monotonic function of x, then the density of y is obtained by using the change of variable 
technique to find the cdf of y:

Prob(y … b) = 1b
-∞ fx � (g-1(y)) � g-1=

(y) � dy.

This equation can now be written as

Prob(y … b) = 1b
-∞ fy � (y) dy.
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FIGURE B.7    Censored Distribution.
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Hence,

	 fy(y) = fx(g-1(y)) � g-1=
(y) � .	 (B-41)

To avoid the possibility of a negative pdf if g(x) is decreasing, we use the 
absolute value of the derivative in the previous expression. The term � g-1=

(y) �  must 
be nonzero for the density of y to be nonzero. In words, the probabilities associated 
with intervals in the range of y must be associated with intervals in the range of x. If 
the derivative is zero, the correspondence y = g(x) is vertical, and hence all values of y 
in the given range are associated with the same value of x. This single point must have 
probability zero.

One of the most useful applications of the preceding result is the linear transformation 
of a normally distributed variable. If x ∼ N[m, s2], then the distribution of

y =
x - m

s

is found using the preceding result. First, the derivative is obtained from the inverse 
transformation

y =
x
s

-
m

s
  1 x = sy + m 1 f -1=

(y) =
dx
dy

= s.
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Therefore,

fy(y) =
122ps

 e-[(sy + m) - m]2/(2s2) �s � =
122p

 e-y2/2.

This is the density of a normally distributed variable with mean zero and unit 
standard deviation one. This is the result which makes it unnecessary to have separate 
tables for the different normal distributions which result from different means and 
variances.

B.6	 REPRESENTATIONS OF A PROBABILITY DISTRIBUTION

The probability density function (pdf) is a natural and familiar way to formulate the 
distribution of a random variable. But, there are many other functions that are used to 
identify or characterize a random variable, depending on the setting. In each of these 
cases, we can identify some other function of the random variable that has a one-to-
one relationship with the density. We have already used one of these quite heavily 
in the preceding discussion. For a random variable which has density function f(x), 
the distribution function, F(x), is an equally informative function that identifies the 
distribution; the relationship between f(x) and F(x) is defined in (B-6) for a discrete 
random variable and (B-8) for a continuous one. We now consider several other related 
functions.

For a continuous random variable, the survival function  is 
S(x) = 1 - F(x) = Prob[X Ú x]. This function is widely used in epidemiology, where 
x is time until some transition, such as recovery from a disease. The hazard function for 
a random variable is

h(x) =
f(x)

S(x)
=

f(x)

1 - F(x)
.

The hazard function is a conditional probability;

h(x) = limtT0 Prob(X … x … X + t � X Ú x).

Hazard functions have been used in econometrics in studying the duration of spells, 
or conditions, such as unemployment, strikes, time until business failures, and so on. The 
connection between the hazard and the other functions is h(x) = -d ln S(x)/dx. As an 
exercise, you might want to verify the interesting special case of h(x) = 1/l, a constant—
the only distribution which has this characteristic is the exponential distribution noted 
in Section B.4.5.

For the random variable X, with probability density function f(x), if the function

M(t) = E[etx]

exists, then it is the moment generating function (MGF). Assuming the function exists, 
it can be shown that

drM(t)/dtr � t = 0 = E[xr].

The moment generating function, like the survival and the hazard functions, is a unique 
characterization of a probability distribution. When it exists, the moment generating 
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function has a one-to-one correspondence with the distribution. Thus, for example, if we 
begin with some random variable and find that a transformation of it has a particular 
MGF, then we may infer that the function of the random variable has the distribution 
associated with that MGF. A convenient application of this result is the MGF for the 
normal distribution. The MGF for the standard normal distribution is Mz(t) = et2/2.

A useful feature of MGFs is the following:
If x and y are independent, then the MGF of x + y is Mx(t)My(t).
This result has been used to establish the contagion property of some distributions, 

that is, the property that sums of random variables with a given distribution have that 
same distribution. The normal distribution is a familiar example. This is usually not the 
case. It is for Poisson and chi-squared random variables.

One qualification of all of the preceding is that in order for these results to hold, the 
MGF must exist. It will for the distributions that we will encounter in our work, but in 
at least one important case, we cannot be sure of this. When computing sums of random 
variables which may have different distributions and whose specific distributions need 
not be so well behaved, it is likely that the MGF of the sum does not exist. However, 
the characteristic function,

f(t) = E[eitx], i2 = -1,

will always exist, at least for relatively small t. The characteristic function is the device 
used to prove that certain sums of random variables converge to a normally distributed 
variable—that is, the characteristic function is a fundamental tool in proofs of the central 
limit theorem.

B.7	 JOINT DISTRIBUTIONS

The joint density function for two random variables X and Y denoted f(x,y) is defined 
so that

	 Prob(a … x … b, c … y … d) = c a
a … x … b

a
c … y … d

f(x, y) if x and y are discrete,

1b
a 1d

c  f(x, y) dy dx if x and y are continuous.
 

� (B-42)

The counterparts of the requirements for a univariate probability density are

	

f(x, y) Ú 0,

a
x

a
y

f(x, y) = 1 if x and y are discrete,

1x1y f(x, y) dy dx = 1 if x and y are continuous.

	 (B-43)

The cumulative probability is likewise the probability of a joint event:

 F(x, y) = Prob(X … x, Y … y) = c a
X … x

a
Y … y

f(x, y) in the discrete case

1x
-∞ 1y

-∞ f(t, s) ds dt in the continuous case.
	 (B-44)
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B.7.1    MARGINAL DISTRIBUTIONS

A marginal probability density or marginal probability distribution is defined with 
respect to an individual variable. To obtain the marginal distributions from the joint 
density, it is necessary to sum or integrate out the other variable:

	 fx(x) = c a
y

f(x, y) in the discrete case

1y f(x, s) ds in the continuous case,
	 (B-45)

and similarly for fy(y).
Two random variables are statistically independent if and only if their joint density 

is the product of the marginal densities:

	 f(x, y) = fx(x)fy(y) 3 x and y are independent.	 (B-46)

If (and only if) x and y are independent, then the cdf factors as well as the pdf:

	 F(x, y) = Fx(x)Fy(y),	 (B-47)

or

Prob(X … x, Y … y) = Prob(X … x)Prob(Y … y).

B.7.2    EXPECTATIONS IN A JOINT DISTRIBUTION

The means, variances, and higher moments of the variables in a joint distribution are 
defined with respect to the marginal distributions. For the mean of x in a discrete 
distribution,

 E[x] = a
 

x
xfx(x)

 = a
x

 xJa
y

f(x, y) R
	  = a

 

x
a

y
xf(x, y). 	 (B-48)

The means of the variables in a continuous distribution are defined likewise, using 
integration instead of summation:

 E[x] = 1xxfx(x) dx

	  = 1x1yxf(x, y) dy dx.� (B-49)

Variances are computed in the same manner:

 Var[x] = a
x

(x - E[x])2 fx(x)

	  = a
x

a
y

(x - E[x])2 f(x, y).	 (B-50)
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B.7.3    COVARIANCE AND CORRELATION

For any function g(x, y),

	 E[g(x, y)] = c a
x

a
y

g(x, y)f(x, y) in the discrete case

1x1y g(x, y)f(x, y) dy dx in the continuous case.
	 (B-51)

The covariance of x and y is a special case:

 Cov[x, y] = E[(x - mx),(y - my)]

 = E[xy] - mxmy

	  = sxy.� (B-52)

If x and y are independent, then f(x, y) = fx(x)fy(y) and

 sxy = a
x

a
y

fx(x)fy(y)(x - mx)(y - my)

 = a
x

(x - mx)fx(x)a
y

(y - my)fy(y)

 = E[x - mx]E[y - my]

 = 0.

The sign of the covariance will indicate the direction of covariation of X and Y. 
Its magnitude depends on the scales of measurement, however. In view of this fact, a 
preferable measure is the correlation coefficient:

	 r[x, y] = rxy =
sxy

sxsy
,	 (B-53)

where sx and sy are the standard deviations of x and y, respectively. The correlation 
coefficient has the same sign as the covariance but is always between -1 and 1 and is 
thus unaffected by any scaling of the variables.

Variables that are uncorrelated are not necessarily independent. For example, 
in the discrete distribution f(-1, 1) = f(0, 0) = f(1, 1) = 1

3, the correlation is zero, 
but f(1, 1) does not equal fx(1)fy(1) = (1

3)(2
3). An important exception is the joint 

normal distribution discussed subsequently, in which lack of correlation does imply 
independence.

Some general results regarding expectations in a joint distribution, which can be 
verified by applying the appropriate definitions, are

	 E[ax + by + c] = a E[x] + bE[y] + c,	 (B-54)

	  Var[ax + by + c] = a2 Var[x] + b2Var[y] + 2ab Cov[x, y]

	  = Var[ax + by],	 (B-55)
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and

	 Cov[ax + by, cx + dy] = ac Var[x] + bd Var[y] + (ad + bc)Cov[x, y].	 (B-56)

If X and Y are uncorrelated, then

 Var[x + y] = Var[x - y]

	  = Var[x] + Var[y].	 (B-57)

For any two functions g1(x) and g2(y), if x and y are independent, then

	 E[g1(x)g2(y)] = E[g1(x)]E[g2(y)].	 (B-58)

B.7.4    DISTRIBUTION OF A FUNCTION OF BIVARIATE RANDOM VARIABLES

The result for a function of a random variable in (B-41) must be modified for a joint 
distribution. Suppose that x1 and x2 have a joint distribution fx(x1, x2) and that y1 and 
y2 are two monotonic functions of x1 and x2:

 y1 = y1(x1, x2), y2 = y2(x1, x2).

Because the functions are monotonic, the inverse transformations,

 x1 = x1(y1, y2), x2 = x2(y1, y2),

exist. The Jacobian of the transformations is the matrix of partial derivatives,

J = J0x1/0y1 0x1/0y2

0x2/0y1 0x2/0y2
R = c 0x

0y′
d .

The joint distribution of y1 and y2 is

fy(y1, y2) = fx[x1(y1, y2), x2(y1, y2)]abs( � J � ).

The determinant of the Jacobian must be nonzero for the transformation to exist. 
A zero determinant implies that the two transformations are functionally dependent.

Certainly the most common application of the preceding in econometrics is the linear 
transformation of a set of random variables. Suppose that x1 and x2 are independently 
distributed N[0, 1], and the transformations are

y1 = a1 + b11x1 + b12x2,

y2 = a2 + b21x1 + b22x2.

To obtain the joint distribution of y1 and y2, we first write the transformations as

y = a + Bx.

The inverse transformation is

x = B-1(y - a),

so the absolute value of the determinant of the Jacobian is

abs � J � = abs � B-1 � =
1

abs � B �
.
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The joint distribution of x is the product of the marginal distributions since they are 
independent. Thus,

fx(x) = (2p)-1 e-(x1
2 + x2

2)/2 = (2p)-1e-x′x/2.

Inserting the results for x(y) and J into fy(y1, y2) gives

fy(y) = (2p)-1 
1

abs � B �
 e-(y - a)′(BB′)-1(y - a)/2.

This bivariate normal distribution is the subject of Section B.9. Note that by 
formulating it as we did earlier, we can generalize easily to the multivariate case, that is, 
with an arbitrary number of variables.

Perhaps the more common situation is that in which it is necessary to find the 
distribution of one function of two (or more) random variables. A strategy that often 
works in this case is to form the joint distribution of the transformed variable and one 
of the original variables, then integrate (or sum) the latter out of the joint distribution 
to obtain the marginal distribution. Thus, to find the distribution of y1(x1, x2), we might 
formulate

 y1 = y1(x1, x2)

 y2 = x2.

The absolute value of the determinant of the Jacobian would then be

J = abs 3 0x1

0y1

0x1

0y2

0 1
3 = abs 2 0x1

0y1

2 .
The density of y1 would then be

fy1
(y1) = 1y2

 fx[x1(y1, y2), y2] abs � J �  dy2.

B.8	 CONDITIONING IN A BIVARIATE DISTRIBUTION

Conditioning and the use of conditional distributions play a pivotal role in econometric 
modeling. We consider some general results for a bivariate distribution. (All these results 
can be extended directly to the multivariate case.)

In a bivariate distribution, there is a conditional distribution over y for each value 
of x. The conditional densities are

	 f(y � x) =
f(x, y)

fx(x)
,	 (B-59)

and

f(x � y) =
f(x, y)

fy(y)
.
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It follows from (B-46) that.

	 if x and y are independent, then f(y � x) = fy(y) and f(x � y) = fx(x).	 (B-60)

The interpretation is that if the variables are independent, the probabilities of events 
relating to one variable are unrelated to the other. The definition of conditional densities 
implies the important result

	  f(x, y) = f(y � x)fx(x) = f(x � y)fy(y).	 (B-61)

B.8.1    REGRESSION: THE CONDITIONAL MEAN

A conditional mean is the mean of the conditional distribution and is defined by

	 E[y � x] = c 1yyf(y � x)dy if y is continuous

a
y

yf(y � x) if y is discrete.
	 (B-62)

The conditional mean function E[y � x] is called the regression of y on x.
A random variable may always be written as

 y = E[y � x] + (y - E[y � x])

 = E[y � x] + e.

B.8.2    CONDITIONAL VARIANCE

A conditional variance is the variance of the conditional distribution:

 Var[y � x] = E[(y - E[y � x])2 � x]

	  = 1y(y - E[y � x])2f(y � x)dy, if y is continuous,	 (B-63)

or

	 Var[y � x] = a
y

(y - E[y � x])2f(y � x) if y is discrete.	 (B-64)

The computation can be simplified by using

	 Var[y � x] = E[y2 � x] - (E[y � x])2.	 (B-65)

The conditional variance is called the scedastic function and, like the regression, is 
generally a function of x. Unlike the conditional mean function, however, it is common 
for the conditional variance not to vary with x. We shall examine a particular case. This 
case does not imply, however, that Var[y � x] equals Var[y], which will usually not be 
true. It implies only that the conditional variance is a constant. The case in which the 
conditional variance does not vary with x is called homoscedasticity (same variance).

B.8.3    RELATIONSHIPS AMONG MARGINAL AND CONDITIONAL MOMENTS

Some useful results for the moments of a conditional distribution are given in the 
following theorems.
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THEOREM B.4  Decomposition of Variance
In a joint distribution,

	 Var[y] = Varx[E[y � x]] + Ex[Var[y � x]].� (B-69)

THEOREM B.1  Law of Iterated Expectations

	 E[y] = Ex[E[y � x]].� (B-66)

The notation Ex[.] indicates the expectation over the values of x. Note that E[y � x] 
is a function of x.

THEOREM B.2  Covariance
In any bivariate distribution,

	 Cov[x, y] = Covx[x, E[y � x]] = 1x(x - E[x]) E[y � x]fx(x) dx.� (B-67)

(Note that this is the covariance of x and a function of x.)

THEOREM B.3  Moments in a Linear Regression

If E[y � x] = a + bx, then

a = E[y] - bE[x]

and

	 b =
Cov[x,y]

Var[x]
.� (B-68)

The proof follows from (B-66). Whether E[y � x] is nonlinear or linear, the result 
in (B-68) is the linear projection of y on x. The linear projection is developed in 
Section B.8.5.

The preceding results provide an additional, extremely useful result for the special 
case in which the conditional mean function is linear in x.

The preceding theorems relate to the conditional mean in a bivariate distribution. 
The following theorems, which also appear in various forms in regression analysis, 
describe the conditional variance.
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THEOREM B.5  Residual Variance in a Regression
In any bivariate distribution,

	 Ex[Var[y � x]] = Var[y] - Varx[E[y � x]].� (B-70)

THEOREM B.6  Linear Regression and Homoscedasticity
In a bivariate distribution, if E[y � x] = a + bx and if Var[y � x] is a constant, then

	 Var[y � x] = Var[y](1 - Corr2[y, x]) = sy
2(1 - rxy

2 ).� (B-71)

The proof is straightforward using Theorems B.2 to B.4.

The notation Varx[.] indicates the variance over the distribution of x. This equation 
states that in a bivariate distribution, the variance of y decomposes into the variance of 
the conditional mean function plus the expected variance around the conditional mean.

On average, conditioning reduces the variance of the variable subject to the 
conditioning. For example, if y is homoscedastic, then we have the unambiguous 
result that the variance of the conditional distribution(s) is less than or equal to the 
unconditional variance of y. Going a step further, we have the result that appears 
prominently in the bivariate normal distribution (Section B.9).

B.8.4    THE ANALYSIS OF VARIANCE

The variance decomposition result implies that in a bivariate distribution, variation in 
y arises from two sources:

1.	 Variation because E[y � x] varies with x:

	 regression variance = Varx[E[y � x]].	 (B-72)

2.	 Variation because, in each conditional distribution, y varies around the conditional 
mean:

	 residual variance = Ex[Var[y � x]].	 (B-73)

Thus,

	 Var[y] = regression variance + residual variance.	 (B-74)

In analyzing a regression, we shall usually be interested in which of the two parts of 
the total variance, Var[y], is the larger one. A natural measure is the ratio

	 coefficient of determination =
regression variance

total variance
.	 (B-75)
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In the setting of a linear regression, (B-75) arises from another relationship that 
emphasizes the interpretation of the correlation coefficient.

  if E[y � x] = a + bx, then the coefficient of determination = COD = r2,	 (B-76)

where r2 is the squared correlation between x and y. We conclude that the correlation 
coefficient (squared) is a measure of the proportion of the variance of y accounted for by 
variation in the mean of y given x. It is in this sense that correlation can be interpreted 
as a measure of linear association between two variables.

B.8.5    LINEAR PROJECTION

Theorems B.3 (Moments in a Linear Regression) and B.6 (Linear Regression and 
Homoscedasticity) begin with an assumption that E[y � x] = a + bx. If the conditional 
mean is not linear, then the results in THEOREM B.6 do not give the slopes in the 
conditional mean. However, in a bivariate distribution, we can always define the linear 
projection of y on x, as

Proj(y � x) = g0 + g1x

where

g0 = E[y] - g1E[x] and g1 = Cov(x,y)/Var(x).

We can see immediately in THEOREM B.3 that if the conditional mean function 
is linear, then the conditional mean function (the regression of y on x) is also the linear 
projection. When the conditional mean function is not linear, then the regression and 
the projection functions will be different. We consider an example that bears some 
connection to the formulation of loglinear models. If

y � x ∼ Poisson with conditional mean function exp(bx), y = 0, 1, c,

x ∼ U[0,1]; f(x) = 1, 0 … x … 1,

f(x,y) = f(y � x)f(x) = exp[@exp(bx)][exp(bx)]y/y! * 1,

Then, as noted, the conditional mean function is nonlinear; E[y � x] =
exp(bx). The slope in the projection of y on x is g1 = Cov(x,y)/Var[x] =
Cov(x, E[y � x])/Var[x] = Cov(x,exp(bx))/Var[x]. (THEOREM B.2.) We have E[x] = 1/2 
and Var[x] = 1/12. To obtain the covariance, we require

E[xexp(bx)] = 11
0 x exp(bx)dx = J a x

b
-

1
b2 bexp(bx) R

x = 0

x = 1

and

E[x]E[exp(bx)] = a 1
2
b 11

0  exp(bx)dx = a 1
2
b c exp(bx)

b
d

x = 0

x = 1

= a 1
2
b c exp(b) - 1

b
d .

After collecting terms, g1 = h(b). The constant is g0 = E[y] - h(b)(1/2). 
E[y] = E[E[y � x]] = [exp(b)@1]/b. (THEOREM B.1.) Then, the projection is the linear 
function g0 + g1x while the regression function is the nonlinear function exp(bx). The 
projection can be viewed as a linear approximation to the conditional mean. (Note, it is 
not a linear Taylor series approximation.)
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In similar fashion to Theorem B.5, we can define the variation around the projection,

Proj.Var[y � x] = Ex[5y - Proj(y � x)62 � x].

By adding and subtracting the regression, E[y � x], in the expression, we find

Proj.Var[y � x] = Var[y � x] + Ex[5Proj(y � x) - E[y � x]62 � x].

This states that the variation of y around the projection consists of the regression 
variance plus the expected squared approximation error of the projection. As a general 
observation, we find, not surprisingly, that when the conditional mean is not linear, the 
projection does not do as well as the regression at prediction of y.

B.9	 THE BIVARIATE NORMAL DISTRIBUTION

A bivariate distribution that embodies many of the features described earlier is the 
bivariate normal, which is the joint distribution of two normally distributed variables. 
The density is

 f(x, y) =
1

2psxsy21 - r2
 e-1/2[(ex

2 + ey
2 - 2rexey)/(1 - r2)],

	  ex =
x - mx

sx
, ey =

y - my

sy
. 	 (B-77)

The parameters mx, sx, my, and sy are the means and standard deviations of the 
marginal distributions of x and y, respectively. The additional parameter r is the 
correlation between x and y. The covariance is

	 sxy = rsxsy.	 (B-78)

The density is defined only if r is not 1 or -1, which in turn requires that the two 
variables not be linearly related. If x and y have a bivariate normal distribution, denoted

(x, y) ∼ N2[mx, my, sx
2, sy

2, r],

then

●● The marginal distributions are normal:

 fx(x) = N[mx, sx
2],

	          fy(y) = N[my, sy
2].� (B-79)

●● The conditional distributions are normal:

 f(y � x) = N[a + bx, sy
2(1 - r2)],

	  a = my - bmx b =
sxy

sx
2 , � (B-80)

and likewise for f(x � y).
●● x and y are independent if and only if r = 0. The density factors into the product 

of the two marginal normal distributions if r = 0.
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Two things to note about the conditional distributions beyond their normality are 
their linear regression functions and their constant conditional variances. The conditional 
variance is less than the unconditional variance, which is consistent with the results of 
the previous section.

B.10	MULTIVARIATE DISTRIBUTIONS

The extension of the results for bivariate distributions to more than two variables is 
direct. It is made much more convenient by using matrices and vectors. The term random 
vector applies to a vector whose elements are random variables. The joint density is f(x), 
whereas the cdf is

	 F(x) = 1xn

-∞ 1xn - 1

-∞ g1x1

-∞ f(t)dt1 gdtn - 1 dtn.	 (B-81)

Note that the cdf is an n-fold integral. The marginal distribution of any one (or 
more) of the n variables is obtained by integrating or summing over the other variables.

B.10.1    MOMENTS

The expected value of a vector or matrix is the vector or matrix of expected values. A 
mean vector is defined as

	 M = Dm1

m2

f
mn

T = DE[x1]
E[x2]
f

E[xn]

T = E[x].	 (B-82)

Define the matrix

(x - M)(x - M)′ = D (x1 - m1)(x1 - m1) (x1 - m1)(x2 - m2) g (x1 - m1),(xn - mn)
(x2 - m2)(x1 - m1) (x2 - m2)(x2 - m2) g (x2 - m2)(xn - mn)

f f
(xn - mn)(x1 - m1) (xn - mn)(x2 - m2) g (xn - mn)(xn - mn)

T .

The expected value of each element in the matrix is the covariance of the 
two variables in the product. (The covariance of a variable with itself is its variance.) 
Thus,

	 E[(x - M)(x - M)′] = Ds11 s12 g s1n

s21 s22 g s2n

f f
sn1 sn2 g snn

T = E[xx′] - MM′,	 (B-83)

which is the covariance matrix of the random vector x. Henceforth, we shall denote the 
covariance matrix of a random vector in boldface, as in

Var[x] = �.
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By dividing sij by sisj, we obtain the correlation matrix:

R = D 1 r12 r13 g r1n

r21 1 r23 g r2n

f f f f
rn1 rn2 rn3 g 1

T .

B.10.2    SETS OF LINEAR FUNCTIONS

Our earlier results for the mean and variance of a linear function can be extended to the 
multivariate case. For the mean,

 E[a1x1 + a2x2 + g + anxn] = E[a′x]

 = a1 E[x1] + a2E[x2] + g + anE[xn]

 = a1m1 + a2m2 + g + anmn

	  = a′, M. 	 (B-84)

For the variance,

 Var[a′x] = E[(a′x - E[a′x])2]

 = E[5a′(x - E[x])62]

 = E[a′(x - M)(x - M)′ a]

as E[x] = M and a′(x - M) = (x - M)′a. Because a is a vector of constants,

	 Var[a′x] = a′E[(x - M)(x - M)′]a = a′�a = a
n

i = 1
a
n

j = 1
aiajsij	 (B-85)

It is the expected value of a square, so we know that a variance cannot be negative. 
As such, the preceding quadratic form is nonnegative, and the symmetric matrix � must 
be nonnegative definite.

In the set of linear functions y = Ax, the ith element of y is yi = aix, where ai is the 
ith row of A [see result (A-14)]. Therefore,

E[yi] = aiM.

Collecting the results in a vector, we have

	 E[Ax] = AM.	 (B-86)

For two row vectors ai and aj,

Cov[aix, ajx] = ai, �aj
=.

Because ai �aj
= is the ijth element of A�A′,

	 Var[Ax] = A�A′.	 (B-87)

This matrix will be either nonnegative definite or positive definite, depending on 
the column rank of A.
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B.10.3    NONLINEAR FUNCTIONS: THE DELTA METHOD

Consider a set of possibly nonlinear functions of x, y = g(x). Each element of y can be 
approximated with a linear Taylor series. Let ji be the row vector of partial derivatives 
of the i th function with respect to the n elements of x:

	 ji(x) =
0gi(x)

0x′
=

0yi

0x′
.	 (B-88)

Then, proceeding in the now familiar way, we use M, the mean vector of x, as the 
expansion point, so that ji(M) is the row vector of partial derivatives evaluated at M. Then

	 gi(x) ≈ gi(M) + ji(M)(x - M).	 (B-89)

From this we obtain

	 E[gi(x)] ≈ gi(M),	 (B-90)

	 Var[gi(x)] ≈ ji(M)�ji(M)′,	 (B-91)

and

	 Cov[gi(x), gj(x)] ≈ ji(M)�jj(M)′.	 (B-92)

These results can be collected in a convenient form by arranging the row vectors 
ji(M) in a matrix J(M). Then, corresponding to the preceding equations, we have

	 E[g(x)] ≃ g(M),	 (B-93)

	 Var[g(x)] ≃ J(M)�J(M)′.	 (B-94)

The matrix J(M) in the last preceding line is 0y/0x′ evaluated at x = M.

B.11	THE MULTIVARIATE NORMAL DISTRIBUTION

The foundation of most multivariate analysis in econometrics is the multivariate normal 
distribution. Let the vector (x1, x2, c, xn)′ = x be the set of n random variables, M 
their mean vector, and � their covariance matrix. The general form of the joint density is

	 f(x) = (2p)-n/2 � � � -1/2e(-1/2)(x - M)′�-1(x - M).	 (B-95)

If R is the correlation matrix of the variables and Rij = sij/(sisj), then

	 f(x) = (2p)-n/2(s1s2 gsn)-1 � R � -1/2 e(-1/2)ER-1E,	 (B-96)

where ei = (xi - mi)/si.7

7This result is obtained by constructing 
, the diagonal matrix with si as its ith diagonal element. Then, 
R = 
-1�
-1, which implies that �-1 = 
-1R-1
-1. Inserting this in (B-95) yields (B-96). Note that the ith 
element of 
-1(x - M) is (xi - mi)/si.
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THEOREM B.7  Marginal and Conditional Normal Distributions
If [x1, x2] have a joint multivariate normal distribution, then the marginal distri-
butions are

	 x1 ∼ N(M1, �11),� (B-100)

and

	 x2 ∼ N(M2, �22).� (B-101)

The conditional distribution of x1 given x2 is normal as well:

	 x1 � x2 ∼ N(M1.2, �11.2),� (B-102)

where

	 M1.2 = M1 + �12�22
-1(x2 - M2),� (B-102a)

	 �11.2 = �11 - �12�22
-1�21.� (B-102b)

Two special cases are of interest. If all the variables are uncorrelated, then rij = 0 
for i ≠ j. Thus, R = I, and the density becomes

 f(x) = (2p)-n/2(s1s2 gsn)-1e-e′e/2

	  = f(x1)f(x2) gf(xn) = q
n

i = 1
f(xi).� (B-97)

As in the bivariate case, if normally distributed variables are uncorrelated, then 
they are independent. If si = s and M = 0, then xi ∼ N[0, s2] and ei = xi/s, and the 
density becomes

	 f(x) = (2p)-n/2(s2)-n/2e-x′x/(2s2).	 (B-98)

Finally, if s = 1,

	 f(x) = (2p)-n/2e-x′x/2.	 (B-99)

This distribution is the multivariate standard normal, or spherical normal 
distribution.

B.11.1    MARGINAL AND CONDITIONAL NORMAL DISTRIBUTIONS

Let x1 be any subset of the variables, including a single variable, and let x2 be the 
remaining variables. Partition M and � likewise so that

M = JM1

M2
R and � = J�11 �12

�21 �22
R .

Then the marginal distributions are also normal. In particular, we have the following 
theorem.
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THEOREM B.7  (continued)

Proof: We partition M and � as shown earlier and insert the parts in (B-95). To 
construct the density, we use (A-72) to partition the determinant,

� � � = � �22 � � �11 - �12�22
-1�21 � ,

and (A-74) to partition the inverse,J�11 �12

�21 �22
R -1

= J�11.2
-1 - �11.2

-1 B
-B′�11.2

-1 �22
-1 + B′�11.2

-1 B
R .

For simplicity, we let

B = �12�22
-1.

Inserting these in (B-95) and collecting terms produces the joint density as a 
product of two terms:

f(x1, x2) = f1.2(x1 � x2)f2(x2).

The first of these is a normal distribution with mean M1.2 and variance �11.2, 
whereas the second is the marginal distribution of x2.

The conditional mean vector in the multivariate normal distribution is a linear 
function of the unconditional mean and the conditioning variables, and the conditional 
covariance matrix is constant and is smaller (in the sense discussed in Section A.7.3) than 
the unconditional covariance matrix. Notice that the conditional covariance matrix is the 
inverse of the upper left block of �-1; that is, this matrix is of the form shown in (A-74) 
for the partitioned inverse of a matrix.

B.11.2    THE CLASSICAL NORMAL LINEAR REGRESSION MODEL

An important special case of the preceding is that in which x1 is a single variable, y, and 
x2 is K variables, x. Then the conditional distribution is a multivariate version of that in 
(B-80) with B = �xx

-1sxy, where sxy is the vector of covariances of y with x2. Recall that 
any random variable, y, can be written as its mean plus the deviation from the mean. If 
we apply this tautology to the multivariate normal, we obtain

y = E[y � x] + (y - E[y � x]) = a + B′x + e,

where B is given earlier, a = my - B′Mx, and e has a normal distribution. We thus have, 
in this multivariate normal distribution, the classical normal linear regression model.

B.11.3    LINEAR FUNCTIONS OF A NORMAL VECTOR

Any linear function of a vector of joint normally distributed variables is also normally 
distributed. The mean vector and covariance matrix of Ax, where x is normally 
distributed, follow the general pattern given earlier. Thus,

	 if x ∼ N[M, �], then Ax + b ∼ N[AM + b, A�A′].	 (B-103)
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DEFINITION B.3  Orthonormal Quadratic Form
A particular case of (B-103) is the following:

if x ∼ N[0, I] and C is a square matrix such that C′C = I, then C′x ∼ N[0, I].

If A does not have full rank, then A�A′ is singular and the density does not exist in 
the full dimensional space of x although it does exist in the subspace of dimension equal 
to the rank of �. Nonetheless, the individual elements of Ax + b will still be normally 
distributed, and the joint distribution of the full vector is still a multivariate normal.

B.11.4    QUADRATIC FORMS IN A STANDARD NORMAL VECTOR

The earlier discussion of the chi-squared distribution gives the distribution of x′x if x 
has a standard normal distribution. It follows from (A-36) that

	 x′x = a
n

i = 1
xi

2 = a
n

i = 1
(xi - x)2 + nx2.	 (B-104)

We know from (B-32) that x′x has a chi-squared distribution. It seems natural, 
therefore, to invoke (B-34) for the two parts on the right-hand side of (B-104). It is not yet 
obvious, however, that either of the two terms has a chi-squared distribution or that the 
two terms are independent, as required. To show these conditions, it is necessary to derive 
the distributions of idempotent quadratic forms and to show when they are independent.

To begin, the second term is the square of 2n x, which can easily be shown to have 
a standard normal distribution. Thus, the second term is the square of a standard normal 
variable and has chi-squared distribution with one degree of freedom. But the first term 
is the sum of n nonindependent variables, and it remains to be shown that the two terms 
are independent.

Consider, then, a quadratic form in a standard normal vector x with symmetric 
matrix A:

	 q = x′Ax.	 (B-105)

Let the characteristic roots and vectors of A be arranged in a diagonal matrix � and 
an orthogonal matrix C, as in Section A.6.3. Then

	 q = x′C�C′x.	 (B-106)

By definition, C satisfies the requirement that C′C = I. Thus, the vector y = C′x 
has a standard normal distribution. Consequently,

	 q = y′�y = a
n

i = 1
liyi

2.	 (B-107)

If li is always one or zero, then

	 q = a
J

j = 1
yj

2,	 (B-108)

Z01_GREE1366_08_SE_APP.indd   1132 1/5/17   5:00 PM



	 APPENDIX B  ✦  Probability and Distribution Theory	 1133

The rank of a matrix is equal to the number of nonzero characteristic roots it has. 
Therefore, the degrees of freedom in the preceding chi-squared distribution equals J, 
the rank of A.

We can apply this result to the earlier sum of squares. The first term is

a
n

i = 1
(xi - x)2 = x′M0x,

where M0 was defined in (A-34) as the matrix that transforms data to mean deviation 
form:

M0 = I -
1
n

 ii′.

Because M0 is idempotent, the sum of squared deviations from the mean has a chi-
squared distribution. The degrees of freedom equals the rank M0, which is not obvious 
except for the useful result in (A-108), that

●● The rank of an idempotent matrix is equal to its trace. � (B-109)
Each diagonal element of M0 is 1 - (1/n); hence, the trace is n[1 - (1/n)] = n - 1. 
Therefore, we have an application of Theorem B.8.

	 if x ∼ N(0, I), a
n

i = 1
(xi - x)2 ∼ x2[n - 1].� (B-110)

We have already shown that the second term in (B-104) has a chi-squared distribution 
with one degree of freedom. It is instructive to set this up as a quadratic form as well:

	 nx2 = x′ c 1
n

 ii′ d x = x′[jj′]x, where j = a 12n
b i.� (B-111)

The matrix in brackets is the outer product of a nonzero vector, which always has 
rank one. You can verify that it is idempotent by multiplication. Thus, x′x is the sum of 
two chi-squared variables, one with n - 1 degrees of freedom and the other with one. 
It is now necessary to show that the two terms are independent. To do so, we will use 
the next theorem.

THEOREM B.8  Distribution of an Idempotent Quadratic Form in a 
Standard Normal Vector
If x ∼ N[0, I] and A is idempotent, then x′Ax has a chi-squared distribution with 
degrees of freedom equal to the number of unit roots of A, which is equal to the 
rank of A.

which has a chi-squared distribution. The sum is taken over the j = 1, c, J elements 
associated with the roots that are equal to one. A matrix whose characteristic roots are 
all zero or one is idempotent. Therefore, we have proved the next theorem.
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THEOREM B.9  Independence of Idempotent Quadratic Forms

If x ∼ N[0, I] and x′ Ax and x′ Bx are two idempotent quadratic forms in x,
then x′ Ax and x′Bx are independent if AB = 0.� (B-112)

As before, we show the result for the general case and then specialize it for the 
example. Because both A and B are symmetric and idempotent, A = A′A and 
B = B′B. The quadratic forms are therefore

x′Ax = x′A′Ax = x1
=x1, where x1 = Ax, and x′ Bx = x2

=  x2, where x2 = Bx.

� (B-113)

Both vectors have zero mean vectors, so the covariance matrix of x1 and x2 is

E(x1x2
=) = AIB′ = AB = 0.

Because Ax and Bx are linear functions of a normally distributed random vector, 
they are, in turn, normally distributed. Their zero covariance matrix implies that they are 
statistically independent,8 which establishes the independence of the two quadratic 
forms. For the case of x′x, the two matrices are M0 and [I - M0]. You can show that 
M0[I - M0] = 0 just by multiplying it out.

B.11.5    THE F DISTRIBUTION

The normal family of distributions (chi-squared, F, and t) can all be derived as functions 
of idempotent quadratic forms in a standard normal vector. The F distribution is the 
ratio of two independent chi-squared variables, each divided by its respective degrees of 
freedom. Let A and B be two idempotent matrices with ranks ra and rb, and let AB = 0. 
Then

	
x′Ax/ra

x′Bx/rb
∼ F[ra, rb].	 (B-114)

If Var[x] = s2I instead, then this is modified to

	
(x′Ax/s2)/ra

(x′Bx/s2)/rb
∼ F[ra, rb].	 (B-115)

B.11.6    A FULL RANK QUADRATIC FORM

Finally, consider the general case,

x ∼ N[M, �].

8Note that both x1 = Ax and x2 = Bx have singular covariance matrices. Nonetheless, every element of x1 is 
independent of every element x2, so the vectors are independent.
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THEOREM B.10  Distribution of a Standardized Normal Vector

If x ∼ N[m, �], then �-1/2(x - M) ∼ N[0, I].

THEOREM B.11  Distribution of x′�-1x When x Is Normal

If x ∼ N[M, �], then (x - M)′�-1(x - M) ∼ X2[n].

We are interested in the distribution of

	 q = (x - M)′�-1(x - M).	 (B-116)

First, the vector can be written as z = x - M, and � is the covariance matrix of z as 
well as of x. Therefore, we seek the distribution of

	 q = z′�-1z = z′(Var[z])-1z,	 (B-117)

where z is normally distributed with mean 0. This equation is a quadratic form, but not 
necessarily in an idempotent matrix.9 Because � is positive definite, it has a square root. 
Define the symmetric matrix �1/2 so that �1/2�1/2 = �. Then

�-1 = �-1/2�-1/2,

and

 z′�-1z = z′�-1/2′�-1/2z

 = (�-1/2z)′(�-1/2z)

 = w′w.

Now w = Az, so

E(w) = AE[z] = 0,

and

Var[w] = A�A′ = �-1/2��-1/2 = �0 = I.

This provides the following important result:

9It will be idempotent only in the special case of � = I.

The simplest special case is that in which x has only one variable, so that the 
transformation is just (x - m)/s. Combining this case with (B-32) concerning the sum 
of squares of standard normals, we have the following theorem.
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THEOREM B.12  Independence of a Linear and a Quadratic Form
A linear function Lx and a symmetric idempotent quadratic form x′Ax in a stand-
ard normal vector are statistically independent if LA = 0.

The proof follows the same logic as that for two quadratic forms. Write x′Ax as 
x′A′Ax = (Ax)′(Ax). The covariance matrix of the variables Lx and Ax is LA = 0, 
which establishes the independence of these two random vectors. The independence of 
the linear function and the quadratic form follows because functions of independent 
random vectors are also independent.

The t distribution is defined as the ratio of a standard normal variable to the square 
root of an independent chi-squared variable divided by its degrees of freedom:

t[J] =
N[0, 1]

5x2[J]/J61/2.

A particular case is

t[n - 1] =
2n x

e 1
n - 1 a n

i = 1(xi - x)2 r1/2
=

2nx
s

,

where s is the standard deviation of the values of x. The distribution of the two variables 
in t[n - 1] was shown earlier; we need only show that they are independent. But2nx =

12n
 i′x = j′x,

and

s2 =
x′M0x
n - 1

.

It suffices to show that M0j = 0, which follows from

M0i = [I - i(i′i)-1i′]i = i - i(i′i)-1(i′i) = 0.

B.11.7    INDEPENDENCE OF A LINEAR AND A QUADRATIC FORM

The t distribution is used in many forms of hypothesis tests. In some situations, it arises as 
the ratio of a linear to a quadratic form in a normal vector. To establish the distribution 
of these statistics, we use the following result.
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A P P E N D I X  C

§
Estimation and Inference

C.1	 INTRODUCTION

The probability distributions discussed in Appendix B serve as models for the underlying 
data generating processes that produce our observed data. The goal of statistical 
inference in econometrics is to use the principles of mathematical statistics to combine 
these theoretical distributions and the observed data into an empirical model of the 
economy. This analysis takes place in one of two frameworks, classical or Bayesian. The 
overwhelming majority of empirical study in econometrics has been done in the classical 
framework. Our focus, therefore, will be on classical methods of inference. Bayesian 
methods are discussed in Chapter 16.1

C.2	 SAMPLES AND RANDOM SAMPLING

The classical theory of statistical inference centers on rules for using the sampled data 
effectively. These rules, in turn, are based on the properties of samples and sampling 
distributions.

A sample of n observations on one or more variables, denoted x 1 , x 2 , c, x n 
is a random sample if the n observations are drawn independently from the same 
population, or probability distribution, f(x i, U). The sample may be univariate if x i is 
a single random variable or multivariate if each observation contains several variables. 
A random sample of observations, denoted [x 1 , x 2 , c, x n] or {x i}i = 1 , c, n, is said to 
be independent, identically distributed, which we denote i. i. d. The vector U contains 
one or more unknown parameters. Data are generally drawn in one of two settings. A 
cross section is a sample of a number of observational units all drawn at the same point 
in time. A time series is a set of observations drawn on the same observational unit at a 
number of (usually evenly spaced) points in time. Many recent studies have been based 
on time-series cross sections, which generally consist of the same cross-sectional units 
observed at several points in time. Because the typical data set of this sort consists of a 
large number of cross-sectional units observed at a few points in time, the common term 
panel data set is usually more fitting for this sort of study.

1An excellent reference is Leamer (1978). A summary of the results as they apply to econometrics is contained 
in Zellner (1971) and in Judge et al. (1985). See, as well, Poirier (1991, 1995). Recent textbooks on Bayesian 
econometrics include Koop (2003), Lancaster (2004) and Geweke (2005).
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C.3	 DESCRIPTIVE STATISTICS

Before attempting to estimate parameters of a population or fit models to data, we 
normally examine the data themselves. In raw form, the sample data are a disorganized 
mass of information, so we will need some organizing principles to distill the information 
into something meaningful. Consider, first, examining the data on a single variable. In 
most cases, and particularly if the number of observations in the sample is large, we shall 
use some summary statistics to describe the sample data. Of most interest are measures 
of location—that is, the center of the data—and scale, or the dispersion of the data. A 
few measures of central tendency are as follows:

 mean: x =
1
n a

n

i = 1
xi,

 median: M = middle ranked observation,

 sample midrange: midrange =
maximum + minimum

2
. 	 (C-1)

The dispersion of the sample observations is usually measured by the

	 standard deviation: sx = C a n
i = 1(xi - x)2

n - 1
S 1/2

.	 (C-2)

Other measures, such as the average absolute deviation from the sample mean, 
are also used, although less frequently than the standard deviation. The shape of the 
distribution of values is often of interest as well. Samples of income or expenditure 
data, for example, tend to be highly skewed while financial data such as asset returns 
and exchange rate movements are relatively more symmetrically distributed but are also 
more widely dispersed than other variables that might be observed. Two measures used 
to quantify these effects are the

skewness = C a n
i = 1(xi - x)3

sx
3(n - 1)

S , and kurtosis = C a n
i = 1(xi - x)4

sx
4(n - 1)

S .

(Benchmark values for these two measures are zero for a symmetric distribution, 
and three for one which is “normally” dispersed.) The skewness coefficient has a bit less 
of the intuitive appeal of the mean and standard deviation, and the kurtosis measure 
has very little at all. The box and whisker plot is a graphical device which is often used 
to capture a large amount of information about the sample in a simple visual display. 
This plot shows in a figure the median, the range of values contained in the 25th and 
75th percentile, some limits that show the normal range of values expected, such as the 
median plus and minus two standard deviations, and in isolation values that could be 
viewed as outliers. A box and whisker plot is shown in Figure C.1 for the income variable 
in Example C.1.

If the sample contains data on more than one variable, we will also be interested in 
measures of association among the variables. A scatter diagram is useful in a bivariate 
sample if the sample contains a reasonable number of observations. Figure C.1 shows an 
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FIGURE C.1    Box and Whisker Plot for Income and Scatter Diagram for 
Income and Education.
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example for a small data set. If the sample is a multivariate one, then the degree of linear 
association among the variables can be measured by the pairwise measures

 covariance: sxy = a n
i = 1(xi - x)(yi - y)

n - 1
,

 correlation: rxy =
sxy

sxsy
. � (C-3)

If the sample contains data on several variables, then it is sometimes convenient to 
arrange the covariances or correlations in a

	 covariance matrix : S = [s ij],	 (C-4)

or

correlation matrix : R = [rij].

Some useful algebraic results for any two variables (x i, yi), i = 1 , c, n,  and 
constants a and b are

	  s x
2 =

¢ a n
i = 1x i

2 ≤ - nx 2

n - 1
,	 (C-5)

	  s xy =
¢ a n

i = 1x iyi≤ - nx  y

n - 1
,	 (C-6)
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-1 … rxy … 1 ,

	 rax , by =
ab

� ab �
 rxy, a, b ≠ 0 ,	 (C-7)

	 s ax = � a �  s x , 	 (C-8)

s ax , by = (ab)s xy.

Note that these algebraic results parallel the theoretical results for bivariate 
probability distributions. [We note in passing, while the formulas in (C-2) and (C-5) are 
algebraically the same, (C-2) will generally be more accurate in practice, especially when 
the values in the sample are very widely dispersed.]

Example C.1    Descriptive Statistics for a Random Sample
Appendix Table FC.1 contains a (hypothetical) sample of observations on income and 
education (The observations all appear in the calculations of the means below.) A scatter 
diagram appears in Figure C.1. It suggests a weak positive association between income and 
education in these data. The box and whisker plot for income at the left of the scatter plot 
shows the distribution of the income data as well.

 Means: I =
1

20
 C20.5 + 31.5 + 47.7 + 26.2 + 44.0 + 8.28 + 30.8 +

17.2 + 19.9 + 9.96 + 55.8 + 25.2 + 29.0 + 85.5 +
15.1 + 28.5 + 21.4 + 17.7 + 6.42 + 84.9

S = 31.278,

 E =
1

20
 J12 + 16 + 18 + 16 + 12 + 12 + 16 + 12 + 10 + 12 +

16 + 20 + 12 + 16 + 10 + 18 + 16 + 20 + 12 + 16
R = 14.600.

Standard deviations:

 sI = 2 1
19  [(20.5 - 31.278)2 + g + (84.9 - 31.278)2] = 22.376,

 sE = 2 1
19  [(12 - 14.6)2 + g + (16 - 14.6)2] = 3.119.

Covariance: sIE = 1
19  [20.5(12) + g + 84.9(16) - 20(31.28)(14.6)] = 23.597,

Correlation: rIE =
23.597

(22.376)(3.119)
= 0.3382.

The positive correlation is consistent with our observation in the scatter diagram.

The statistics just described will provide the analyst with a more concise description 
of the data than a raw tabulation. However, we have not, as yet, suggested that these 
measures correspond to some underlying characteristic of the process that generated 
the data. We do assume that there is an underlying mechanism, the data generating 
process that produces the data in hand. Thus, these serve to do more than describe the 
data; they characterize that process, or population. Because we have assumed that there 
is an underlying probability distribution, it might be useful to produce a statistic that 
gives a broader view of the DGP. The histogram is a simple graphical device that 
produces this result—see Examples C.3 and C.4 for applications. For small samples or 
widely dispersed data, however, histograms tend to be rough and difficult to make 

Z01_GREE1366_08_SE_APP.indd   1140 1/5/17   5:01 PM



	 APPENDIX C  ✦  Estimation and Inference	 1141

FIGURE C.2    Kernel Density Estimate for Income.
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informative. A burgeoning literature2 has demonstrated the usefulness of the kernel 
density estimator as a substitute for the histogram as a descriptive tool for the underlying 
distribution that produced a sample of data. The underlying theory of the kernel density 
estimator is fairly complicated, but the computations are surprisingly simple. The 
estimator is computed using

fn(x*) =
1

nh a
n

i = 1
KJx i - x*

h
R ,

where x 1 , c, x n are the n observations in the sample, fn(x*) denotes the estimated 
density function, x* is the value at which we wish to evaluate the density, and h and 
K [ # ] are the “bandwidth” and “kernel function” that we now consider. The density 
estimator is rather like a histogram, in which the bandwidth is the width of the intervals. 
The kernel function is a weight function which is generally chosen so that it takes large 
values when x* is close to x i and tapers off to zero in as they diverge in either direction. 
The weighting function used in the following example is the logistic density discussed 
in Section B.4.7. The bandwidth is chosen to be a function of 1 /n so that the intervals 
can become narrower as the sample becomes larger (and richer). The one used for 
Figure C.2 is h = 0 .9  Min (s , range/ 3 )/ n .2 . (We will revisit this method of estimation 
in Chapter 12.) Example C.2 illustrates the computation for the income data used in 
Example C.1.

Example C.2    Kernel Density Estimator for the Income Data
Figure C.2 suggests the large skew in the income data that is also suggested by the box and 
whisker plot (and the scatter plot in Example C.1.)

2See for example, Pagan and Ullah (1999), Li and Racine (2007) and Henderson and Parmeter (2015).
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C.4	 STATISTICS AS ESTIMATORS—SAMPLING DISTRIBUTIONS

The measures described in the preceding section summarize the data in a random 
sample. Each measure has a counterpart in the population, that is, the distribution from 
which the data were drawn. Sample quantities such as the means and the correlation 
coefficient correspond to population expectations, whereas the kernel density estimator 
and the values in Table C.1 parallel the population pdf and cdf. In the setting of a random 
sample, we expect these quantities to mimic the population, although not perfectly. 
The precise manner in which these quantities reflect the population values defines the 
sampling distribution of a sample statistic.

Range Relative Frequency Cumulative Frequency

6$ 1 0 ,0 0 0 0.15 0.15
10,000–25,000 0.30 0.45
25,000–50,000 0.40 0.85
75 0 ,0 0 0 0.15 1.00

TABLE C.1  Income Distribution

THEOREM C.1  Sampling Distribution of the Sample Mean
If x 1 , c, x n are a random sample from a population with mean m and variance 
s2 , then x  is a random variable with mean m and variance s2/ n.
Proof: x = (1 / n)Σix i. E[x ] = (1 / n)Σim = m.The observations are independ-
ent, so Var[x ] = (1 / n)2 Var[Σix i] = (1 / n2)Σis

2 = s2/ n.

DEFINITION C.1  Statistic
A statistic is any function computed from the data in a sample.

If another sample were drawn under identical conditions, different values would be 
obtained for the observations, as each one is a random variable. Any statistic is a function 
of these random values, so it is also a random variable with a probability distribution 
called a sampling distribution. For example, the following shows an exact result for the 
sampling behavior of a widely used statistic.

Example C.3 illustrates the behavior of the sample mean in samples of four 
observations drawn from a chi-squared population with one degree of freedom. The 
crucial concepts illustrated in this example are, first, the mean and variance results in 
Theorem C.1 and, second, the phenomenon of sampling variability.

Notice that the fundamental result in Theorem C.1 does not assume a distribution 
for x i. Indeed, looking back at Section C.3, nothing we have done so far has required 
any assumption about a particular distribution.
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Example C.3    Sampling Distribution of a Sample Mean
Figure C.3 shows a frequency plot of the means of 1,000 random samples of four observations 
drawn from a chi-squared distribution with one degree of freedom, which has mean 1 and 
variance 2.

We are often interested in how a statistic behaves as the sample size increases. 
Example C.4 illustrates one such case. Figure C.4 shows two sampling distributions, 
one based on samples of three and a second, of the same statistic, but based on samples 
of six. The effect of increasing sample size in this figure is unmistakable. It is easy to 
visualize the behavior of this statistic if we extrapolate the experiment in Example C.4 
to samples of, say, 100.

Example C.4    Sampling Distribution of the Sample Minimum
If x1, c, xn are a random sample from an exponential distribution with f(x ) = ue-ux , then 
the sampling distribution of the sample minimum in a sample of n observations, denoted 
x (1), is

f(x (1)) = (nu)e-(nu)x (1).

Because E[x ] = 1/ u  and Var[x ] = 1/ u2,  by analogy E[x (1)] = 1/ (nu)  and 
Var[x (1)] = 1/ (nu)2. Thus, in increasingly larger samples, the minimum will be arbitrarily 
close to 0. [The Chebychev inequality in Theorem D.2 can be used to prove this intuitively 
appealing result.]

Figure C.4 shows the results of a simple sampling experiment you can do to demonstrate 
this effect. It requires software that will allow you to produce pseudorandom numbers 
uniformly distributed in the range zero to one and that will let you plot a histogram and 
control the axes. (We used NLOGIT. This can be done with Stata, Excel, or several 
other packages.) The experiment consists of drawing 1,000 sets of nine random values, 

FIGURE C.3    Sampling Distribution of Means of 1,000 Samples of Size 4 from 
Chi-Squared[1].
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Uij, i = 1, c1,000, j = 1, c, 9. To transform these uniform draws to exponential with 
parameter u—we used u = 1.5, use the inverse probability transform—see Section E.2.3. 
For an exponentially distributed variable, the transformation is z ij = - (1/ u) log(1 - Uij). 
We then created z (1) � 3 from the first three draws and z (1) � 6 from the other six. The two 
histograms show clearly the effect on the sampling distribution of increasing sample size 
from just 3 to 6.

Sampling distributions are used to make inferences about the population. To 
consider a perhaps obvious example, because the sampling distribution of the mean 
of a set of normally distributed observations has mean m,  the sample mean is a 
natural candidate for an estimate of m.  The observation that the sample “mimics” the 
population is a statement about the sampling distributions of the sample statistics. 
Consider, for example, the sample data collected in Figure C.3. The sample mean of 
four observations clearly has a sampling distribution, which appears to have a mean 
roughly equal to the population mean. Our theory of parameter estimation departs 
from this point.

FIGURE C.4    Histograms of the Sample Minimum of 3 and 6 Observations.
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C.5	 POINT ESTIMATION OF PARAMETERS

Our objective is to use the sample data to infer the value of a parameter or set of 
parameters, which we denote u. A point estimate is a statistic computed from a sample 
that gives a single value for u. The standard error of the estimate is the standard deviation 
of the sampling distribution of the statistic; the square of this quantity is the sampling 
variance. An interval estimate is a range of values that will contain the true parameter with 
a preassigned probability. There will be a connection between the two types of estimates; 
generally, if un is the point estimate, then the interval estimate will be un { a measure of 
sampling error.

An estimator is a rule or strategy for using the data to estimate the parameter. It is 
defined before the data are drawn. Obviously, some estimators are better than others. To 
take a simple example, your intuition should convince you that the sample mean would 
be a better estimator of the population mean than the sample minimum; the minimum 
is almost certain to underestimate the mean. Nonetheless, the minimum is not entirely 
without virtue; it is easy to compute, which is occasionally a relevant criterion. The search 
for good estimators constitutes much of econometrics. Estimators are compared on the 
basis of a variety of attributes. Finite sample properties of estimators are those attributes 
that can be compared regardless of the sample size. Some estimation problems involve 
characteristics that are not known in finite samples. In these instances, estimators are 
compared on the basis on their large sample, or asymptotic properties. We consider 
these in turn.

C.5.1    ESTIMATION IN A FINITE SAMPLE

The following are some finite sample estimation criteria for estimating a single 
parameter. The extensions to the multiparameter case are direct. We shall consider them 
in passing where necessary.

DEFINITION C.2  Unbiased Estimator
An estimator of a parameter u is unbiased if the mean of its sampling distribution 
is u. Formally,

E[un] = u

or

E[un - u] = bias [un � u] = 0

implies that un is unbiased. Note that this implies that the expected sampling 
error is zero. If U is a vector of parameters, then the estimator is unbiased if the 
expected value of every element of Un equals the corresponding element of U.

If samples of size n are drawn repeatedly and un is computed for each one, then 
the average value of these estimates will tend to equal u. For example, the average of 
the 1,000 sample means underlying Figure C.3 is 0.9804, which is reasonably close to 
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the population mean of one. The sample minimum is clearly a biased estimator of the 
mean; it will almost always underestimate the mean, so it will do so on average as well.

Unbiasedness is a desirable attribute, but it is rarely used by itself as an estimation 
criterion. One reason is that there are many unbiased estimators that are poor uses of 
the data. For example, in a sample of size n, the first observation drawn is an unbiased 
estimator of the mean that clearly wastes a great deal of information. A second criterion 
used to choose among unbiased estimators is efficiency.

DEFINITION C.4  Mean Squared Error
The mean squared error of an estimator is

 MSe[un � u] = E[(un - u)2]

 = Var[un] + (bias[un � u])2        if u is a scalar,

 MSe[Un �U] = Var[Un] + bias[Un �U]bias[Un �U]′  if U is a vector.� (C-9)

DEFINITION C.3  Efficient Unbiased Estimator
An unbiased estimator un1  is more efficient than another unbiased estimator un2  if 
the sampling variance of un1  is less than that of un2 . That is,

Var[un1] 6 Var[un2].

In the multiparameter case, the comparison is based on the covariance matrices 
of the two estimators; Un1  is more efficient than Un2  if Var[Un2] - Var[Un1] is a posi-
tive definite matrix.

By this criterion, the sample mean is obviously to be preferred to the first observation 
as an estimator of the population mean. If s2  is the population variance, then

Var[x 1] = s2 7 Var[x ] =
s2

n
.

In discussing efficiency, we have restricted the discussion to unbiased estimators. 
Clearly, there are biased estimators that have smaller variances than the unbiased ones 
we have considered. Any constant has a variance of zero. Of course, using a constant 
as an estimator is not likely to be an effective use of the sample data. Focusing on 
unbiasedness may still preclude a tolerably biased estimator with a much smaller 
variance, however. A criterion that recognizes this possible tradeoff is the mean squared 
error. Figure C.5 illustrates the effect. In this example,

on average, the biased estimator will be closer to the true parameter than will the 
unbiased estimator.

Which of these criteria should be used in a given situation depends on the particulars 
of that setting and our objectives in the study. Unfortunately, the MSE criterion is rarely 
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operational; minimum mean squared error estimators, when they exist at all, usually 
depend on unknown parameters. Thus, we are usually less demanding. A commonly used 
criterion is minimum variance unbiasedness.

Example C.5    Mean Squared Error of the Sample Variance
In sampling from a normal distribution, the most frequently used estimator for S2 is

s2 = a n
i = 1(xi - x )2

n - 1
.

It is straightforward to show that s2 is unbiased, so

Var[s2] =
2s4

n - 1
= MSE[s2 �s2].

A proof is based on the distribution of the idempotent quadratic form (x - i m)′M0(x - im), 
which we discussed in Section B.11.4. A less frequently used estimator is

sn 2 =
1
n a

n

i = 1
(xi - x )2 = [(n - 1)/ n]s2.

This estimator is slightly biased downward:

E[sn 2] =
(n - 1)E(s2)

n
=

(n - 1)s2

n
,

so its bias is

E[sn 2 - s2] = Bias[sn 2 �s2] =
-1
n

 s2.

But it has a smaller variance than s2:

Var[sn 2] = c n - 1
n

d
2 J 2s4

n - 1
R 6 Var[s2].

FIGURE C.5    Sampling Distributions.
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To compare the two estimators, we can use the difference in their mean squared errors:

MSE[sn 2 �s2] - MSE[s2 �s2] = s4 c 2n - 1

n2 -
2

n - 1
d 6 0.

The biased estimator is a bit more precise. The difference will be negligible in a large sample, 
but, for example, it is about 1.2 percent in a sample of 16.

C.5.2    EFFICIENT UNBIASED ESTIMATION

In a random sample of n observations, the density of each observation is f(x i, u). Because 
the n observations are independent, their joint density is

 f(x 1 , x 2 , c, x n, u) = f(x 1 , u)f(x 2 , u)gf(x n, u)  

	  = q
n

i = 1
f(x i, u) = L(u � x 1 , x 2 , c, x n).	 (C-10)

This function, denoted L(u � X), is called the likelihood function for u given the data X. 
It is frequently abbreviated to L(u). Where no ambiguity can arise, we shall abbreviate 
it further to L.

Example C.6    Likelihood Functions for Exponential and Normal 
Distributions

If x1, c, xn are a sample of n observations from an exponential distribution with parameter 
u, then

L(u) = q
n

i = 1
ue-ux i = une-uΣn

i = 1x i.

If x1, c, xn are a sample of n observations from a normal distribution with mean m and 
standard deviation s, then

 L(m, s) = q
n

i = 1
(2ps2)-1/ 2e-[1/ (2s2)](x i - m)2

	  = (2ps2)-n/ 2e-[1/ (2s2)]Σi(x i - m)2
.� (C-11)

The likelihood function is the cornerstone for most of our theory of parameter estimation. 
An important result for efficient estimation is the following.

THEOREM C.2  Cramér–Rao Lower Bound
Assuming that the density of x satisfies certain regularity conditions, the variance of 
an unbiased estimator of a parameter u will always be at least as large as

	 [I(u)]-1 = ¢ -EJ 02  ln L(u)

0u2 R ≤-1

= ¢EJ a 0 ln L(u)
0u

b
2 R ≤-1

.� (C-12)

The quantity I(u) is the information number for the sample. We will prove the 
result that the negative of the expected second derivative equals the expected 
square of the first derivative in Chapter 14. Proof of the main result of the 
theorem is quite involved. See, for example, Stuart and Ord (1989).
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The regularity conditions are technical. (See Section 14.4.1.) Loosely, they 
are conditions imposed on the density of the random variable that appears in the 
likelihood function; these conditions will ensure that the Lindeberg–Levy central limit 
theorem will apply to moments of the sample of observations on the random vector 
y = 0 ln f(x i � u)/ 0u, i = 1 , c, n. Among the conditions are finite moments of x up 
to order 3. An additional condition usually included in the set is that the range of the 
random variable be independent of the parameters.

In some cases, the second derivative of the log likelihood is a constant, so the 
Cramér–Rao bound is simple to obtain. For instance, in sampling from an exponential 
distribution, from Example C.6,

 ln L = n ln u - ua
n

i = 1
x i,

 
0 ln L

0u
=

n
u

- a
n

i = 1
x i,

so 02  ln L/ 0u2 = -n/ u2  and the variance bound is [I(u)]-1 = u2/n. In many situations, 
the second derivative is a random variable with a distribution of its own. The following 
examples show two such cases.

Example C.7    Variance Bound for the Poisson Distribution
For the Poisson distribution,

 f(x ) =
e-uux

x !
,

 ln L = -nu + ¢ an
i = 1

xi≤ ln u - a
n

i = 1
 ln(xi !),

 
0 ln L

0u
= -n + a n

i = 1xi

u
,

 
02 ln L

0u2 =
- a n

i = 1xi

u2 .

The sum of n identical Poisson variables has a Poisson distribution with parameter equal 
to n times the parameter of the individual variables. Therefore, the actual distribution of the 
first derivative will be that of a linear function of a Poisson distributed variable. Because 
E[ a n

i = 1xi] = nE[xi] = nu, the variance bound for the Poisson distribution is [I(u)]-1 = u/ n. 
(Note also that the same result implies that E[0 ln L/ 0u] = 0, which is a result we will use in 
Chapter 14. The same result holds for the exponential distribution.)

Consider, finally, a multivariate case. If U is a vector of parameters, then I(U) is the 
information matrix. The Cramér–Rao theorem states that the difference between the 
covariance matrix of any unbiased estimator and the inverse of the information matrix,

	 [I(U)]-1 = ¢ -EJ 02  ln L(U)
0U0U′

R ≤-1

= bEJ a 0 ln L(U)
0U

b a 0 ln L(U)
0U′

b R r -1

,	 (C-13)

will be a nonnegative definite matrix.
In some settings, numerous estimators are available for the parameters of a 

distribution. The usefulness of the Cramér–Rao bound is that if one of these is known 
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DEFINITION C.5  Minimum Variance Linear Unbiased Estimator (MVLUE)
An estimator is the minimum variance linear unbiased estimator or best linear 
unbiased estimator (BLUE) if it is a linear function of the data and has minimum 
variance among linear unbiased estimators.

to attain the variance bound, then there is no need to consider any other to seek a more 
efficient estimator. Regarding the use of the variance bound, we emphasize that if an 
unbiased estimator attains it, then that estimator is efficient. If a given estimator does 
not attain the variance bound, however, then we do not know, except in a few special 
cases, whether this estimator is efficient or not. It may be that no unbiased estimator can 
attain the Cramér–Rao bound, which can leave the question of whether a given unbiased 
estimator is efficient or not unanswered.

We note, finally, that in some cases we further restrict the set of estimators to linear 
functions of the data.

In a few instances, such as the normal mean, there will be an efficient linear unbiased 
estimator; x  is efficient among all unbiased estimators, both linear and nonlinear. In 
other cases, such as the normal variance, there is no linear unbiased estimator. This 
criterion is useful because we can sometimes find an MVLUE without having to specify 
the distribution at all. Thus, by limiting ourselves to a somewhat restricted class of 
estimators, we free ourselves from having to assume a particular distribution.

C.6	 INTERVAL ESTIMATION

Regardless of the properties of an estimator, the estimate obtained will vary from sample 
to sample, and there is some probability that it will be quite erroneous. A point estimate 
will not provide any information on the likely range of error. The logic behind an interval 
estimate is that we use the sample data to construct an interval, [lower (X), upper (X)], 
such that we can expect this interval to contain the true parameter in some specified 
proportion of samples, or equivalently, with some desired level of confidence. Clearly, 
the wider the interval, the more confident we can be that it will, in any given sample, 
contain the parameter being estimated.

The theory of interval estimation is based on a pivotal quantity, which is a function 
of both the parameter and a point estimate that has a known distribution. Consider the 
following examples.

Example C.8    Confidence Intervals for the Normal Mean
In sampling from a normal distribution with mean m and standard deviation s,

z =
2n(x - m)

s
∼ t[n - 1],

and

c =
(n - 1)s2

s2 ∼ x2[n - 1].
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Given the pivotal quantity, we can make probability statements about events involving the 
parameter and the estimate. Let p(g, u) be the constructed random variable, for example, 
z or c. Given a prespecified confidence level, 1 - a, we can state that

	 Prob(lower … p(g, u) … upper) = 1 - a,� (C-14)

where lower and upper are obtained from the appropriate table. This statement is then 
manipulated to make equivalent statements about the endpoints of the intervals. For example, 
the following statements are equivalent:

 Prob( -z …
2n(x - m)

s
… z ) = 1 - a,

 Prob¢x -
zs2n

… m … x +
zs2n

≤ = 1 - a.

The second of these is a statement about the interval, not the parameter; that is, it is the 
interval that is random, not the parameter. We attach a probability, or 100(1 - a) percent 
confidence level, to the interval itself; in repeated sampling, an interval constructed in this 
fashion will contain the true parameter 100(1 - a) percent of the time.

In general, the interval constructed by this method will be of the form

 lower(X) = un - e 1 ,

 upper(X) = un + e 2 ,

where X is the sample data, e 1  and e 2  are sampling errors, and un is a point estimate of 
u. It is clear from the preceding example that if the sampling distribution of the pivotal 
quantity is either t or standard normal, which will be true in the vast majority of cases 
we encounter in practice, then the confidence interval will be

	 un { C1 - a/ 2 [se(un)],	 (C-15)

where se (.) is the (known or estimated) standard error of the parameter estimate and 
C1 - a/ 2  is the value from the t or standard normal distribution that is exceeded with 
probability 1 - a/ 2 . The usual values for a are 0.10, 0.05, or 0.01. The theory does 
not prescribe exactly how to choose the endpoints for the confidence interval. An 
obvious criterion is to minimize the width of the interval. If the sampling distribution 
is symmetric, then the symmetric interval is the best one. If the sampling distribution is 
not symmetric, however, then this procedure will not be optimal.

Example C.9  �  Estimated Confidence Intervals for a Normal Mean  
and Variance

In a sample of 25, x = 1.63 and s = 0.51. Construct a 95 percent confidence interval for m.
Assuming that the sample of 25 is from a normal distribution,

Prob¢ -2.064 …
5(x - m)

s
… 2.064 ≤ = 0.95,

where 2.064 is the critical value from a t distribution with 24 degrees of freedom. Thus, the 
confidence interval is 1.63 { [2.064(0.51)/ 5] or [1.4195, 1.8405].

Remark: Had the parent distribution not been specified, it would have been natural to use the 
standard normal distribution instead, perhaps relying on the central limit theorem. But a sample 
size of 25 is small enough that the more conservative t distribution might still be preferable.
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The chi-squared distribution is used to construct a confidence interval for the variance 
of a normal distribution. Using the data from Example C.9, we find that the usual procedure 
would use

Prob¢12.4 …
24s2

s2 … 39.4 ≤ = 0.95,

where 12.4 and 39.4 are the 0.025 and 0.975 cutoff points from the chi-squared (24) 
distribution. This procedure leads to the 95 percent confidence interval [0.1581, 0.5032]. 
By making use of the asymmetry of the distribution, a narrower interval can be constructed. 
Allocating 4 percent to the left-hand tail and 1 percent to the right instead of 2.5 percent to 
each, the two cutoff points are 13.4 and 42.9, and the resulting 95 percent confidence interval 
is [0.1455, 0.4659].

Finally, the confidence interval can be manipulated to obtain a confidence interval for 
a function of a parameter. For example, based on the preceding, a 95 percent confidence 
interval for s would be [20.1581, 20.5032] = [0.3976, 0.7094].

C.7	 HYPOTHESIS TESTING

The second major group of statistical inference procedures is hypothesis tests. The 
classical testing procedures are based on constructing a statistic from a random sample 
that will enable the analyst to decide, with reasonable confidence, whether or not the 
data in the sample would have been generated by a hypothesized population. The 
formal procedure involves a statement of the hypothesis, usually in terms of a “null” 
or maintained hypothesis and an “alternative,” conventionally denoted H0  and H1 , 
respectively. The procedure itself is a rule, stated in terms of the data, that dictates 
whether the null hypothesis should be rejected or not. For example, the hypothesis 
might state a parameter is equal to a specified value. The decision rule might state that 
the hypothesis should be rejected if a sample estimate of that parameter is too far away 
from that value (where “far” remains to be defined). The classical, or Neyman–Pearson, 
methodology involves partitioning the sample space into two regions. If the observed 
data (i.e., the test statistic) fall in the rejection region (sometimes called the critical 
region), then the null hypothesis is rejected; if they fall in the acceptance region, then 
it is not.

C.7.1    CLASSICAL TESTING PROCEDURES

Because the sample is random, the test statistic, however defined, is also random. The 
same test procedure can lead to different conclusions in different samples. As such, there 
are two ways such a procedure can be in error:

1.	 Type I error. The procedure may lead to rejection of the null hypothesis when it is 
true.

2.	 Type II error. The procedure may fail to reject the null hypothesis when it is false.

To continue the previous example, there is some probability that the estimate of the 
parameter will be quite far from the hypothesized value, even if the hypothesis is true. 
This outcome might cause a type I error.
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The size of the test is under the control of the analyst. It can be changed just by 
changing the decision rule. Indeed, the type I error could be eliminated altogether 
just by making the rejection region very small, but this would come at a cost. By 
eliminating the probability of a type I error—that is, by making it unlikely that the 
hypothesis is rejected—we must increase the probability of a type II error. Ideally, we 
would like both probabilities to be as small as possible. It is clear, however, that there 
is a tradeoff between the two. The best we can hope for is that for a given probability 
of type I error, the procedure we choose will have as small a probability of type II 
error as possible.

DEFINITION C.6  Size of a Test
The probability of a type I error is the size of the test. This is conventionally denoted 
a and is also called the significance level.

DEFINITION C.7  Power of a Test
The power of a test is the probability that it will correctly lead to rejection of a false 
null hypothesis:

	 power = 1 - b = 1 - Prob(type ii error).� (C-16)

DEFINITION C.8  Most Powerful Test
A test is most powerful if it has greater power than any other test of the same size.

For a given significance level a, we would like b to be as small as possible. Because b 
is defined in terms of the alternative hypothesis, it depends on the value of the parameter.

Example C.10  T  esting a Hypothesis About a Mean
For testing H0: m = m0 in a normal distribution with known variance s2, the decision rule is 
to reject the hypothesis if the absolute value of the z statistic, 2n(x - m0)/s, exceeds the 
predetermined critical value. For a test at the 5 percent significance level, we set the critical 
value at 1.96. The power of the test, therefore, is the probability that the absolute value of 
the test statistic will exceed 1.96 given that the true value of m is, in fact, not m0. This value 
depends on the alternative value of m, as shown in Figure C.6. Notice that for this test the 
power is equal to the size at the point where m equals m0. As might be expected, the test 
becomes more powerful the farther the true mean is from the hypothesized value.

Testing procedures, like estimators, can be compared using a number of criteria.
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This requirement is very strong. Because the power depends on the alternative 
hypothesis, we might require that the test be uniformly most powerful (UMP), that is, 
have greater power than any other test of the same size for all admissible values of the 
parameter. There are few situations in which a UMP test is available. We usually must 
be less stringent in our requirements. Nonetheless, the criteria for comparing hypothesis 
testing procedures are generally based on their respective power functions. A common 
and very modest requirement is that the test be unbiased.

DEFINITION C.9  Unbiased Test
A test is unbiased if its power (1 - b) is greater than or equal to its size a for all 
values of the parameter.

DEFINITION C.10  Consistent Test
A test is consistent if its power goes to one as the sample size grows to infinity.

FIGURE C.6    Power Function for a Test.
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If a test is biased, then, for some values of the parameter, we are more likely to retain 
the null hypothesis when it is false than when it is true.

The use of the term unbiased here is unrelated to the concept of an unbiased 
estimator. Fortunately, there is little chance of confusion. Tests and estimators are clearly 
connected, however. The following criterion derives, in general, from the corresponding 
attribute of a parameter estimate.
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Example C.11    Consistent Test About a Mean
A confidence interval for the mean of a normal distribution is x { t1 - a/ 2(s/ 2n), where x  and 
s are the usual consistent estimators for m and s (see Section D.2.1), n is the sample size, and 
t1 - a/ 2 is the correct critical value from the t distribution with n - 1 degrees of freedom. For 
testing H0: m = m0 versus H1: m ≠ m0, let the procedure be to reject H0 if the confidence interval 
does not contain m0. Because x  is consistent for m, one can discern if H0 is false as n S ∞ , with 
probability 1, because x  will be arbitrarily close to the true m. Therefore, this test is consistent.

As a general rule, a test will be consistent if it is based on a consistent estimator of 
the parameter.

C.7.2    TESTS BASED ON CONFIDENCE INTERVALS

There is an obvious link between interval estimation and the sorts of hypothesis tests 
we have been discussing here. The confidence interval gives a range of plausible values 
for the parameter. Therefore, it stands to reason that if a hypothesized value of the 
parameter does not fall in this range of plausible values, then the data are not consistent 
with the hypothesis, and it should be rejected. Consider, then, testing

 H0 : u = u0 ,  H1 : u ≠ u0 .

We form a confidence interval based on un as described earlier:

un - C1 - a/ 2 [se(un)] 6 u 6 un + C1 - a/ 2 [se(un)].

H0  is rejected if u0  exceeds the upper limit or is less than the lower limit. Equivalently, 
H0  is rejected if 2 un - u0

se(un)
 2 7 C1 - a/ 2 .

In words, the hypothesis is rejected if the estimate is too far from u0 , where the 
distance is measured in standard error units. The critical value is taken from the t or 
standard normal distribution, whichever is appropriate.

Example C.12  �T  esting a Hypothesis About a Mean with a Confidence 
Interval

For the results in Example C.8, test H0: m = 1.98 versus H1: m ≠ 1.98, assuming sampling 
from a normal distribution:

t = ` x - 1.98

s/ 2n
` = ` 1.63 - 1.98

0.102
` = 3.43.

The 95 percent critical value for t(24) is 2.064. Therefore, reject H0. If the critical value for 
the standard normal table of 1.96 is used instead, then the same result is obtained.

If the test is one-sided, as in

 H0 : u Ú u0 , 

 H1 : u 6 u0 ,

then the critical region must be adjusted. Thus, for this test, H0  will be rejected if a point 
estimate of u falls sufficiently below u0 . (Tests can usually be set up by departing from 
the decision criterion, “What sample results are inconsistent with the hypothesis?”)
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Example C.13    One-Sided Test About a Mean
A sample of 25 from a normal distribution yields x = 1.63 and s = 0.51. Test

 H0: m … 1.5, 
 H1: m 7 1.5.

Clearly, no observed x  less than or equal to 1.5 will lead to rejection of H0. Using the borderline 
value of 1.5 for m, we obtain

Proba2n(x - 1.5)
s

7
5(1.63 - 1.5)

0.51
b = Prob(t24 7 1.27).

This is approximately 0.11. This value is not unlikely by the usual standards. Hence, at a 
significant level of 0.11, we would not reject the hypothesis.

C.7.3    SPECIFICATION TESTS

The hypothesis testing procedures just described are known as classical testing procedures. 
In each case, the null hypothesis tested came in the form of a restriction on the alternative. 
You can verify that in each application we examined, the parameter space assumed 
under the null hypothesis is a subspace of that described by the alternative. For that 
reason, the models implied are said to be nested. The null hypothesis is contained within 
the alternative. This approach suffices for most of the testing situations encountered in 
practice, but there are common situations in which two competing models cannot be 
viewed in these terms. For example, consider a case in which there are two completely 
different, competing theories to explain the same observed data. Many models for 
censoring and truncation discussed in Chapter 19 rest upon a fragile assumption of 
normality, for example. Testing of this nature requires a different approach from the 
classical procedures discussed here. These are discussed at various points throughout 
the book, for example, in Chapter 19, where we study the difference between fixed and 
random effects models.

A P P E N D I X  D

§
Large-Sample Distribution Theory

D.1	 INTRODUCTION

Most of this book is about parameter estimation. In studying that subject, we will usually be 
interested in determining how best to use the observed data when choosing among competing 
estimators. That, in turn, requires us to examine the sampling behavior of estimators. In a 
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