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A P P E N D I X  A

§
Matrix Algebra

A.1	 TERMINOLOGY

A matrix is a rectangular array of numbers, denoted

	 A = [aik] = [A]ik = D a11 a12 g a1K

a21 a22 g a2K

g
an1 an2 g anK

T .	 (A-1)

The typical element is used to denote the matrix. A subscripted element of a matrix is 
always read as arow, column. An example is given in Table A.1. In these data, the rows are 
identified with years and the columns with particular variables.

A vector is an ordered set of numbers arranged either in a row or a column. In view 
of the preceding, a row vector is also a matrix with one row, whereas a column vector 
is a matrix with one column. Thus, in Table A.1, the five variables observed for 1972 
(including the date) constitute a row vector, whereas the time series of nine values for 
consumption is a column vector.

A matrix can also be viewed as a set of column vectors or as a set of row vectors.1 
The dimensions of a matrix are the numbers of rows and columns it contains. “A is an 
n * K matrix” (read “n by K”) will always mean that A has n rows and K columns. If 
n equals K, then A is a square matrix. Several particular types of square matrices occur 
frequently in econometrics.

●● A symmetric matrix is one in which aik = aki for all i and k.
●● A diagonal matrix is a square matrix whose only nonzero elements appear on the 

main diagonal, that is, moving from upper left to lower right.
●● A scalar matrix is a diagonal matrix with the same value in all diagonal elements.
●● An identity matrix is a scalar matrix with ones on the diagonal. This matrix is 

always denoted I. A subscript is sometimes included to indicate its size, or order. 
For example, I4 indicates a 4 * 4 identity matrix.

●● A triangular matrix is one that has only zeros either above or below the main 
diagonal. If the zeros are above the diagonal, the matrix is lower triangular.

1Henceforth, we shall denote a matrix by a boldfaced capital letter, as is A in (A-1), and a vector as a 
boldfaced lowercase letter, as in a. Unless otherwise noted, a vector will always be assumed to be a 
column vector.
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Column

Row
1

Year

2
Consumption 

(billions of dollars)

3
GNP  

(billions of dollars)
4

GNP Deflator

5
Discount Rate  

(N.Y Fed., avg.)

1 1972 737.1 1185.9 1.0000 4.50
2 1973 812.0 1326.4 1.0575 6.44
3 1974 808.1 1434.2 1.1508 7.83
4 1975 976.4 1549.2 1.2579 6.25
5 1976 1084.3 1718.0 1.3234 5.50
6 1977 1204.4 1918.3 1.4005 5.46
7 1978 1346.5 2163.9 1.5042 7.46
8 1979 1507.2 2417.8 1.6342 10.28
9 1980 1667.2 2633.1 1.7864 11.77

Source: Data from the Economic Report of the President (Washington, D.C.: U.S. Government Printing Office, 1983).

TABLE A.1  Matrix of Macroeconomic Data

A.2	 ALGEBRAIC MANIPULATION OF MATRICES

A.2.1    EQUALITY OF MATRICES

Matrices (or vectors) A and B are equal if and only if they have the same dimensions 
and each element of A equals the corresponding element of B. That is,

	 A = B if and only if aik = bik for all i and k.	 (A-2)

A.2.2    TRANSPOSITION

The transpose of a matrix A, denoted A′, is obtained by creating the matrix whose kth 
row is the kth column of the original matrix.2 Thus, if B = A′, then each column of A 
will appear as the corresponding row of B. If A is n * K, then A′ is K * n.

An equivalent definition of the transpose of a matrix is

	 B = A′ 3 bik = aki for all i and k.	 (A-3)

The definition of a symmetric matrix implies that

	 if (and only if) A is symmetric, then A = A′.	 (A-4)

It also follows from the definition that for any A,

	 (A′)′ = A.	 (A-5)

Finally, the transpose of a column vector, a, is a row vector:

a′ = [a1 a2 g an].

2Authors sometimes denote the transpose of a matrix with a superscript “T,” as in At = the transpose of A. 
We will use the prime notation throughout this book .
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A.2.3    VECTORIZATION

In some derivations and analyses, it is occasionally useful to reconfigure a matrix into a 
vector (rarely the reverse). The matrix function Vec(A) takes the columns of an n *  K 

matrix and rearranges them in a long nK *  1 vector. Thus, VecJ1 2
2 4

R = [1, 2, 2, 4]′. 

A related operation is the half vectorization, which collects the lower triangle of a 

symmetric matrix in a column vector. For example, VechJ1 2
2 4

R = C1
2
4
S .

A.2.4    MATRIX ADDITION

The operations of addition and subtraction are extended to matrices by defining

	 C = A + B = [aik + bik].	 (A-6)

A - B = [aik - bik].	 (A-7)

Matrices cannot be added unless they have the same dimensions, in which case they are 
said to be conformable for addition. A zero matrix or null matrix is one whose elements 
are all zero. In the addition of matrices, the zero matrix plays the same role as the scalar 0 
in scalar addition; that is,

	 A + 0 = A.	 (A-8)

It follows from (A-6) that matrix addition is commutative,

	 A + B = B + A.	 (A-9)

and associative,

	 (A + B) + C = A + (B + C),	 (A-10)

and that

	 (A + B)′ = A′ + B′.	 (A-11)

A.2.5    VECTOR MULTIPLICATION

Matrices are multiplied by using the inner product. The inner product, or dot product, 
of two vectors, a and b, is a scalar and is written

	 a′b = a1b1 + a2b2 + g + anbn = Σj = 1
n ajbj.	 (A-12)

Note that the inner product is written as the transpose of vector a times vector b, a row 
vector times a column vector. In (A-12), each term ajbj equals bjaj; hence

	 a′b = b′a.	 (A-13)

A.2.6    A NOTATION FOR ROWS AND COLUMNS OF A MATRIX

We need a notation for the ith row of a matrix. Throughout this book, an untransposed 
vector will always be a column vector. However, we will often require a notation for the 
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column vector that is the transpose of a row of a matrix. This has the potential to create 
some ambiguity, but the following convention based on the subscripts will suffice for 
our work throughout this text:

●● ak, or al or am will denote column k, l, or m of the matrix A,
●● ai, or aj or at or as will denote the column vector formed by the

transpose of row i, j, t, or s of matrix A. thus, ai
= is row i of A.�

(A-14)

For example, from the data in Table A.1 it might be convenient to speak of xi, where 
i = 1972 as the 5 * 1 vector containing the five variables measured for the year 1972, 
that is, the transpose of the 1972 row of the matrix. In our applications, the common 
association of subscripts “i” and “j” with individual i or j, and “t” and “s” with time 
periods t and s will be natural.

A.2.7    MATRIX MULTIPLICATION AND SCALAR MULTIPLICATION

For an n * K matrix A and a K * M matrix B, the product matrix, C = AB, is an 
n * M matrix whose ikth element is the inner product of row i of A and column k of B. 
Thus, the product matrix C is

	 C = AB 1 cik = ai
=bk.	 (A-15)

[Note our use of (A-14) in (A-15).] To multiply two matrices, the number of columns in 
the first must be the same as the number of rows in the second, in which case they are 
conformable for multiplication.3 Multiplication of matrices is generally not commutative. 
In some cases, AB may exist, but BA may be undefined or, if it does exist, may have 
different dimensions. In general, however, even if AB and BA do have the same 
dimensions, they will not be equal. In view of this, we define premultiplication and 
postmultiplication of matrices. In the product AB, B is premultiplied by A, whereas A is 
postmultiplied by B.

Scalar multiplication of a matrix is the operation of multiplying every element of 
the matrix by a given scalar. For scalar c and matrix A,

	 cA = [caik].	 (A-16)

If two matrices A and B have the same number of rows and columns, then we can 
compute the direct product (also called the Hadamard product or the Schur product 
or the entrywise product), which is a new matrix (or vector) whose ij element is the 
product of the corresponding elements of A and B. The usual symbol for this operation 
is “ ∘ .” Thus, J1 2

2 3
R ∘ Ja b

b c
R = J1a 2b

2b 3c
R  and ¢3

5
≤ ∘ ¢2

4
≤ = ¢ 6

20
≤.

The product of a matrix and a vector is written

c = Ab.

3A simple way to check the conformability of two matrices for multiplication is to write down the dimensions 
of the operation, for example, (n * K) times (K * M). The inner dimensions must be equal; the result has 
dimensions equal to the outer values.
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The number of elements in b must equal the number of columns in A; the result is a 
vector with number of elements equal to the number of rows in A. For example,C5

4
1
S = C4 2 1

2 6 1
1 1 0

S  C a
b
c
S .

We can interpret this in two ways. First, it is a compact way of writing the three equations

 5 = 4a + 2b + 1c,
 4 = 2a + 6b + 1c,
 1 = 1a + 1b + 0c.

Second, by writing the set of equations asC5
4
1
S = a C4

2
1
S + b C2

6
1
S + c C1

1
0
S ,

we see that the right-hand side is a linear combination of the columns of the matrix 
where the coefficients are the elements of the vector. For the general case,

	 c = Ab = b1a1 + b2a2 + g + bKaK.	 (A-17)

In the calculation of a matrix product C = AB, each column of C is a linear combination 
of the columns of A, where the coefficients are the elements in the corresponding column 
of B. That is,

	 C = AB 3 ck = Abk.	 (A-18)

Let ek be a column vector that has zeros everywhere except for a one in the kth 
position. Then Aek is a linear combination of the columns of A in which the coefficient 
on every column but the kth is zero, whereas that on the kth is one. The result is

	 ak = Aek.	 (A-19)

Combining this result with (A-17) produces

	 (a1 a2 g an) = A(e1 e2 g en) = AI = A.	 (A-20)

In matrix multiplication, the identity matrix is analogous to the scalar 1. For any matrix 
or vector A, AI = A. In addition, IA = A, although if A is not a square matrix, the two 
identity matrices are of different orders.

A conformable matrix of zeros produces the expected result: A0 = 0.

Some general rules for matrix multiplication are as follows:

●● Associative law:  (AB)C = A(BC).� (A-21)
●● Distributive law:  A(B + C) = AB + AC.� (A-22)
●● Transpose of a product:  (AB)′ = B′A′.� (A-23)
●● Transpose of an extended product:  (ABC)′ = C′B′A′.� (A-24)

A.2.8    SUMS OF VALUES

Denote by i a vector that contains a column of ones. Then,

	 a
n

i = 1
xi = x1 + x2 + g + xn = i′x.	 (A-25)
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If all elements in x are equal to the same constant a, then x = ai and

	 a
n

i = 1
xi = i′(ai) = a(i′i) = na.	 (A-26)

For any constant a and vector x,

	 a
n

i = 1
axi = aa

n

i = 1
xi = ai′x.	 (A-27)

If a = 1/n, then we obtain the arithmetic mean,

	 x =
1
n

 a
n

i = 1
xi =

1
n

 i′x,	 (A-28)

from which it follows that

a
n

i = 1
xi = i′x = nx.

The sum of squares of the elements in a vector x is

	 a
n

i = 1
xi

2 = x′x;	 (A-29)

while the sum of the products of the n elements in vectors x and y is

	 a
n

i = 1
xiyi = x′y.	 (A-30)

By the definition of matrix multiplication,

	 [X′X]kl = [xk
= xl]	 (A-31)

is the inner product of the kth and lth columns of X. For example, for the data set given in 
Table A.1, if we define X as the 9 * 3 matrix containing (year, consumption, GNP), then

 [X′X]23 = a
1980

t = 1972
 consumptiont gNPt = 737.1(1185.9) + g + 1667.2(2633.1)

 = 19,743,711.34.

If X is n * K, then [again using (A-14)]

X′X = a
n

i = 1
xixi

=.

This form shows that the K * K matrix X′X is the sum of n K * K matrices, each 
formed from a single row (year) of X. For the example given earlier, this sum is of nine 
3 * 3 matrices, each formed from one row (year) of the original data matrix.

A.2.9    A USEFUL IDEMPOTENT MATRIX

A fundamental matrix in statistics is the “centering matrix” that is used to transform 
data to deviations from their mean. First,

	 ix = i 
1
n

 i′x = D x
x
f
x

T =
1
n

 ii′x.	 (A-32)
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The matrix (1/n)ii′ is an n * n matrix with every element equal to 1/n. The set of values 
in deviations form is

	 D x1 - x
x2 - x

g
xn - x

T = [x - ix] = c x -
1
n

 ii′x d .	 (A-33)

Because x = Ix,

	 c x -
1
n

 ii′x d = c Ix -
1
n

 ii′x d = c I -
1
n

 ii′ d x = M0x.	 (A-34)

Henceforth, the symbol M0 will be used only for this matrix. Its diagonal elements 
are all (1 - 1/n), and its off-diagonal elements are -1/n. The matrix M0 is primarily 
useful in computing sums of squared deviations. Some computations are simplified 
by the result

M0i = c I -
1
n

 ii′ d i = i -
1
n

 i(i′i) = 0,

which implies that i′M0 = 0′. The sum of deviations about the mean is then

	 a
n

i = 1
(xi - x) = i′[M0x] = 0′x = 0.	 (A-35)

For a single variable x, the sum of squared deviations about the mean is

	 a
n

i = 1
(xi - x)2 = a a

n

i = 1
xi

2b - nx2.	 (A-36)

In matrix terms,

a
n

i = 1
(xi - x)2 = (x - xi)′(x - xi) = (M0x)′(M0x) = x′M0=M0x.

Two properties of M0 are useful at this point. First, because all off-diagonal elements 
of M0 equal -1/n, M0 is symmetric. Second, as can easily be verified by multiplication, 
M0 is equal to its square; M0M0 = M0.

DEFINITION A.1  Idempotent Matrix
An idempotent matrix, M, is one that is equal to its square, that is, M2 = MM = M. 
If M is a symmetric idempotent matrix (all of the idempotent matrices we shall 
encounter are symmetric), then M′M = M as well.

Thus, M0 is a symmetric idempotent matrix. Combining results, we obtain

	 a
n

i = 1
(xi - x)2 = x′M0x.	 (A-37)
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Consider constructing a matrix of sums of squares and cross products in deviations from 
the column means. For two vectors x and y,

	 a
n

i = 1
(xi - x)(yi - y) = (M0x)′(M0y),	 (A-38)

so

	 D a
n

i = 1
(xi - x)2 a

n

i = 1
(xi - x)(yi - y)

a
n

i = 1
(yi - y)(xi - x) a

n

i = 1
(yi - y)2

T = Cx′M0x x′M0y
y′M0x y′M0y

S .	 (A-39)

If we put the two column vectors x and y in an n * 2 matrix Z = [x, y], then M0Z is 
the n * 2 matrix in which the two columns of data are in mean deviation form. Then

(M0Z)′(M0Z) = Z′M0M0Z = Z′M0Z.

A.3	 GEOMETRY OF MATRICES

A.3.1    VECTOR SPACES

The K elements of a column vector 

a = D a1

a2

g
aK

T
can be viewed as the coordinates of a point in a K-dimensional space, as shown in 
Figure A.1 for two dimensions, or as the definition of the line segment connecting the 
origin and the point defined by a.

Two basic arithmetic operations are defined for vectors, scalar multiplication and 
addition. A scalar multiple of a vector, a, is another vector, say a*, whose coordinates 
are the scalar multiple of a’s coordinates. Thus, in Figure A.1,

a = J1
2
R , a* = 2a = J2

4
R , a** = -

1
2

 a = J -1
2

-1
R .

The set of all possible scalar multiples of a is the line through the origin, 0 and a. Any 
scalar multiple of a is a segment of this line. The sum of two vectors a and b is a third 
vector whose coordinates are the sums of the corresponding coordinates of a and b. For 
example,

c = a + b = J1
2
R + J2

1
R = J3

3
R .

Geometrically, c is obtained by moving in the distance and direction defined by b from 
the tip of a or, because addition is commutative, from the tip of b in the distance and 
direction of a. Note that scalar multiplication and addition of vectors are special cases 
of (A-16) and (A-6) for matrices.
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The two-dimensional plane is the set of all vectors with two real-valued coordinates. 
We label this set ℝ2 (“R two,” not “R squared”). It has two important properties.

●● ℝ2 is closed under scalar multiplication; every scalar multiple of a vector in ℝ2 is 
also in ℝ2.

●● ℝ2 is closed under addition; the sum of any two vectors in the plane is always a 
vector in ℝ2.

FIGURE A.1    Vector Space.

Se
co
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 c
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rd

in
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e

5

4

3

2

1

-1

b

ca

a*

a**
-1 1 2 3 4

First coordinate

DEFINITION A.2  Vector Space
A vector space is any set of vectors that is closed under scalar multiplication and 
addition.

Another example is the set of all real numbers, that is, ℝ1, that is, the set of vectors with 
one real element. In general, that set of K-element vectors all of whose elements are 
real numbers is a K-dimensional vector space, denoted ℝK. The preceding examples are 
drawn in ℝ2.

A.3.2    LINEAR COMBINATIONS OF VECTORS AND BASIS VECTORS

In Figure A.2, c = a + b and d = a* + b. But since a* = 2a, d = 2a + b. Also, 
e = a + 2b and f = b + (-a) = b - a. As this exercise suggests, any vector in ℝ2 could 
be obtained as a linear combination of a and b.
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As is suggested by Figure A.2, any pair of two-element vectors, including a and b, 
that point in different directions will form a basis for ℝ2. Consider an arbitrary set of 
three vectors in ℝ2, a, b, and c. If a and b are a basis, then we can find numbers a1 and 
a2 such that c = a1a + a2b. Let

 a = Ja1

a2
R , b = Jb1

b2
R , c = Jc1

c2
R .

Then

	  c1 = a1a1 + a2b1,

 c2 = a1a2 + a2b2.�
(A-40)

The solutions (a1, a2) to this pair of equations are

	 a1 =
b2c1 - b1c2

a1b2 - b1a2
, a2 =

a1c2 - a2c1

a1b2 - b1a2
.	 (A-41)

FIGURE A.2    Linear Combinations of Vectors.
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DEFINITION A.3  Basis Vectors
A set of vectors in a vector space is a basis for that vector space if they are linearly 
independent and any vector in the vector space can be written as a linear combina-
tion of that set of vectors.
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This result gives a unique solution unless (a1b2 - b1a2) = 0. If (a1b2 - b1a2) = 0, 
then a1/a2 = b1/b2, which means that b is just a multiple of a. This returns us to our 
original condition, that a and b must point in different directions. The implication is that 
if a and b are any pair of vectors for which the denominator in (A-41) is not zero, then 
any other vector c can be formed as a unique linear combination of a and b. The basis of 
a vector space is not unique, since any set of vectors that satisfies the definition will do. 
But for any particular basis, only one linear combination of them will produce another 
particular vector in the vector space.

A.3.3    LINEAR DEPENDENCE

As the preceding should suggest, K vectors are required to form a basis for ℝK. Although 
the basis for a vector space is not unique, not every set of K vectors will suffice. In 
Figure A.2, a and b form a basis for ℝ2, but a and a* do not. The difference between these 
two pairs is that a and b are linearly independent, whereas a and a* are linearly dependent.

DEFINITION A.4  Linear Dependence
A set of k Ú 2 vectors is linearly dependent if at least one of the vectors in the set 
can be written as a linear combination of the others.

DEFINITION A.5  Linear Independence
A set of vectors is linearly independent if and only if the only solution (a1, c, aK) to

a1a1 + a2a2 + g + aKaK = 0

is

a1 = a2 = g = aK = 0.

DEFINITION A.6  Basis for a Vector Space
A basis for a vector space of K dimensions is any set of K linearly independent 
vectors in that vector space.

Because a* is a multiple of a, a and a* are linearly dependent. For another example, if

a = J1
2
R , b = J3

3
R , and c = J10

14
R ,

then

2a + b -
1
2

 c = 0,

so a, b, and c are linearly dependent. Any of the three possible pairs of them, however, 
are linearly independent.

The preceding implies the following equivalent definition of a basis.
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For example, by definition, the space spanned by a basis for ℝK is ℝK. An implication 
of this is that if a and b are a basis for ℝ2 and c is another vector in ℝ2, the space spanned 
by [a, b, c] is, again, ℝ2. Of course, c is superfluous. Nonetheless, any vector in ℝ2 can 
be expressed as a linear combination of a, b, and c. (The linear combination will not be 
unique. Suppose, for example, that a and c are also a basis for ℝ2.)

Consider the set of three coordinate vectors whose third element is zero. In particular,

a′ = [a1 a2 0] and b′ = [b1 b2 0].

Vectors a and b do not span the three-dimensional space ℝ3. Every linear combination of 
a and b has a third coordinate equal to zero; thus, for instance, c′ = [1 2 3] could not 
be written as a linear combination of a and b. If (a1b2 - a2b1) is not equal to zero [see 
(A-41)]; however, then any vector whose third element is zero can be expressed as a linear 
combination of a and b. So, although a and b do not span ℝ3, they do span something; 
they span the set of vectors in ℝ3 whose third element is zero. This area is a plane (the 
“floor” of the box in a three-dimensional figure). This plane in ℝ3 is a subspace, in this 
instance, a two-dimensional subspace. Note that it is not ℝ2; it is the set of vectors in ℝ3 
whose third coordinate is 0. Any plane in ℝ3 that contains the origin, (0, 0, 0), regardless 
of how it is oriented, forms a two-dimensional subspace. Any two independent vectors 
that lie in that subspace will span it. But without a third vector that points in some other 
direction, we cannot span any more of ℝ3 than this two-dimensional part of it. By the 
same logic, any line in ℝ3 that passes through the origin is a one-dimensional subspace, 
in this case, the set of all vectors in ℝ3 whose coordinates are multiples of those of the 
vector that define the line. A subspace is a vector space in all the respects in which 
we have defined it. We emphasize that it is not a vector space of lower dimension. For 
example, ℝ2 is not a subspace of ℝ3. The essential difference is the number of dimensions 
in the vectors. The vectors in ℝ3 that form a two-dimensional subspace are still three-
element vectors; they all just happen to lie in the same plane.

The space spanned by a set of vectors in ℝK has at most K dimensions. If this space 
has fewer than K dimensions, it is a subspace, or hyperplane. But the important point 
in the preceding discussion is that every set of vectors spans some space; it may be the 
entire space in which the vectors reside, or it may be some subspace of it.

A.3.5    RANK OF A MATRIX

We view a matrix as a set of column vectors. The number of columns in the matrix 
equals the number of vectors in the set, and the number of rows equals the number of 

Because any (K + 1)st vector can be written as a linear combination of the K 
basis vectors, it follows that any set of more than K vectors in ℝK must be linearly 
dependent.

A.3.4    SUBSPACES

DEFINITION A.7  Spanning Vectors
The set of all linear combinations of a set of vectors is the vector space that is 
spanned by those vectors.
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coordinates in each column vector. If the matrix contains K rows, its column space might 
have K dimensions. But,

DEFINITION A.8  Column Space
The column space of a matrix is the vector space that is spanned by its column 
vectors.

DEFINITION A.9  Column Rank
The column rank of a matrix is the dimension of the vector space that is spanned 
by its column vectors.

as we have seen, it might have fewer dimensions; the column vectors might be linearly 
dependent, or there might be fewer than K of them. Consider the matrix

A = C1 5 6
2 6 8
7 1 8

S .

It contains three vectors from ℝ3, but the third is the sum of the first two, so the column 
space of this matrix cannot have three dimensions. Nor does it have only one, because 
the three columns are not all scalar multiples of one another. Hence, it has two, and the 
column space of this matrix is a two-dimensional subspace of ℝ3. It follows that the 
column rank of a matrix is

equal to the largest number of linearly independent column vectors it contains. The 
column rank of A is 2. For another specific example, consider

B = D1 2 3
5 1 5
6 4 5
3 1 4

T .

It can be shown (we shall see how later) that this matrix has a column rank equal to 3. 
Each column of B is a vector in ℝ4, so the column space of B is a three-dimensional 
subspace of ℝ4.

Consider, instead, the set of vectors obtained by using the rows of B instead of the 
columns. The new matrix would be

C = C1 5 6 3
2 1 4 1
3 5 5 4

S .

This matrix is composed of four column vectors from ℝ3. (Note that C is B′.) The column 
space of C is at most ℝ3, since four vectors in ℝ3 must be linearly dependent. In fact, the 
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column space of C is ℝ3. Although this is not the same as the column space of B, it does 
have the same dimension. Thus, the column rank of C and the column rank of B are the 
same. But the columns of C are the rows of B. Thus, the column rank of C equals the 
row rank of B. That the column and row ranks of B are the same is not a coincidence. 
The general results (which are equivalent) are as follows:

THEOREM A.1  Equality of Row and Column Rank
The column rank and row rank of a matrix are equal. By the definition of row 
rank and its counterpart for column rank, we obtain the corollary, the row space 
and column space of a matrix have the same dimension.� (A-42)

Theorem A.1 holds regardless of the actual row and column rank. If the column 
rank of a matrix happens to equal the number of columns it contains, then the matrix 
is said to have full column rank. Full row rank is defined likewise. Because the row and 
column ranks of a matrix are always equal, we can speak unambiguously of the rank of 
a matrix. For either the row rank or the column rank (and, at this point, we shall drop 
the distinction), it follows that

	 rank(A) = rank(A′) … min (number of rows, number of columns).	 (A-43)

In most contexts, we shall be interested in the columns of the matrices we manipulate. 
We shall use the term full rank to describe a matrix whose rank is equal to the number 
of columns it contains.

Of particular interest will be the distinction between full rank and short rank 
matrices. The distinction turns on the solutions to Ax = 0. If a nonzero x for which 
Ax = 0 exists, then A does not have full rank. Equivalently, if the nonzero x exists, then 
the columns of A are linearly dependent and at least one of them can be expressed as a 
linear combination of the others. For example, a nonzero set of solutions toJ1 3 10

2 3 14
R Cx1

x2

x3

S = J0
0
R

is any multiple of x′ = (2, 1, -1
2).

In a product matrix C = AB, every column of C is a linear combination of the 
columns of A, so each column of C is in the column space of A. It is possible that the set 
of columns in C could span this space, but it is not possible for them to span a higher-
dimensional space. At best, they could be a full set of linearly independent vectors in 
A’s column space. We conclude that the column rank of C could not be greater than that 
of A. Now, apply the same logic to the rows of C, which are all linear combinations of 
the rows of B. For the same reason that the column rank of C cannot exceed the column 
rank of A, the row rank of C cannot exceed the row rank of B. Row and column ranks 
are always equal, so we can conclude that

	 rank(AB) … min(rank(A), rank(B)).	 (A-44)
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A useful corollary to (A-44) is

	if A is M * n and B is a square matrix of rank n, then rank(AB) = rank(A).	 (A-45)

Another application that plays a central role in the development of regression 
analysis is, for any matrix A,

	 rank(A) = rank(A′A) = rank(AA′).	 (A-46)

A.3.6    DETERMINANT OF A MATRIX

The determinant of a square matrix—determinants are not defined for nonsquare 
matrices—is a function of the elements of the matrix. There are various definitions, 
most of which are not useful for our work. Determinants figure into our results in 
several ways, however, that we can enumerate before we need formally to define the 
computations.

PROPOSITION 
The determinant of a matrix is nonzero if and only if it has full rank.

Full rank and short rank matrices can be distinguished by whether or not their 
determinants are nonzero. There are some settings in which the value of the determinant 
is also of interest, so we now consider some algebraic results.

It is most convenient to begin with a diagonal matrix

D = Dd1 0 0 g 0
0 d2 0 g 0

g
0 0 0 g dK

T .

The column vectors of D define a “box” in ℝK whose sides are all at right angles to one 
another.4 Its “volume,” or determinant, is simply the product of the lengths of the sides, 
which we denote

	 � D � = d1d2 cdK = q
K

k = 1
dk.	 (A-47)

A special case is the identity matrix, which has, regardless of K, � IK � = 1. Multiplying D 
by a scalar c is equivalent to multiplying the length of each side of the box by c, which 
would multiply its volume by cK. Thus,

	 � cD � = cK � D � .	 (A-48)

Continuing with this admittedly special case, we suppose that only one column of D is 
multiplied by c. In two dimensions, this would make the box wider but not higher, or vice 
versa. Hence, the “volume” (area) would also be multiplied by c. Now, suppose that each 
side of the box were multiplied by a different c, the first by c1, the second by c2, and so 

4Each column vector defines a segment on one of the axes.

Z01_GREE1366_08_SE_APP.indd   1068 1/5/17   4:59 PM



	 APPENDIX A  ✦  Matrix Algebra	 1069

on. The volume would, by an obvious extension, now be c1c2 ccK � D � . The matrix with 
columns defined by [c1d1 c2d2 c] is just DC, where C is a diagonal matrix with ci as its 
ith diagonal element. The computation just described is, therefore,

	 � DC � = � D � # � C � .	 (A-49)

(The determinant of C is the product of the ci’s since C, like D, is a diagonal matrix.) 
In particular, note what happens to the whole thing if one of the ci’s is zero.

For 2 * 2 matrices, the computation of the determinant is

	 2 a c
b d

2 = ad - bc.	 (A-50)

Notice that it is a function of all the elements of the matrix. This statement will be true, 
in general. For more than two dimensions, the determinant can be obtained by using an 
expansion by cofactors. Using any row, say, i, we obtain

	 � A � = a
K

k = 1
aik(-1)i + k � A(ik) � , k = 1, c, K,	 (A-51)

where A(ik) is the matrix obtained from A by deleting row i and column k. The 
determinant of A(ik) is called a minor of A.5 When the correct sign, (-1)i + k, is added, it 
becomes a cofactor. This operation can be done using any column as well. For example, 
a 4 * 4 determinant becomes a sum of four 3 * 3s, whereas a 5 * 5 is a sum of five 
4 * 4s, each of which is a sum of four 3 * 3s, and so on. Obviously, it is a good idea to 
base (A-51) on a row or column with many zeros in it, if possible. In practice, this rapidly 
becomes a heavy burden. It is unlikely, though, that you will ever calculate any 
determinants over 3 * 3 without a computer. A 3 * 3, however, might be computed on 
occasion; if so, the following shortcut known as Sarrus’s rule will prove useful:3 a11 a12 a13

a21 a22 a23

a31 a32 a33

3 = a11a22a33 + a12a23a31 + a13a32a21 - a31a22a13 - a21a12a33 - a11a23a32.

Although (A-48) and (A-49) were given for diagonal matrices, they hold for general 
matrices C and D. One special case of (A-48) to note is that of c = -1. Multiplying a 
matrix by -1 does not necessarily change the sign of its determinant. It does so only if 
the order of the matrix is odd. By using the expansion by cofactors formula, an additional 
result can be shown:

	 � A � = � A′ � .	 (A-52)

A.3.7    A LEAST SQUARES PROBLEM

Given a vector y and a matrix X, we are interested in expressing y as a linear combination 
of the columns of X. There are two possibilities. If y lies in the column space of X, then 
we shall be able to find a vector b such that

	 y = Xb.	 (A-53)

5If i equals k, then the determinant is a principal minor.
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Figure A.3 illustrates such a case for three dimensions in which the two columns of X 
both have a third coordinate equal to zero. Only y’s whose third coordinate is zero, such 
as y0 in the figure, can be expressed as Xb for some b. For the general case, assuming 
that y is, indeed, in the column space of X, we can find the coefficients b by solving the 
set of equations in (A-53). The solution is discussed in the next section.

Suppose, however, that y is not in the column space of X. In the context of this 
example, suppose that y’s third component is not zero. Then there is no b such that 
(A-53) holds. We can, however, write

	 y = Xb + e,	 (A-54)

where e is the difference between y and Xb. By this construction, we find an Xb that is 
in the column space of X, and e is the difference, or “residual.” Figure A.3 shows two 
examples, y and y*. For the present, we consider only y. We are interested in finding the 
b such that y is as close as possible to Xb in the sense that e is as short as possible.

FIGURE A.3    Least Squares Projections.

Third coordinate

First coordinate

Second coordinate

x1

x2

y

e

y*

y0

e*

u*

u

(Xb)

(Xb)*

DEFINITION A.10  Length of a Vector
The length, or norm, of a vector e is given by the Pythagorean theorem:

	 }e } = 2e′e.� (A-55)

The problem is to find the b for which

}e } = }y - Xb }

is as small as possible. The solution is that b that makes e perpendicular, or orthogonal, to Xb.
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Returning once again to our fitting problem, we find that the b we seek is that for 
which

e # Xb.

Expanding this set of equations gives the requirement

 (Xb)′e = 0

 = b′X′y - b′X′Xb

 = b′[X′y - X′Xb],

or, assuming b is not 0, the set of equations

X′y = X′Xb.

The means of solving such a set of equations is the subject of Section A.4.
In Figure A.3, the linear combination Xb is called the projection of y into the column 

space of X. The figure is drawn so that, although y and y* are different, they are similar in 
that the projection of y lies on top of that of y*. The question we wish to pursue here is, 
Which vector, y or y*, is closer to its projection in the column space of X? Superficially, 
it would appear that y is closer, because e is shorter than e*. Yet y* is much more nearly 
parallel to its projection than y, so the only reason that its residual vector is longer is that 
y* is longer compared with y. A measure of comparison that would be unaffected by the 
length of the vectors is the angle between the vector and its projection (assuming that 
angle is not zero). By this measure, u* is smaller than u, which would reverse the earlier 
conclusion.

DEFINITION A.11  Orthogonal Vectors
Two nonzero vectors a and b are orthogonal, written a # b, if and only if

a′b = b′a = 0.

THEOREM A.2  The Cosine Law

The angle u between two vectors a and b satisfies cos u =
a′b

}a } * }b }
.

The two vectors in the calculation would be y or y* and Xb or (Xb)*. A zero cosine 
implies that the vectors are orthogonal. If the cosine is one, then the angle is zero, which 
means that the vectors are the same. (They would be if y were in the column space 
of X.) By dividing by the lengths, we automatically compensate for the length of y. By 
this measure, we find in Figure A.3 that y * is closer to its projection, (Xb)* than y is to 
its projection, Xb.
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A.4	 SOLUTION OF A SYSTEM OF LINEAR EQUATIONS

Consider the set of n linear equations

	 Ax = b,	 (A-56)

in which the K elements of x constitute the unknowns. A is a known matrix of coefficients, 
and b is a specified vector of values. We are interested in knowing whether a solution 
exists; if so, then how to obtain it; and finally, if it does exist, then whether it is unique.

A.4.1    SYSTEMS OF LINEAR EQUATIONS

For most of our applications, we shall consider only square systems of equations, that is, 
those in which A is a square matrix. In what follows, therefore, we take n to equal K. Because 
the number of rows in A is the number of equations, whereas the number of columns in 
A is the number of variables, this case is the familiar one of “n equations in n unknowns.”

There are two types of systems of equations.

By definition, a nonzero solution to such a system will exist if and only if A does not 
have full rank. If so, then for at least one column of A, we can write the preceding as

ak = - a
m ≠ k

 
xm

xk
 am.

This means, as we know, that the columns of A are linearly dependent and that � A � = 0.

The vector b is chosen arbitrarily and is to be expressed as a linear combination of the 
columns of A. Because b has K elements, this solution will exist only if the columns of 
A span the entire K-dimensional space, ℝK.6 Equivalently, we shall require that the 
columns of A be linearly independent or that � A �  not be equal to zero.

A.4.2    INVERSE MATRICES

To solve the system Ax = b for x, something akin to division by a matrix is needed. 
Suppose that we could find a square matrix B such that BA = I. If the equation system 
is premultiplied by this B, then the following would be obtained:

	 BAx = Ix = x = Bb.	 (A-57)

6If A does not have full rank, then the nonhomogeneous system will have solutions for some vectors b, 
namely, any b in the column space of A. But we are interested in the case in which there are solutions for all 
nonzero vectors b, which requires A to have full rank.

DEFINITION A.12  Homogeneous Equation System
A homogeneous system is of the form Ax = 0.

DEFINITION A.13  Nonhomogeneous Equation System
A nonhomogeneous system of equations is of the form Ax = b, where b is a 
nonzero vector.
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If the matrix B exists, then it is the inverse of A, denoted

B = A-1.

From the definition,

A-1A = I.

In addition, by premultiplying by A, postmultiplying by A-1, and then canceling terms, 
we find

AA-1 = I

as well.
If the inverse exists, then it must be unique. Suppose that it is not and that C is a 

different inverse of A. Then CAB = CAB, but (CA)B = IB = B and C(AB) = C, 
which would be a contradiction if C did not equal B. Because, by (A-57), the solution is 
x = A-1b, the solution to the equation system is unique as well.

We now consider the calculation of the inverse matrix. For a 2 * 2 matrix, AB = I 
implies thatJa11 a12

a21 a22
R Jb11 b12

b21 b22
R = J1 0

0 1
R or Da11b11 + a12b21 = 1

a11b12 + a12b22 = 0
a21b11 + a22b21 = 0
a21b12 + a22b22 = 1

T .

The solutions are

	 Jb11 b12

b21 b22
R =

1
a11a22 - a12a21

 J a22 -a12

-a21 a11
R =

1
� A �

 J a22 -a12

-a21 a11
R .	 (A-58)

Notice the presence of the reciprocal of � A �  in A-1. This result is not specific to the 2 * 2 
case. We infer from it that if the determinant is zero, then the inverse does not exist.

DEFINITION A.14  Nonsingular Matrix
A matrix is nonsingular if and only if its inverse exists.

The simplest inverse matrix to compute is that of a diagonal matrix. If

D = Dd1 0 0 g 0
0 d2 0 g 0

g
0 0 0 g dK

T , then D-1 = D1/d1 0 0 g 0
0 1/d2 0 g 0

g
0 0 0 g 1/dK

T ,

which shows, incidentally, that I-1 = I.
We shall use aik to indicate the ikth element of A-1. The general formula for 

computing an inverse matrix is

	 aik =
� Cki �
� A �

,	 (A-59)
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where � Cki �  is the kith cofactor of A. [See (A-51).] It follows, therefore, that for A to be 
nonsingular, � A �  must be nonzero. Notice the reversal of the subscripts

Some computational results involving inverses are

	 � A-1 � =
1

� A �
, 	 (A-60)

	 (A-1)-1 = A, 	 (A-61)

	 (A-1)′ = (A′)-1.	 (A-62)

	 if A is symmetric, then A-1 is symmetric.	 (A-63)

When both inverse matrices exist,

	 (AB)-1 = B-1A-1.	 (A-64)

Note the condition preceding (A-64). It may be that AB is a square, nonsingular 
matrix when neither A nor B is even square. (Consider, e.g., A′A.) Extending (A-64), 
we have

	 (ABC)-1 = C-1(AB)-1 = C-1B-1A-1.	 (A-65)

Recall that for a data matrix X, X′X is the sum of the outer products of the rows X. 
Suppose that we have already computed S = (X′X)-1 for a number of years of data, such 
as those given in Table A.1. The following result, which is called an updating formula, 
shows how to compute the new S that would result when a new row is added to X: For 
symmetric, nonsingular matrix A,

	 [A { bb′]-1 = A-1 | c 1

1 { b′A-1b
dA-1 bb′A-1.	 (A-66)

Note the reversal of the sign in the inverse. Two more general forms of (A-66) that are 
occasionally useful are

	 [A { bc′]-1 = A-1 | c 1

1 { c′A-1b
dA-1bc′A-1,	 (A-66a)

[A { BCB′]-1 = A-1 | A-1B[C-1 { B′A-1B]-1B′A-1.	 (A-66b)

A.4.3    NONHOMOGENEOUS SYSTEMS OF EQUATIONS

For the nonhomogeneous system

Ax = b,

if A is nonsingular, then the unique solution is

x = A-1b.

A.4.4    SOLVING THE LEAST SQUARES PROBLEM

We now have the tool needed to solve the least squares problem posed in Section 
A.3.7. We found the solution vector, b to be the solution to the nonhomogenous system 
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X′y = X′Xb. Let a equal the vector X′y and let A equal the square matrix X′X. The 
equation system is then

Ab = a.

By the preceding results, if A is nonsingular, then

b = A-1a = (X′X)-1(X′y)

assuming that the matrix to be inverted is nonsingular. We have reached the irreducible 
minimum. If the columns of X are linearly independent, that is, if X has full rank, then this 
is the solution to the least squares problem. If the columns of X are linearly dependent, 
then this system has no unique solution.

A.5	 PARTITIONED MATRICES

In formulating the elements of a matrix, it is sometimes useful to group some of the 
elements in submatrices. Let

A = C1 4 5
2 9 3
8 9 6

S = JA11 A12

A21 A22
R .

A is a partitioned matrix. The subscripts of the submatrices are defined in the same 
fashion as those for the elements of a matrix. A common special case is the block-
diagonal matrix:

A = JA11 0
0 A22

R ,

where A11 and A22 are square matrices.

A.5.1    ADDITION AND MULTIPLICATION OF PARTITIONED MATRICES

For conformably partitioned matrices A and B,

	 A + B = JA11 + B11 A12 + B12

A21 + B21 A22 + B22
R ,	 (A-67)

and

	AB = JA11 A12

A21 A22
R  JB11 B12

B21 B22
R = JA11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22
R .	 (A-68)

In all these, the matrices must be conformable for the operations involved. For addition, 
the dimensions of Aik and Bik must be the same. For multiplication, the number of 
columns in Aij must equal the number of rows in Bjl for all pairs i and j. That is, all the 
necessary matrix products of the submatrices must be defined. Two cases frequently 
encountered are of the form

	 JA1

A2
R =

 JA1

A2
R = [A1

= A2
= ] JA1

A2
R = [A1

=A1 + A2
=A2],	 (A-69)
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and

	 JA11 0
0 A22

R =

 JA11 0
0 A22

R = JA11
= A11 0
0 A22

= A22
R .	 (A-70)

A.5.2    DETERMINANTS OF PARTITIONED MATRICES

The determinant of a block-diagonal matrix is obtained analogously to that of a diagonal 
matrix:

	 2 A11 0
0 A22

2 = � A11 � * � A22 � .	 (A-71)

The determinant of a general 2 * 2 partitioned matrix is

	̀
A11 A12

A21 A22
` = � A22 � * � A11 - A12A22

-1A21 � = � A11 � * � A22 - A21A11
-1A12 � .	 (A-72)

A.5.3    INVERSES OF PARTITIONED MATRICES

The inverse of a block-diagonal matrix is

	 JA11 0
0 A22

R -1

= JA11
-1 0

0 A22
-1 R ,	 (A-73)

which can be verified by direct multiplication. For the general 2 * 2 partitioned matrix, 
one form of the partitioned inverse is

	 JA11 A12

A21 A22
R -1

= JA11
-1(I + A12F2A21A11

-1) -A11
-1A12F2

-F2A21A11
-1 F2

R ,	 (A-74)

where

F2 = (A22 - A21A11
-1A12)

-1.

The upper left block could also be written as

F1 = (A11 - A12A22
-1A21)

-1.

A.5.4    DEVIATIONS FROM MEANS

Suppose that we begin with a column vector of n values x and let

A = D n a
n

i = 1
xi

a
n

i = 1
xi a

n

i = 1
xi

2
T = J i′i i′x

x′i x′x
R .

We are interested in the lower-right-hand element of A-1. Upon using the definition 
of F2 in (A-74), this is

 F2 = [x′x - (x′i)(i′i)-1(i′x)]-1 = bx′JIx - ia 1
n
b i′xR r -1

 = bx′JI - a 1
n
b ii′ Rx r -1

= (x′M0x)-1.
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Therefore, the lower-right-hand value in the inverse matrix is

(x′M0x)-1 =
1

a n
i = 1(xi - x)2 = a22.

Now, suppose that we replace x with X, a matrix with several columns. We seek the lower-
right block of (Z′Z)-1, where Z = [i, X]. The analogous result is

(Z′Z)22 = [X′X - X′i(i′i)-1i′X]-1 = (X′M0X)-1,

which implies that the K * K matrix in the lower-right corner of (Z′Z)-1 is the inverse 
of the K * K matrix whose jkth element is a n

i = 1(xij - xj)(xik - xk). Thus, when a data 
matrix contains a column of ones, the elements of the inverse of the matrix of sums 
of squares and cross products will be computed from the original data in the form of 
deviations from the respective column means.

A.5.5    KRONECKER PRODUCTS

A calculation that helps to condense the notation when dealing with sets of regression 
models(see Chapter 10) is the Kronecker product. For general matrices A and B,

	 A ⊗ B = D a11B a12B g a1KB
a21B a22B g a2KB

g
an1B an2B g anKB

T .	 (A-75)

Notice that there is no requirement for conformability in this operation. The Kronecker 
product can be computed for any pair of matrices. If A is K * L and B is m * n, then 
A ⊗ B is (Km) * (Ln).

For the Kronecker product,

	 (A ⊗ B)-1 = (A-1 ⊗ B-1),	 (A-76)

If A is M * M and B is n * n, then

 � A ⊗ B � = � A � n � B � M,

 (A ⊗ B)′ = A′ ⊗ B′,

 trace(A ⊗ B) = trace(A) trace(B).

(The trace of a matrix is defined in Section A.6.7.) For A, B, C, and D such that the 
products are defined,

(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

A.6	 CHARACTERISTIC ROOTS AND VECTORS

A useful set of results for analyzing a square matrix A arises from the solutions to the 
set of equations

	 Ac = lc.	 (A-77)
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The pairs of solutions (c,l) are the characteristic vectors c and characteristic roots l. 
If c is any nonzero solution vector, then kc is also for any value of K. To remove the 
indeterminancy, c is normalized so that c′c = 1.

The solution then consists of l and the n - 1 unknown elements in c.

A.6.1    THE CHARACTERISTIC EQUATION

Solving (A-77) can, in principle, proceed as follows. First, (A-77) implies that

Ac = lIc,

or that

(A - lI)c = 0.

This equation is a homogeneous system that has a nonzero solution only if the matrix 
(A - lI) is singular or has a zero determinant. Therefore, if l is a solution, then

	 � A - lI � = 0.	 (A-78)

This polynomial in l is the characteristic equation of A. For example, if

A = J5 1
2 4

R ,

then

� A - lI � = ` 5 - l 1
2 4 - l

` = (5 - l)(4 - l) - 2(1) = l2 - 9l + 18.

The two solutions are l = 6 and l = 3.
In solving the characteristic equation, there is no guarantee that the characteristic 

roots will be real. In the preceding example, if the 2 in the lower-left-hand corner of the 
matrix were -2 instead, then the solution would be a pair of complex values. The same 
result can emerge in the general n * n case. The characteristic roots of a symmetric 
matrix such as X′X are real, however.7 This result will be convenient because most of 
our applications will involve the characteristic roots and vectors of symmetric matrices.

For an n * n matrix, the characteristic equation is an nth-order polynomial in l. Its 
solutions may be n distinct values, as in the preceding example, or may contain repeated 
values of l, and may contain some zeros as well.

A.6.2    CHARACTERISTIC VECTORS

With l in hand, the characteristic vectors are derived from the original problem,

Ac = lc,

or

	 (A - lI)c = 0.	 (A-79)

Neither pair determines the values of c1 and c2. But this result was to be expected; it 
was the reason c′c = 1 was specified at the outset. The additional equation c′c = 1, 
however, produces complete solutions for the vectors.

7A proof may be found in Theil (1971).
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A.6.3    GENERAL RESULTS FOR CHARACTERISTIC ROOTS AND VECTORS

A K * K symmetric matrix has K distinct characteristic vectors, c1, c2, ccK. The 
corresponding characteristic roots, l1, l2, c, lK, although real, need not be distinct. 
The characteristic vectors of a symmetric matrix are orthogonal,8 which implies that for 
every i ≠ j, ci

=cj = 0.9 It is convenient to collect the K-characteristic vectors in a K * K 
matrix whose ith column is the ci corresponding to li,

C = [c1 c2 g cK],

and the K-characteristic roots in the same order, in a diagonal matrix,

� = Dl1 0 g 0
0 l2 g 0

g
0 0 g lK

T .

Then, the full set of equations

Ack = lkck

is contained in

	 AC = C�.	 (A-80)

Because the vectors are orthogonal and ci
=ci = 1, we have

	 C′C = D c1
=c1 c1

=c2 g c1
=cK

c2
=c1 c2

=c2 g c2
=cK

f
cK
= c1 cK

= c2 g cK
= cK

T = I.	 (A-81)

Result (A-81) implies that

	 C′ = C-1.	 (A-82)

Consequently,

	 CC′ = CC-1 = I	 (A-83)

as well, so the rows as well as the columns of C are orthogonal.

A.6.4    DIAGONALIZATION AND SPECTRAL DECOMPOSITION OF A MATRIX

By premultiplying (A-80) by C′ and using (A-81), we can extract the characteristic 
roots of A.

8For proofs of these propositions, see Strang (1988–2014).
9This statement is not true if the matrix is not symmetric. For instance, it does not hold for the characteristic 
vectors computed in the first example. For nonsymmetric matrices, there is also a distinction between “right” 
characteristic vectors, Ac = lc, and “left” characteristic vectors, d′A = ld′, which may not be equal.
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In this representation, the K * K matrix A is written as a sum of K rank one matrices. This 
sum is also called the eigenvalue (or, “own” value) decomposition of A. In this connection, 
the term signature of the matrix is sometimes used to describe the characteristic roots 
and vectors. Yet another pair of terms for the parts of this decomposition are the latent 
roots and latent vectors of A.

A.6.5    RANK OF A MATRIX

The diagonalization result enables us to obtain the rank of a matrix very easily. To do 
so, we can use the following result.

Alternatively, by post multiplying (A-80) by C′ and using (A-83), we obtain a useful 
representation of A.

DEFINITION A.16  Spectral Decomposition of a Matrix
The spectral decomposition of A is

	 A = C�C′ = a
K

k = 1
lkckck

= .� (A-85)

THEOREM A.3  Rank of a Product
For any matrix A and nonsingular matrices B and C, the rank of  BAC is equal to the 
rank of A. Proof: By (A-45), rank(BAC) = rank[(BA)C] = rank(BA). By (A-43), 
rank(BA) = rank(A′B′), and applying (A-45) again, rank(A′B′) = rank(A′) 
because B′ is nonsingular if B is nonsingular [once again, by (A-43)]. Finally, 
applying (A-43) again to obtain rank(A′) = rank(A) gives the result.

DEFINITION A.15  Diagonalization of a Matrix
The diagonalization of a matrix A is

	 C′AC = C′C� = I� = �.� (A-84)

Because C and C′ are nonsingular, we can use them to apply this result to (A-84). By 
an obvious substitution,

	 rank(A) = rank(�).	 (A-86)

Finding the rank of � is trivial. Because � is a diagonal matrix, its rank is just the 
number of nonzero values on its diagonal. By extending this result, we can prove the 
following theorems. (Proofs are brief and are left for the reader.)
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The row rank and column rank of a matrix are equal, so we should be able to apply 
Theorem A.5 to AA′ as well. This process, however, requires an additional result.

Note how this result enters the spectral decomposition given earlier. If any of the 
characteristic roots are zero, then the number of rank one matrices in the sum is reduced 
correspondingly. It would appear that this simple rule will not be useful if A is not square. 
But recall that

	 rank(A) = rank(A′A).	 (A-87)

Because A′A is always square, we can use it instead of A. Indeed, we can use it even if 
A is not square, which leads to a fully general result.

THEOREM A.4  Rank of a Symmetric Matrix
The rank of a symmetric matrix is the number of nonzero characteristic roots 
it contains.

THEOREM A.5  Rank of a Matrix
The rank of any matrix A equals the number of nonzero characteristic roots 
in A′A.

THEOREM A.6  Roots of an Outer Product Matrix
The nonzero characteristic roots of AA′ are the same as those of A′A.

The proof is left as an exercise. A useful special case the reader can examine is the 
characteristic roots of aa′ and a′a, where a is an n * 1 vector.

If a characteristic root of a matrix is zero, then we have Ac = 0. Thus, if the matrix 
has a zero root, it must be singular. Otherwise, no nonzero c would exist. In general, 
therefore, a matrix is singular; that is, it does not have full rank if and only if it has at 
least one zero root.

A.6.6    CONDITION NUMBER OF A MATRIX

As the preceding might suggest, there is a discrete difference between full rank and short 
rank matrices. In analyzing data matrices such as the one in Section A.2, however, we 
shall often encounter cases in which a matrix is not quite short ranked, because it has all 
nonzero roots, but it is close. That is, by some measure, we can come very close to being 
able to write one column as a linear combination of the others. This case is important; 
we shall examine it at length in our discussion of multicollinearity in Section 4.9.1. Our 
definitions of rank and determinant will fail to indicate this possibility, but an alternative 
measure, the condition number, is designed for that purpose. Formally, the condition 
number for a square matrix A is
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	 g = c maximum root
minimum root

d
1/2

.	 (A-88)

For nonsquare matrices X, such as the data matrix in the example, we use A = X′X. As 
a further refinement, because the characteristic roots are affected by the scaling of the 
columns of X, we scale the columns to have length 1 by dividing each column by its norm 
[see (A-55)]. For the X in Section A.2, the largest characteristic root of A is 4.9255 and 
the smallest is 0.0001543. Therefore, the condition number is 178.67, which is extremely 
large. (Values greater than 20 are large.) That the smallest root is close to zero compared 
with the largest means that this matrix is nearly singular. Matrices with large condition 
numbers are difficult to invert accurately.

A.6.7    TRACE OF A MATRIX

The trace of a square K * K matrix is the sum of its diagonal elements:

tr(A) = a
K

k = 1
akk.

Some easily proven results are

	 tr(cA) = c(tr(A)),	 (A-89)

	 tr(A′) = tr(A),	 (A-90)

	 tr(A + B) = tr(A) + tr(B),	 (A-91)

	 tr(IK) = K.	 (A-92)

	 tr(AB) = tr(BA).	 (A-93)

a′a = tr(a′a) = tr(aa′)

tr(A′A) = a
K

k = 1
ak
= ak = a

K

i = 1
a
K

k = 1
aik

2 .

The permutation rule can be extended to any cyclic permutation in a product:

	 tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC).	 (A-94)

By using (A-84), we obtain

	 tr(C′AC) = tr(ACC′) = tr(AI) = tr(A) = tr(�).	 (A-95)

Because � is diagonal with the roots of A on its diagonal, the general result is the 
following.

THEOREM A.7  Trace of a Matrix

The trace of a matrix equals the sum of its characteristic roots.� (A-96)
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Notice that we get the expected result if any of these roots is zero. The determinant is 
the product of the roots, so it follows that a matrix is singular if and only if its determinant 
is zero and, in turn, if and only if it has at least one zero characteristic root.

A.6.9    POWERS OF A MATRIX

We often use expressions involving powers of matrices, such as AA = A2. For positive 
integer powers, these expressions can be computed by repeated multiplication. But this 
does not show how to handle a problem such as finding a B such that B2 = A, that is, 
the square root of a matrix. The characteristic roots and vectors provide a solution. 
Consider, first

	AA = A2 = (C�C′)(C�C′) = C�C′C�C′ = C�I�C′ = C��C′ = C�2C′.

� (A-100)

Two results follow. Because �2 is a diagonal matrix whose nonzero elements are the 
squares of those in �, the following is implied.

	
For any symmetric matrix, the characteristic roots of A2 are the

  squares of those of A, and the characteristic vectors are the same.
	 (A-101)

The proof is obtained by observing that the last result in (A-100) is the spectral 
decomposition of the matrix B = AA. Because A3 = AA2 and so on, (A-101) extends 
to any positive integer. By convention, for any A, A0 = I. Thus, for any symmetric matrix 
A, AK = C�KC′, K = 0, 1, c. Hence, the characteristic roots of AK are lK, whereas 
the characteristic vectors are the same as those of A. If A is nonsingular, so that all its 
roots li are nonzero, then this proof can be extended to negative powers as well.

A.6.8    DETERMINANT OF A MATRIX

Recalling how tedious the calculation of a determinant promised to be, we find that the 
following is particularly useful. Because

	  C′AC = �,
	  � C′AC � = � � � .	 (A-97)

Using a number of earlier results, we have, for orthogonal matrix C,

	 � C′AC � = � C′ � # � A � # � C � = � C′ � # � C � # � A � = � C′C � # � A � = � I � # � A � = 1 # � A �
	  = � A �
	  = � � � .� (A-98)

Because � � �  is just the product of its diagonal elements, the following is implied.

THEOREM A.8  Determinant of a Matrix

The determinant of a matrix equals the product of its characteristic roots.� (A-99)
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By extending the notion of repeated multiplication, we now have a more general result.

If A-1 exists, then

	 A-1 = (C�C′)-1 = (C′)-1�-1C-1 = C�-1C′,	 (A-102)

where we have used the earlier result, C′ = C-1. This gives an important result that is 
useful for analyzing inverse matrices.

THEOREM A.9  Characteristic Roots of an Inverse Matrix
If A-1 exists, then the characteristic roots of A-1 are the reciprocals of those of A, 
and the characteristic vectors are the same.

THEOREM A.10  Characteristic Roots of a Matrix Power
For any nonsingular symmetric matrix A = C�C′, AK = C�KC′, K = c, -2,
-1, 0, 1, 2, c.

DEFINITION A.17  Real Powers of a Positive Definite Matrix

For a positive definite matrix A, Ar = C�rC′, for any real number, r.� (A-105)

We now turn to the general problem of how to compute the square root of a matrix. 
In the scalar case, the value would have to be nonnegative. The matrix analog to this 
requirement is that all the characteristic roots are nonnegative. Consider, then, the 
candidate

	 A1/2 = C�1/2C = CD2l1 0 g 0
0 2l2 g 0

g
0 0 g 2ln

TC′.	 (A-103)

This equation satisfies the requirement for a square root, because

	 A1/2A1/2 = C�1/2C′C�1/2C′ = C�C′ = A.	 (A-104)

If we continue in this fashion, we can define the nonnegative powers of a matrix more 
generally, still assuming that all the characteristic roots are nonnegative. For example, 
A1/3 = C�1/3C′. If all the roots are strictly positive, we can go one step further and 
extend the result to any real power. For reasons that will be made clear in the next 
section, we say that a matrix with positive characteristic roots is positive definite. It is 
the matrix analog to a positive number.

Z01_GREE1366_08_SE_APP.indd   1084 1/5/17   5:00 PM



	 APPENDIX A  ✦  Matrix Algebra	 1085

The characteristic roots of Ar are the rth power of those of A, and the characteristic 
vectors are the same.

If A is only nonnegative definite—that is, has roots that are either zero or positive—
then (A-105) holds only for nonnegative r.

A.6.10    IDEMPOTENT MATRICES

Idempotent matrices are equal to their squares [see (A-37) to (A-39)]. In view of their 
importance in econometrics, we collect a few results related to idempotent matrices at this 
point. First, (A-101) implies that if l is a characteristic root of an idempotent matrix, then 
l = lK for all nonnegative integers K. As such, if A is a symmetric idempotent matrix, 
then all its roots are one or zero. Assume that all the roots of A are one. Then � = I, 
and A = C�C′ = CIC′ = CC′ = I. If the roots are not all one, then one or more are 
zero. Consequently, we have the following results for symmetric idempotent matrices:10

●● The only full rank, symmetric idempotent matrix is the identity matrix I.� (A-106)
●● All symmetric idempotent matrices except the identity matrix are singular.� (A-107)

The final result on idempotent matrices is obtained by observing that the count of the 
nonzero roots of A is also equal to their sum. By combining Theorems A.5 and A.7 with 
the result that for an idempotent matrix, the roots are all zero or one, we obtain this result:

●● The rank of a symmetric idempotent matrix is equal to its trace.� (A-108)

A.6.11    FACTORING A MATRIX: THE CHOLESKY DECOMPOSITION

In some applications, we shall require a matrix P such that

P′P = A-1.

One choice is

P = �-1/2C′,

so that

P′P = (C′)′(�-1/2)′�-1/2C′ = C�-1C′,

as desired.11 Thus, the spectral decomposition of A, A = C�C′ is a useful result for this 
kind of computation.

The Cholesky factorization of a symmetric positive definite matrix is an alternative 
representation that is useful in regression analysis. Any symmetric positive definite 
matrix A may be written as the product of a lower triangular matrix L and its transpose 
(which is an upper triangular matrix) L′ = U. Thus, A = LU. This result is the 
Cholesky decomposition of A. The square roots of the diagonal elements of L, di, are 
the Cholesky values of A. By arraying these in a diagonal matrix D, we may also write 
A = LD-1D2D-1U = L*D2U*, which is similar to the spectral decomposition in (A-85). 
The usefulness of this formulation arises when the inverse of A is required. Once L is 

10Not all idempotent matrices are symmetric. We shall not encounter any asymmetric ones in our work, however.
11We say that this is “one” choice because if A is symmetric, as it will be in all our applications, there are 
other candidates. The reader can easily verify that C�-1/2C′ = A-1/2 works as well.

Z01_GREE1366_08_SE_APP.indd   1085 1/5/17   5:00 PM



1086   Part VI  ✦   Appendices

computed, finding A-1 = U-1L-1 is also straightforward as well as extremely fast and 
accurate. Most recently developed econometric software packages use this technique 
for inverting positive definite matrices.

A.6.12    SINGULAR VALUE DECOMPOSITION

A third type of decomposition of a matrix is useful for numerical analysis when the 
inverse is difficult to obtain because the columns of A are “nearly” collinear. Any n * K 
matrix A for which n Ú K can be written in the form A = UWV′, where U is an 
orthogonal n * K matrix—that is, U′U = IK—W is a K * K diagonal matrix such that 
wi Ú 0, and V is a K * K matrix such that V′V = IK. This result is called the singular 
value decomposition (SVD) of A, and wi are the singular values of A.12 (Note that if A 
is square, then the spectral decomposition is a singular value decomposition.) As with 
the Cholesky decomposition, the usefulness of the SVD arises in inversion, in this case, 
of A′A. By multiplying it out, we obtain that (A′A)-1 is simply VW-2V′. Once the SVD 
of A is computed, the inversion is trivial. The other advantage of this format is its 
numerical stability, which is discussed at length in Press et al. (2007).

A.6.13    QR DECOMPOSITION

Press et al. (2007) recommend the SVD approach as the method of choice for solving 
least squares problems because of its accuracy and numerical stability. A commonly used 
alternative method similar to the SVD approach is the QR decomposition. Any n * K 
matrix, X, with n Ú K can be written in the form X = QR in which the columns of Q 
are orthonormal (Q′Q = I) and R is an upper triangular matrix. Decomposing X in this 
fashion allows an extremely accurate solution to the least squares problem that does not 
involve inversion or direct solution of the normal equations. Press et al. suggest that this 
method may have problems with rounding errors in problems when X is nearly of short 
rank, but based on other published results, this concern seems relatively minor.13

A.6.14    THE GENERALIZED INVERSE OF A MATRIX

Inverse matrices are fundamental in econometrics. Although we shall not require them 
much in our treatment in this book, there are more general forms of inverse matrices 
than we have considered thus far. A generalized inverse of a matrix A is another matrix 
A+ that satisfies the following requirements:

1.	 AA+A = A.
2.	 A+AA+ = A+.
3.	 A+A is symmetric.
4.	 AA+ is symmetric.

12Discussion of the singular value decomposition (and listings of computer programs for the computations) 
may be found in Press et al. (1986).
13The National Institute of Standards and Technology (NIST) has published a suite of benchmark problems 
that test the accuracy of least squares computations (http://www.nist.gov/itl/div898/strd). Using these 
problems, which include some extremely difficult, ill-conditioned data sets, we found that the QR method 
would reproduce all the NIST certified solutions to 15 digits of accuracy, which suggests that the QR 
method should be satisfactory for all but the worst problems. NIST’s benchmark for hard to solve least 
squares problems, the “Filipelli problem,” is solved accurately to at least 9 digits with the QR method. 
Evidently, other methods of least squares solution fail to produce an accurate result.
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A unique A+ can be found for any matrix, whether A is singular or not, or even if A is 
not square.14 The unique matrix that satisfies all four requirements is called the Moore–
Penrose inverse or pseudoinverse of A. If A happens to be square and nonsingular, then 
the generalized inverse will be the familiar ordinary inverse. But if A-1 does not exist, 
then A+ can still be computed.

An important special case is the overdetermined system of equations

Ab = y,

where A has n rows, K 6 n columns, and column rank equal to R … K. Suppose that R 
equals K, so that (A′A)-1 exists. Then the Moore–Penrose inverse of A is

A+ = (A′A)-1 A′,

which can be verified by multiplication. A “solution” to the system of equations can be 
written

b = A+y.

This is the vector that minimizes the length of Ab - y. Recall this was the solution to 
the least squares problem obtained in Section A.4.4. If y lies in the column space of A, 
this vector will be zero, but otherwise, it will not.

Now suppose that A does not have full rank. The previous solution cannot be 
computed. An alternative solution can be obtained, however. We continue to use the 
matrix A′A. In the spectral decomposition of Section A.6.4, if A has rank R, then there 
are R terms in the summation in (A-85). In (A-102), the spectral decomposition using 
the reciprocals of the characteristic roots is used to compute the inverse. To compute the 
Moore–Penrose inverse, we apply this calculation to A′A, using only the nonzero roots, 
then postmultiply the result by A′. Let C1 be the R characteristic vectors corresponding 
to the nonzero roots, which we array in the diagonal matrix, �1. Then the Moore–Penrose 
inverse is

A+ = C1�1
-1C1

=A′,

which is very similar to the previous result.
If A is a symmetric matrix with rank R … K, the Moore–Penrose inverse is 

computed precisely as in the preceding equation without postmultiplying by A′. Thus, 
for a symmetric matrix A,

A+ = C1�1
-1C1

= ,

where �1
-1 is a diagonal matrix containing the reciprocals of the nonzero roots of A.

A.7	 QUADRATIC FORMS AND DEFINITE MATRICES

Many optimization problems involve double sums of the form

	 q = a
n

i = 1
a
n

j = 1
xixjaij.	 (A-109)

14A proof of uniqueness, with several other results, may be found in Theil (1983).
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The preceding statements give, in each case, the “if” parts of the theorem. To 
establish the “only if” parts, assume that the condition on the roots does not hold. This 
must lead to a contradiction. For example, if some l can be negative, then y′�y could 
be negative for some y, so A cannot be positive definite.

A.7.1    NONNEGATIVE DEFINITE MATRICES

A case of particular interest is that of nonnegative definite matrices. Theorem A.11 
implies a number of related results.

●● if A is nonnegative definite, then � A � Ú 0.� (A-111)

Proof: The determinant is the product of the roots, which are nonnegative.

This quadratic form can be written

q = x′Ax

where A is a symmetric matrix. In general, q may be positive, negative, or zero; it depends 
on A and x. There are some matrices, however, for which q will be positive regardless 
of x, and others for which q will always be negative (or nonnegative or nonpositive). 
For a given matrix A,

1.	 If x′Ax 7 (6) 0 for all nonzero x, then A is positive (negative) definite.
2.	 If x′Ax Ú (…) 0 for all nonzero x, then A is nonnegative definite or positive 

semidefinite (nonpositive definite).

It might seem that it would be impossible to check a matrix for definiteness, since 
x can be chosen arbitrarily. But we have already used the set of results necessary to do 
so. Recall that a symmetric matrix can be decomposed into

A = C�C′.

Therefore, the quadratic form can be written as

x′Ax = x′C�C′x.

Let y = C′x. Then

	 x′Ax = y′�y = a
n

i = 1
liyi

2.	 (A-110)

If li is positive for all i, then regardless of y—that is, regardless of x—q will be positive. 
This case was identified earlier as a positive definite matrix. Continuing this line of 
reasoning, we obtain the following theorem.

THEOREM A.11  Definite Matrices
Let A be a symmetric matrix. If all the characteristic roots of A are positive 
(negative), then A is positive definite (negative definite). If some of the roots are 
zero, then A is nonnegative (nonpositive) definite if the remainder are positive 
(negative). If A has both negative and positive roots, then A is indefinite.
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The converse, however, is not true. For example, a 2 * 2 matrix with two negative 
roots is clearly not positive definite, but it does have a positive determinant.

●● if A is positive definite, so is A-1.� (A-112)

Proof: The roots are the reciprocals of those of A, which are, therefore positive.

●● the identity matrix I is positive definite.� (A-113)

Proof: x′Ix = x′x 7 0 if x ≠ 0.

A very important result for regression analysis is

●● if A is n * K with full column rank and n 7 K, then A′A is positive definite and 
AA′ is nonnegative definite.� (A-114)

Proof: By assumption, Ax ≠ 0. So x′A′Ax = (Ax)′(Ax) = y′y = a jyj
2 7 0.

A similar proof establishes the nonnegative definiteness of AA′. The difference in the 
latter case is that because A has more rows than columns there is an x such that A′x = 0. 
Thus, in the proof, we only have y′y Ú 0. The case in which A does not have full column 
rank is the same as that of AA′.

●● if A is positive definite and B is a nonsingular matrix, then B′AB is positive definite.
� (A-115)

Proof: x′B′ABx = y′Ay 7 0, where y = Bx. But y cannot be 0 because B is 
nonsingular.

Finally, note that for A to be negative definite, all A’s characteristic roots must be 
negative. But, in this case, � A �  is positive if A is of even order and negative if A is of 
odd order.

A.7.2    IDEMPOTENT QUADRATIC FORMS

Quadratic forms in idempotent matrices play an important role in the distributions of 
many test statistics. As such, we shall encounter them fairly often. Two central results 
are of interest.

●● every symmetric idempotent matrix is nonnegative definite.� (A-116)

Proof: All roots are one or zero; hence, the matrix is nonnegative definite by 
definition.

Combining this with some earlier results yields a result used in determining the sampling 
distribution of most of the standard test statistics.

●● If A is symmetric and idempotent, n * n with rank J, then every quadratic form 
in A can be written 

x′Ax = a J
j = 1yj

2� (A-117)

Proof: This result is (A-110) with l = one or zero.
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The roots of the inverse are the reciprocals of the roots of the original matrix, so the 
theorem can be applied to the inverse matrices.

A.8	 CALCULUS AND MATRIX ALGEBRA15

A.8.1    DIFFERENTIATION AND THE TAYLOR SERIES

A variable y is a function of another variable x written

y = f(x), y = g(x), y = y(x),

15For a complete exposition, see Magnus and Neudecker (2007).

A.7.3    COMPARING MATRICES

Derivations in econometrics often focus on whether one matrix is “larger” than another. 
We now consider how to make such a comparison. As a starting point, the two matrices 
must have the same dimensions. A useful comparison is based on

d = x′Ax - x′Bx = x′(A - B)x.

If d is always positive for any nonzero vector, x, then by this criterion, we can say that 
A is larger than B. The reverse would apply if d is always negative. It follows from the 
definition that

	 if d 7 0 for all nonzero x, then A - B is positive definite.	 (A-118)

If d is only greater than or equal to zero, then A - B is nonnegative definite. The 
ordering is not complete. For some pairs of matrices, d could have either sign, depending 
on x. In this case, there is no simple comparison.

A particular case of the general result which we will encounter frequently is.

	
if A is positive definite and B is nonnegative definite,
then A + B Ú A.

	 (A-119)

Consider, for example, the “updating formula” introduced in (A-66). This uses a matrix

A = B′B + bb′ Ú B′B.

Finally, in comparing matrices, it may be more convenient to compare their inverses. The 
result analogous to a familiar result for scalars is:

	 if A 7 B, then B-1 7 A-1.	 (A-120)

To establish this intuitive result, we would make use of the following, which is proved in 
Goldberger (1964, Chapter 2):

THEOREM A.12  Ordering for Positive Definite Matrices
If A and B are two positive definite matrices with the same dimensions and if every 
characteristic root of A is larger than (at least as large as) the corresponding char-
acteristic root of B when both sets of roots are ordered from largest to smallest, then 
A - B is positive (nonnegative) definite.
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and so on, if each value of x is associated with a single value of y. In this relationship, 
y and x are sometimes labeled the dependent variable and the independent variable, 
respectively. Assuming that the function f(x) is continuous and differentiable, we obtain 
the following derivatives:

f′(x) =
dy

dx
, f″(x) =

d2y

dx2,

and so on.
A frequent use of the derivatives of f(x) is in the Taylor series approximation. 

A Taylor series is a polynomial approximation to f(x). Letting x0 be an arbitrarily chosen 
expansion point

	 f(x) ≈ f(x0) + a
P

i = 1
 
1
i!

 
dif(x0)

d(x0)i  (x - x0)i.	 (A-121)

The choice of P, the number of terms, is arbitrary; the more that are used, the more 
accurate the approximation will be. The approximation used most frequently in 
econometrics is the linear approximation,

	 f(x) ≈ a + bx,	 (A-122)

where, by collecting terms in (A-121), a = [f(x0) - f′(x0)x0] and b = f′(x0). 
The  superscript “0” indicates that the function is evaluated at x0. The quadratic 
approximation is

	 f(x) ≈ a + bx + gx2,	 (A-123)

where a = [f 0 - f′0x0 + 1
2 f ″0(x0)2], b = [f′0 - f ″0x0] and g = 1

2 f ″0.
We can regard a function y = f(x1, x2, c, xn) as a scalar-valued function of a 

vector; that is, y = f(x). The vector of partial derivatives, or gradient vector, or simply 
gradient, is

	
0f(x)

0x
= D 0y/0x1

0y/0x2

g
0y/0xn

T = D f1

f2

g
fn

T .	 (A-124)

The vector g(x) or g is used to represent the gradient. Notice that it is a column vector. 
The shape of the derivative is determined by the denominator of the derivative.

A second derivatives matrix or Hessian is computed as

	 H = D 02y/0x10x1 02y/0x10x2 g 02y/0x10xn

02y/0x20x1 02y/0x20x2 g 02y/0x20xn

g g g g
02y/0xn0x1 02y/0xn0x2 g 02y/0xn0xn

T = [fij].	 (A-125)

In general, H is a square, symmetric matrix. (The symmetry is obtained for continuous 
and continuously differentiable functions from Young’s theorem.) Each column of H is 
the derivative of g with respect to the corresponding variable in x′. Therefore,
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H = c 0(0y/0x)

0x1
 
0(0y/0x)

0x2
g

0(0y/0x)

0xn
R =

0(0y/0x)

0(x1 x2 gxn)
=

0(0y/0x)

0x′
=

02y

0x0x′
.

The first-order, or linear Taylor series approximation is

	 y ≈ f(x0) + a
n

i = 1
fi(x0)(xi - xi

0).	 (A-126)

The right-hand side is

f(x0) + J 0f(x0)

0x0 R ′
(x - x0) = [f(x0) - g(x0)′x0] + g(x0)′x = [f 0 - g0′x0] + g0′x.

This produces the linear approximation,

y ≈ a + b′x.

The second-order, or quadratic, approximation adds the second-order terms in the 
expansion,

1
2

 a
n

i = 1
a
n

j = 1
f ij

0(xi - xi
0)(xj - xj

0) =
1
2

 (x - x0)′H0(x - x0),

to the preceding one. Collecting terms in the same manner as in (A-126), we have

	 y ≈ a + b′x +
1
2

 x′�x,	 (A-127)

where

a = f 0 - g0′x0 +
1
2

 x0′H0x0, b = g0 - H0x0 and � = H0.

A linear function can be written

y = a′x = x′a = a
n

i = 1
aixi,

so

	
0(a′x)

0x
= a.	 (A-128)

Note, in particular, that 0(a′x)/0x = a, not a′. In a set of linear functions

y = Ax,

each element yi of y is

yi = ai
=x,

where ai
= is the ith row of A [see (A-14)]. Therefore,

0yi

0x
= ai = transpose of ith row of A,

and
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0y2/0x′
g

0yn/0x′

T = D a1
=

a2
=

g
an
=

T .

Collecting all terms, we find that 0Ax/0x′ = A, whereas the more familiar form will be

	
0x′A′

0x
= A′.� (A-129)

A quadratic form is written

	 x′Ax = a
n

i = 1
a
n

j = 1
xixjaij.� (A-130)

For example,

A = J1 3
3 4

R ,

so that

x′Ax = 1x1
2 + 4x2

2 + 6x1x2.

Then

	
0x′Ax

0x
= J2x1 + 6x2

6x1 + 8x2
R = J2 6

6 8
R  Jx1

x2
R = 2Ax,	 (A-131)

which is the general result when A is a symmetric matrix. If A is not symmetric, then

	
0(x′Ax)

0x
= (A + A′)x.	 (A-132)

Referring to the preceding double summation, we find that for each term, the coefficient 
on aij is xixj. Therefore,

0(x′Ax)

0aij
= xixj.

The square matrix whose i jth element is xixj is xx′, so

	
0(x′Ax)

0A
= xx′.	 (A-133)

Derivatives involving determinants appear in maximum likelihood estimation. 
From the cofactor expansion in (A-51),

0 � A �
0aij

= (-1)i + j � Aij � = cij

where � Cji �  is the jith cofactor in A. The inverse of A can be computed using

Aij
-1 =

� Cji �

� A �
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(note the reversal of the subscripts), which implies that

0 ln � A �
0aij

=
(-1)i + j � Aij �

� A �
,

or, collecting terms,

0 ln � A �
0A

= A-1=
.

Because the matrices for which we shall make use of this calculation will be symmetric 
in our applications, the transposition will be unnecessary.

A.8.2    OPTIMIZATION

Consider finding the x where f(x) is maximized or minimized. Because f′(x) is the slope 
of f(x), either optimum must occur where f′(x) = 0. Otherwise, the function will be 
increasing or decreasing at x. This result implies the first-order or necessary condition 
for an optimum (maximum or minimum):

	
dy

dx
= 0.	 (A-134)

For a maximum, the function must be concave; for a minimum, it must be convex. The 
sufficient condition for an optimum is.

	
For a maximum, 

d2y

dx2 6 0;

for a minimum, 
d2y

dx2 7 0.
	 (A-135)

Some functions, such as the sine and cosine functions, have many local optima, that 
is, many minima and maxima. A function such as (cos x)/(1 + x2), which is a damped 
cosine wave, does as well but differs in that although it has many local maxima, it has 
one, at x = 0, at which f(x) is greater than it is at any other point. Thus, x = 0 is the 
global maximum, whereas the other maxima are only local maxima. Certain functions, 
such as a quadratic, have only a single optimum. These functions are globally concave if 
the optimum is a maximum and globally convex if it is a minimum.

For maximizing or minimizing a function of several variables, the first-order 
conditions are

	
0f(x)

0x
= 0.	 (A-136)

This result is interpreted in the same manner as the necessary condition in the univariate 
case. At the optimum, it must be true that no small change in any variable leads to an 
improvement in the function value. In the single-variable case, d2y/dx2 must be positive 
for a minimum and negative for a maximum. The second-order condition for an optimum 
in the multivariate case is that, at the optimizing value,

	 H =
02f(x)

0x 0x′
	 (A-137)
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must be positive definite for a minimum and negative definite for a maximum.
In a single-variable problem, the second-order condition can usually be verified by 

inspection. This situation will not generally be true in the multivariate case. As discussed 
earlier, checking the definiteness of a matrix is, in general, a difficult problem. For most 
of the problems encountered in econometrics, however, the second-order condition will 
be implied by the structure of the problem. That is, the matrix H will usually be of such 
a form that it is always definite.

For an example of the preceding, consider the problem

maximizexR = a′x - x′Ax,

where

a′ = (5 4 2),

and

A = C2 1 3
1 3 2
3 2 5

S .

Using some now familiar results, we obtain

	
0R
0x

= a - 2Ax = C5
4
2
S - C4 2 6

2 6 4
6 4 10

S Cx1

x2

x3

S = 0.	 (A-138)

The solutions are Cx1

x2

x3

S = C4 2 6
2 6 4
6 4 10

S -1C5
4
2
S = C 11.25

1.75
-7.25

S .

The sufficient condition is that

	
02R(x)

0x 0x′
= -2A = C -4 -2 -6

-2 -6 -4
-6 -4 -10

S 	 (A-139)

must be negative definite. The three characteristic roots of this matrix are -15.746, -4, 
and -0.25403. Because all three roots are negative, the matrix is negative definite, as 
required.

In the preceding, it was necessary to compute the characteristic roots of the Hessian 
to verify the sufficient condition. For a general matrix of order larger than 2, this will 
normally require a computer. Suppose, however, that A is of the form

A = B′B,

where B is some known matrix. Then, as shown earlier, we know that A will always 
be positive definite (assuming that B has full rank). In this case, it is not necessary to 
calculate the characteristic roots of A to verify the sufficient conditions.
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A.8.3    CONSTRAINED OPTIMIZATION

It is often necessary to solve an optimization problem subject to some constraints on 
the solution. One method is merely to “solve out” the constraints. For example, in the 
maximization problem considered earlier, suppose that the constraint x1 = x2 - x3 is 
imposed on the solution. For a single constraint such as this one, it is possible merely 
to substitute the right-hand side of this equation for x1 in the objective function and 
solve the resulting problem as a function of the remaining two variables. For more 
general constraints, however, or when there is more than one constraint, the method of 
Lagrange multipliers provides a more straightforward method of solving the problem. 
We seek to

	  maximizex f(x) subject to c1(x) = 0
	  c2(x) = 0,
	  g
	  cJ(x) = 0.	 (A-140)

The Lagrangean approach to this problem is to find the stationary points—that is, the 
points at which the derivatives are zero—of

	 L*(x, L) = f(x) + a
J

j = 1
ljcj(x) = f(x) + L′c(x).	 (A-141)

The solutions satisfy the equations

	  
0L*

0x
=

0f(x)

0x
+

0L′c(x)

0x
= 0(n * 1),

	  
0L*

0L
= c(x) = 0 (J * 1). 	 (A-142)

The second term in 0L*/0x is

	
0L′c(x)

0x
=

0c(x)′L
0x

= c 0c(x)′
0x

d  L = C′L,	 (A-143)

where C is the matrix of derivatives of the constraints with respect to x. The jth row of 
the J * n matrix C is the vector of derivatives of the jth constraint, cj(x), with respect 
to x′. Upon collecting terms, the first-order conditions are

	  
0L*

0x
=

0f(x)

0x
+ C′L = 0,

	  
0L*

0l
= c(x) = 0. 	 (A-144)

There is one very important aspect of the constrained solution to consider. In the 
unconstrained solution, we have 0f(x)/0x = 0. From (A-144), we obtain, for a constrained 
solution,

	
0f(x)

0x
= -C′L,	 (A-145)
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which will not equal 0 unless L = 0. This result has two important implications:

●● The constrained solution cannot be superior to the unconstrained solution. This is 
implied by the nonzero gradient at the constrained solution. (That is, unless C = 0 
which could happen if the constraints were nonlinear. But, even if so, the solution is 
still not better than the unconstrained optimum.)

●● If the Lagrange multipliers are zero, then the constrained solution will equal the 
unconstrained solution.

To continue the example begun earlier, suppose that we add the following conditions:

x1 - x2 + x3 = 0,
x1 + x2 + x3 = 0.

To put this in the format of the general problem, write the constraints as c(x) = Cx = 0, 
where

C = J1  -1 1
1 1 1

R .

The Lagrangean function is

R*(x, L) = a′x - x′Ax + L′Cx.

Note the dimensions and arrangement of the various parts. In particular, C is a 2 * 3 
matrix, with one row for each constraint and one column for each variable in the 
objective function. The vector of Lagrange multipliers thus has two elements, one for 
each constraint. The necessary conditions are

	 a - 2Ax + C′L = 0 (three equations),	 (A-146)

and

Cx = 0 (two equations).

These may be combined in the single equationJ -2A C′
C 0

R J x
L
R = J -a

0
R .

Using the partitioned inverse of (A-74) produces the solutions

	 L = -[CA-1C′]-1 CA-1a	 (A-147)

and

	 x =
1
2

 A-1[I - C′(CA-1C′)-1CA-1]a.	 (A-148)

The two results, (A-147) and (A-148), yield analytic solutions for L and x. For the specific 
matrices and vectors of the example, these are l = [-0.5 -7.5]′, and the constrained 
solution vector, x* = [1.50 -1.5]′. Note that in computing the solution to this sort of 
problem, it is not necessary to use the rather cumbersome form of (A-148). Once l 
is obtained from (A-147), the solution can be inserted in (A-146) for a much simpler 
computation. The solution

x =
1
2

 A-1a +
1
2

 A-1C′L
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suggests a useful result for the constrained optimum:

	 constrained solution = unconstrained solution + [2A]-1 C′L.	 (A-149)

Finally, by inserting the two solutions in the original function, we find that 
R = 24.375 and R* = 2.25, which illustrates again that the constrained solution (in this 
maximization problem) is inferior to the unconstrained solution.

A.8.4    TRANSFORMATIONS

If a function is strictly monotonic, then it is a one-to-one function. Each y is associated 
with exactly one value of x, and vice versa. In this case, an inverse function exists, which 
expresses x as a function of y, written

y = f(x)

and

x = f -1(y).

An example is the inverse relationship between the log and the exponential functions.
The slope of the inverse function,

J =
dx
dy

=
df -1(y)

dy
= f -1=

(y),

is the Jacobian of the transformation from y to x. For example, if

y = a + bx,

then

x = -
a
b

+ c 1
b
dy

is the inverse transformation and

J =
dx
dy

=
1
b

.

Looking ahead to the statistical application of this concept, we observe that if y = f(x) 
were vertical, then this would no longer be a functional relationship. The same x would 
be associated with more than one value of y. In this case, at this value of x, we would 
find that J = 0, indicating a singularity in the function.

If y is a column vector of functions, y = f(x), then

J =
0x
0y′

= D 0x1/0y1 0x1/0y2 g 0x1/0yn

0x2/0y1 0x2/0y2 g 0x2/0yn

f
0xn/0y1 0xn/0y2 g 0xn/0yn

T .

Consider the set of linear functions y = Ax = f(x). The inverse transformation is 
x = f -1(y), which will be

x = A-1y,
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if A is nonsingular. If A is singular, then there is no inverse transformation. Let J be the 
matrix of partial derivatives of the inverse functions:

J = J 0xi

0yj
R .

The absolute value of the determinant of J,

abs( � J � ) = abs¢det¢ c 0x
0y′

d ≤ ≤,

is the Jacobian determinant of the transformation from y to x. In the nonsingular case,

abs( � J � ) = abs( � A-1 � ) =
1

abs( � A � )
.

In the singular case, the matrix of partial derivatives will be singular and the determinant 
of the Jacobian will be zero. In this instance, the singular Jacobian implies that A is 
singular or, equivalently, that the transformations from x to y are functionally dependent. 
The singular case is analogous to the single-variable case.

Clearly, if the vector x is given, then y = Ax can be computed from x. Whether x 
can be deduced from y is another question. Evidently, it depends on the Jacobian. If the 
Jacobian is not zero, then the inverse transformations exist, and we can obtain x. If not, 
then we cannot obtain x.

A P P E N D I X  B

§
Probability and Distribution Theory

B.1	 INTRODUCTION

This appendix reviews the distribution theory used later in the book. A previous course 
in statistics is assumed, so most of the results will be stated without proof. The more 
advanced results in the later sections will be developed in greater detail.

B.2	 RANDOM VARIABLES

We view our observation on some aspect of the economy as the outcome or realization 
of a random process that is almost never under our (the analyst’s) control. In the current 
literature, the descriptive (and perspective laden) term data generating process (DPG) 
is often used for this underlying mechanism. The observed (measured) outcomes of the 
process are assigned unique numeric values. The assignment is one to one; each outcome 

Z01_GREE1366_08_SE_APP.indd   1099 1/5/17   5:00 PM


