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0. Introduction.

The purpose of this paper is to give a limit theorem for a cer-
tain class of discrete-time multi-type non-stationary branching processes
(multi-type varying environment Galton-Watson processes). Let XN =
t(XN,1, XN,2, · · · , XN,d) , N = 0, 1, 2, · · · be a discrete-time branching pro-
cess with d types. The discrete-time branching process XN is deter-
mined by its generating functions φn,N,i(z) . For i ∈ {1, 2, · · · , d} , define
ei = t(ei,1, ei,2, · · · , ei,d) ∈ Z+

d by ei,i = 1 , and ei,j = 0 , if i �= j . Then

φn,N,i(z) d=
∑

α∈Z+
d

(
d∏

i=1

zαi

i

)
Prob{XN = α | Xn = ei} ,(1)

n ∈ Z+ , N ∈ Z+ , n ≤ N , i = 1, 2, · · · , d , z ∈ Cd .

The generating functions φn,N = t(φn,N,1, φn,N,2, · · · , φn,N,d) are deter-
mined by recursion relations (see, for example, [2] on branching processes).
For a non-stationary branching process, we have

φn,N (z) = φn,N−1(φN−1,N (z)) = φn,n+1(φn+1,N (z)) , n < N ,(2)
φn,n(z) = z ,

Compared with the stationary case, φn,N = φ0,N−n , or the one-type
non-stationary case, d = 1 , not many studies seem to have been done for
multi-type non-stationary branching processes. Perhaps one of the diffi-
culties with such studies lies in finding a class of processes where the non-
stationarity and multi-typedness enter in a non-trivial way, and yet a clear
limiting behavior is obtained.

As an approach to this problem, we consider in this paper the case
where the non-stationarity enters in a simple way. Namely, we assume

(3) φN−1,N (z) = D−1
N−1F (DNz) , N = 1, 2, 3, · · · ,

where DN = diag(DN,1, DN,2, · · · , DN,d) , N ∈ Z+ , are diagonal matrices,
and F is a Cd-valued function in d variables.

From eq. (2) and eq. (3) it follows that

φn,N (z) = D−1
n FN−n(DNz) ,
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which is similar to the corresponding formula for the stationary case. In
fact, if the matrices DN are unit matrices, this equation reduces to the
formula for the stationary case.

If the limit F̂ (z) = lim
N→∞

D−1
N−1F (DNz) exists and is analytic at z = 1,

then the asymptotic behavior of the branching process will be essentially
that of a stationary branching process defined by φN−1,N = F̂ . How-
ever, if F̂ is singular at z = 1, we cannot apply the theory of station-
ary branching processes directly, hence a consideration of non-stationarity
(N -dependences of φN−1,N (z)) becomes non-trivial.

We introduce some notation. Put �1 d= t(1, · · · , 1) . For a Cd-valued
differentiable function F = t(F1, F2, · · · , Fd) in d variables z = (z1, · · · , zd) ,

we define a d× d matrix ∇F (z) by ∇F (z)ij =
∂Fi(z)

∂zj
. For a d × d matrix

M , ‖ M ‖ d= sup
v=(v1,···,vd), ‖v‖=1

‖ M v ‖ is the usual operator norm, with

‖ v ‖=
√√√√ d∑

i=1

|vi|2 for a d-component vector v. We also use the notation

exp(t) d= (exp(t1), · · · , exp(td)) for t = (t1, · · · , td) ∈ Cd .

Definition 1. Let {DN} , N = 0, 1, 2, · · · , be a series of d-dimensional di-
agonal matrices, DN = diag(DN,1, DN,2, · · · , DN,d) , with positive diagonal
elements; DN,i > 0 . For a constant δ > 1 , we say that {DN} is of order δ
if sup

N∈Z+,i=1,···,d
DN,i < ∞ and sup

N∈Z+,i=1,···,d
δ−N D−1

N,i < ∞ are satisfied.

Definition 2. Let {DN} , N = 0, 1, 2, · · · , be a series of d-dimensional
diagonal matrices of order δ (> 1) and let � be a constant satisfying � > δ .
We say that a Cd-valued function F in d variables defined on an open set
containing

⋃
N∈Z+

{DN
�1} is ({DN}, �)-regular if the following are satisfied.

1. The function F has the expression

F (DN
�1 + t) = DN−1

�1 + AN t + F̃N (t) , N ∈ Z+ , ‖ t ‖< C0 δ−N ,

where AN is a d × d matrix independent of t, and F̃N is analytic in
‖ t ‖< C0 δ−N and satisfies

‖ F̃N (t) ‖≤ C1 δN ‖ t ‖2, ‖ t ‖< C0 δ−N , N ∈ Z+ ,

for some positive constants C0 and C1 independent of N and t.
2. There exists a matrix A such that

‖ A − AN ‖< C2 δ−N ,
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where C2 is a constant independent of N . The matrix A has an eigen-
value �, and the absolute values of eigenvalues of A other than � are
less than �. Furthermore, each Jordan cell with the eigenvalue � is one
dimensional.

The condition 1 implies that

F (DN�1) = DN−1�1 , N = 1, 2, 3, · · · ,
AN = ∇F (DN

�1) , N = 1, 2, 3, · · · ,

and the condition 2 implies that the limit

(4) Bn
d= lim

N→∞
�−N+nAn+1An+2 · · ·AN

exists (see Appendix).
The conditions 1 and 2 roughly state that for each N ∈ Z+ , the func-

tion F is analytic in a circle of center DN
�1 and radius O(δ−N ) and that

the first order term of F in z dominates the higher order terms.
Note that the conditions do not exclude the possibility that the function

F is singular at the point z0
d= lim

N→∞
DN

�1 .

Remark. We can extend our results to the case where the function
F has N -dependences; i.e. with the replacement F → FN in the above
definition and in eq. (3), Theorem 1 and 2 below still hold.

Definition 3. Let {DN} , N = 0, 1, 2, · · · , be a series of d-dimensional
diagonal matrices of order δ (> 1) . We call XN a branching process of type
(d, {DN}, �) , if XN is a discrete-time branching process with d types, and
if the generating functions defined by eq. (1) satisfy the recursion equations
eq. (2) and eq. (3) for some ({DN}, �)-regular function F .

The conditions in Definition 1 and Definition 2.2 together with � > δ are
an extension of the notion of supercriticality. Definition 2.1, on the other
hand, is a rather restrictive condition implying the existence of moments of
XN .

In this paper we prove the following.

Theorem 1. Let XN be a branching process of type (d, {DN}, �) . Then
�−N D−1

N XN converges weakly to a random variable Y = (Y1, · · · , Yd) as
N → ∞ .

E[Yj | Xn = ei] = �−n
(
D−1

n Bn

)
ij

,

i = 1, 2, · · · , d , j = 1, 2, · · · , d , n ∈ Z+ .
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Example. Let XN be a branching process with 2 types such that the
transition probability

PN (α, β) = Prob{XN+1 = β | XN = α} , α ∈ Z+
2 , β ∈ Z+

2 , N ∈ Z+ ,

is determined by

PN ((1, 0), (2, 0)) =
(1 − ε′N+1)

2

1 − ε′N
,

PN ((1, 0), (k, 2)) =
3(1 − ε′N+1)

kε2N+1

25(1 − ε′N )
, k = 0, 1, 2, · · · ,

PN ((1, 0), β) = 0 , otherwise,

PN ((0, 1), (k, 2)) =
(1 − ε′N+1)

kε2N+1

εN
, k = 0, 1, 2, · · · ,

PN ((0, 1), β) = 0 , otherwise.

Here, ε′N , εN , N = 0, 1, · · · , are positive constants, defined recursively by
F (1− ε′N+1, εN+1) = (1 − ε′N , εN ) , N ∈ Z+ , with given positive constants
ε′0 and ε0, satisfying ε′0 < 1

2 and ε0 < 1
2 , and F is defined by

F (x, y) = (x2 +
3
25

y2

1 − x
,

y2

1 − x
) .

It is easy to see that XN is a branching process of type (2, {DN}, 4)
with DN = diag(1− ε′N , εN) . The conditions in the definitions are satisfied
with δ = 5

3 . Also it follows that εN = C δ−N (1 + O(δ−N )) and ε′N =
C δ−N−1 (1+O(δ−N)) , where C is a constant. Theorem 1 therefore implies
that 4−N ((1 − ε′N )−1 XN,1, ε

−1
N XN,2) converges weakly as N → ∞ . Using

the asymptotic form of ε′N and εN , it further follows that 4−N XN,1 and
(12/5)−N XN,2 converges, or in other words, the average number of type 1
will grow at the rate of 4 per generation asymptotically, while that of type
2 will grow at the rate of 12/5 per generation.

Note that though the birth rate of type 2 from type 1 disappears in
the limit N → ∞ , the birth affects the average growth rate significantly in
the limit, or otherwise the average growth rate for type 1 would have been
2 instead of � = 4. This is because a birth of type 2 will in turn give birth

of order
1

ε′N
of type 1 in average, which diverges as N is increased.

For the one-type case d = 1 , the branching process of type (d =
1, {DN}, �) falls into the class considered by Biggins and D’Souza [3]. In
this case, the conditions in Definition 1 and Definition 2.2 together with
� > δ imply the “uniform supercriticality”, while Definition 2.1 implies the
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“dominance condition”. (We learned this from Prof. Biggins.) A result in
[3] then implies that (for d = 1) the process has a single rate of growth.

As is seen in the above example, the conditions (for d > 1) do not
imply the same rate of growth among the different types. The gap between
the upper and lower bound of DN,i in Definition 1 is crucial for such a
possibility.

We are particularly interested in the situation where growth rate of
different types differ, and where the birth of less increasing types affects
the growth rates of dominant types. Non-stationarity and multi-typedness
both enter in a non-trivial way in this phenomena.

The present study in the particular class of branching processes grew
out of our attempt in constructing a non-self-similar diffusion on the Sier-
pinski gasket. We briefly discuss the application in Section 3 (the details,
however, will be left for the future publication).

Acknowledgement. The authors would like to thank Prof. M. T. Barlow,
Prof. K. Hattori, Prof. J. Kigami, Prof. T. Kumagai, Prof. S. Kusuoka, and
Prof. Y. Takahashi for valuable discussions concerning the present work.
They would also like to thank Prof. J. D. Biggins who kindly informed
them of the connection between the present work and his results on one-
type varying environment Galton-Watson processes.

1. Main results.

Let {φn,N (z)} be a sequence of Cd-valued functions defined by the recur-
sion relation eq. (2) and eq. (3) for a Cd-valued ({DN}, �)-regular function
F . Put

fn,N (s) = Dnφn,N (exp(−�−ND−1
N s))

= FN−n(DN exp(−�−ND−1
N s)) .

Theorem 2. There exist positive constants ε and C such that, for every
n ∈ Z+:
(i) The function fn,N (s), N ≥ n, is analytic on ‖ s ‖< ε �nδ−n and con-

verges uniformly to an analytic function fn(s) on ‖ s ‖< ε �nδ−n as
N → ∞ .

(ii) The function fn(s) has the expression

fn(s) = Dn�1 − �−nBn s + f̃n(s) , ‖ s ‖< ε �nδ−n ,

with the bound

‖ f̃n(s) ‖≤ C δn�−2n ‖ s ‖2, ‖ s ‖< ε �nδ−n .
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Theorem 1 is obtained from Theorem 2 by a standard argument.

Proof of Theorem 1 assuming Theorem 2. Put C+
d= {s ∈ C | 	(s) ≥

0} , For each n ∈ Z+ and N ∈ Z+ , satisfying n ≤ N , and for each i ∈
{1, 2, · · · , d} , let Qn,N,i be the distribution of �−N D−1

N XN conditioned by
Xn = ei , and let

Φn,N,i(s) =
∫
Rd

exp(−s · w)Qn,N,i(dw)

=
∫

[0,∞)d

exp(−s · w)Qn,N,i(dw) , s ∈ C+
d ,

be the Laplace transform (generating function) of Qn,N,i . Put Φn,N =
(Φn,N,1, · · · , Φn,N,d) . With eq. (1) we have

Φn,N (s) = φn,N (exp(−�−ND−1
N s)) .

Theorem 2 then implies that there exists a positive constant ε such
that {Φn,N}N=n,n+1,n+2,··· converges uniformly to an analytic function on
‖ s ‖< ε (≤ ε �n δ−n) . Therefore we have for each i ∈ {1, 2, · · · , d} and each
n ∈ Z+ ,

M
d= sup

N
{
∫

[0,∞)d

exp(ε�1 · w/(2
√

d))Qn,N,i(dw)} < ∞ .

Fix R > 0 and put Ej
d= {w ∈ [0,∞)d | wj ≥ R} , j = 1, 2, · · · , d . Then we

have

M ≥ sup
N

{
∫

Ej

exp(ε�1 · w/(2
√

d))Qn,N,i(dw)}

≥ exp(εR/(2
√

d)) sup
N

Qn,N,i(Ej) .

Hence

sup
N

Qn,N,i([0, R]d) ≥ 1 −
∑

j

sup
N

Qn,N,i(Ej)

≥ 1 − M d exp(−εR/(2
√

d)) .

The right hand side converges to 1 as R → ∞ . Therefore the sequence of
measures {Qn,N,i}N=n,n+1,··· is tight.

Since {Qn,N,i} is tight, there exists a subsequence that converges
weakly to a probability measure. For each convergent subsequence
{Qn,kN ,i}N=1,2,··· , {Φn,kN ,i(s)} converges uniformly on compact sets in
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C+
d . Therefore {Φn,kN ,i(s)} converges to a function that is analytic in

the interior of C+
d and continuous in C+

d .
On the other hand, Theorem 2 implies that {Φn,N,i(s)} converges to

an analytic function in a neighborhood of s = 0 . Therefore, {Φn,kN ,i} con-
verges to an analytic function independent of the choice of subsequences in
the interior of C+

d . Since the limit of {Φn,kN ,i} is continuous in C+
d , this

further implies that {Φn,kN ,i} converges to a continuous function indepen-
dent of the choice of subsequences in C+

d . We have shown that for any
convergent subsequence {Qn,kN ,i} of {Qn,N,i} the corresponding sequence
of the characteristic functions {Φn,kN ,i(

√−1x)} converges to a function in-
dependent of the choice of subsequences for x ∈ Rd , which implies that
the limit measure Qn,i of the sequence {Qn,kN ,i} is independent of the
subsequence. Since {Qn,N,i} is tight, this implies that {Qn,N,i} converges
weakly to a probability measure Qn,i . The proof of the statement on the
expectation values is straightforward. This completes the proof.

2. Proof of Theorem 2.

We put, for n1, n2 ∈ Z+ with n1 ≤ n2,

Bn1,n2

d= �−n2+n1An1+1An1+2 · · ·An2 ,(5)

Bn1,n1

d= I.(6)

Theorem 2 follows from Propositions 1 and 2 below.

Proposition 1. There exist positive constants ε and C3 independent of
n, N ∈ Z+ such that the function fn,N(s) , n ≤ N , has the expression

(7) fn,N (s) = Dn�1 − �−nBn,Ns + f̃n,N(s), ‖ s ‖< 2ε �n δ−n,

with the bound

(8) ‖ f̃n,N (s) ‖≤ C3δ
n�−2n ‖ s ‖2, ‖ s ‖< 2ε �n δ−n.

Proposition 2. For n, N, N ′ ∈ Z+ with n ≤ N ≤ N ′, it holds that

(9) ‖ f̃n,N(s) − f̃n,N ′(s) ‖≤ C4r
−N ‖ s ‖2, ‖ s ‖< ε �n δ−n,

where C4 > 0 and r > 1 are constants independent of n, N, N ′ and s.

Proof of Theorem 2 assuming Propositions 1 and 2. Proposition 2
implies that the family {f̃n,N}N=n,n+1,··· constitutes a Cauchy series. Then,
taking the limit N → ∞ in (7) and (8), we obtain Theorem 2, where

f̃n(s) = lim
N→∞

f̃n,N(s).
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Proof of Proposition 1. Let us prove the proposition by induction on
n = N, N − 1, · · · , 0. Since

(10) fN,N (s) = DN exp(−�−ND−1
N s)

and since there exists a constant C5 > 0 such that

‖ �−ND−1
N s ‖< C5, ‖ s ‖< 2ε�Nδ−N ,

we have

(11) ‖ f̃N,N (s) ‖≤ αδN �−2N ‖ s ‖2, ‖ s ‖< 2ε�Nδ−N ,

for some constant α independent of N and s.
Suppose that

(12) ‖ f̃n,N (s) ‖≤ αnδn�−2n ‖ s ‖2, ‖ s ‖< 2ε�nδ−n,

holds for an n ≤ N , where αn is a constant independent of N and s. Let
us estimate the function fn−1,N(s) given by

(13) fn−1,N(s) = F (fn,N (s)) = F (Dn
�1 − �−nBn,Ns + f̃n,N (s)).

Firstly, the function fn−1,N(s) is well-defined by (13) for s such that

(14) ‖ �−nBn,Ns − f̃n,N(s) ‖< C0δ
−n.

As is shown in Appendix, there exists a constant C6 > 0 independent of n
such that

(15) ‖ Bn,N ‖< C6.

Then the condition (14) holds for s satisfying

(16) ‖ s ‖< 2ε�n−1δ−n+1,

if

(17) C6
δ

�
2ε + 4ε2(

δ

�
)2αn < C0.

Secondly, by using

f̃n−1,N (s) = Anf̃n,N (s) + F̃n(−�−nBn,Ns + f̃n,N(s))
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and

‖ �−nBn,Ns − f̃n,N (s) ‖≤ (C6 + 2εαn)�−n ‖ s ‖,

we can estimate f̃n−1,N (s) and reproduce (12) with n replaced by n − 1,
where we put

(18) αn−1 =‖ An ‖ δ�−2αn + C1δ�
−2(C6 + 2εαn)2.

Since δ < � and

‖ An ‖< � + C2δ
−n,

the solution to (18) with αN = α satisfies (17), if ε is sufficiently small.

The proof of Proposition 2 is based on the recursion relation

(19) fm−1,N (s) − fm−1,N ′(s) = F (fm,N (s)) − F (fm,N ′(s))

and on the following difference property for F .

Lemma . For m ∈ Z+ and t, t′ ∈ Cd such that ‖ t ‖, ‖ t′ ‖< C0
2 δ−m,

(20) F (Dm�1 + t) − F (Dm�1 + t′) = (Am + Gm)(t − t′),

where Gm = Gm(t, t′) obeys the bound

(21) ‖ Gm ‖≤ C7δ
m max(‖ t ‖, ‖ t′ ‖).

Proof. The matrix element of Am + Gm is given by the corresponding
element of ∇F at some point on the line segment connecting Dm

�1 + t and
Dm�1 + t′. Note that

∇F (Dm
�1 + t′′) = Am + ∇F̃m(Dm

�1 + t′′)

holds and that F̃m(Dm
�1 + t′′) is analytic on {t′′ ∈ Cd| ‖ t′′ ‖< C0δ

−m}
and bounded by C1δ

m ‖ t′′ ‖2. Now, we fix t′′ such that ‖ t′′ ‖< C0
2 δ−m

and define the function v(τ) = F̃m(Dm
�1 + t′′ + τei) of τ analytic on {τ ∈

C| |τ | < C0
2 δ−m}, where

ei =t(ei,1, ei,2, · · · , ei,d),
ei,j = δi,j .
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Then, integrating the function v(τ)τ−2 along the contour |τ | =‖ t′′ ‖, we
can bound v′(0) = ∂

∂t′′
i
F̃m(Dm�1 + t′′). As a result, we have

‖ ∂

∂t′′i
F̃m(Dm

�1 + t′′) ‖ ≤ sup
|τ |=‖t′′‖

‖ v(τ) ‖
‖ t′′ ‖

≤ 4C1δ
m ‖ t′′ ‖, ‖ t′′ ‖< C0

2
δ−m.

This proves the lemma.

Proof of Proposition 2. Fixing n, N, N ′ and s such that n ≤ N ≤ N ′ and
‖ s ‖< εδ−n�n, we estimate ‖ f̃m,N (s) − f̃m,N ′(s) ‖, m = N, N − 1, · · · , n.

As is shown in Appendix, there exist positive constants C8, r
′ > 0 with

1 < r′ < � such that

(22) ‖ Bm,N − Bm,N ′ ‖< C8r
′−N+m, m ≤ N < N ′.

Now, (7), (19), and (20) imply

f̃m−1,N (s) − f̃m−1,N ′(s)(23)
=F (fm,N (s)) − F (fm,N ′(s)) + �−m+1(Bm−1,N − Bm−1,N ′)s
=(Am + Gm)(fm,N (s) − fm,N ′(s)) + �−m+1(Bm−1,N − Bm−1,N ′)s

=(Am + Gm)(f̃m,N (s) − f̃m,N ′(s)) + Gm�−m(Bm,N − Bm,N ′)s,

where Gm depends on s. By the argument obtaining (14) from (15), (16),
and (17) with the ε replaced by ε

2 , we see that t and t′ defined by

t = − Dm
�1 + fm,N (s) = �−mBm,Ns − f̃m,N (s)

t′ = − Dm�1 + fm,N ′(s) = �−mBm,N ′s − f̃m,N (s)

satisfy the assumption of Lemma. Then we have the bound

‖ Gm ‖≤ C7(C6 + C3ε)δm�−m ‖ s ‖,

since (8) and (15) imply

‖ t ‖, ‖ t′ ‖≤ (C6 + C3ε)�−m ‖ s ‖ .

Then, from (23), (15), and (22), we obtain

‖ f̃m−1,N (s)−f̃m−1,N ′(s) ‖(24)

≤ ‖ Am + Gm ‖ ‖ f̃m,N (s) − f̃m,N ′(s) ‖
+ C7C8(C6 + C3ε)δm�−2mr′−N+m ‖ s ‖2 .
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On the other hand, (8) implies

‖ f̃N,N (s) − f̃N,N ′(s) ‖ ≤‖ f̃N,N(s) ‖ + ‖ f̃N,N ′(s) ‖(25)
≤ 2C3δ

N �−2N ‖ s ‖2 .

The inequalities (24) and (25) together with the bound

‖ Am + Gm ‖ < � + C2δ
−m + C7(C6 + C3ε)(

δ

�
)m ‖ s ‖

< � + C2δ
−m + C7ε(C6 + C3ε)(

δ

�
)m−n

prove (9) with r = min(r′, �/δ).

3. An application.

In this section, we briefly explain an application of our theorems to the con-
struction of “asymptotically one-dimensional” diffusion processes on frac-
tals. (The idea is announced in [5]. Details are in preparation.) Unlike
the other part of this paper, we assume in this section that the reader is
familiar with the works on diffusion processes on finitely ramified fractals
(for example, [1][4][7][8][9]).

In the construction of diffusion processes on the finitely ramified frac-
tals, one starts with a set of random walks on pre-fractals and obtains the
diffusion process on the fractal as a weak limit of the (time-scaled) random
walks. This approach was first established for the Sierpinski gasket [4][8][1].
One of the keys to this construction is decimation invariance, which means
that the transition probability of the random walk is a fixed point of the
corresponding renormalization group transformations (in the terminology
of [6;section4.9]) in the space of transition probabilities. In general, one
may assign different transition probabilities to different kinds of jumps of
the random walk, in which case the space of transition probabilities be-
come multi-dimensional. The condition that the obtained diffusion process
spans the whole fractal implies that every component of the fixed point is
positive (non-degenerate fixed point). In fact, Lindstrøm defined a class
of fractals (nested fractals) in such a way that the corresponding renor-
malization group has a non-degenerate fixed point [9;section IV, V], and
succeeded in constructing diffusion processes on nested fractals.

In [6;section 5.4] we introduced abc-gaskets as examples of the fractals
where non-degenerate fixed points of the corresponding renormalization
groups are absent (if the parameters a, b, c satisfy certain conditions), while
they always have unstable degenerate fixed points which correspond to the
random walks on (one-dimensional) chains. The problem then arises; can
we construct diffusion processes on finitely ramified fractals whose renor-
malization groups have only degenerate fixed points?
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The idea of the solution is to use the renormalization group trajectories
that “emerge” from a neighborhood of the unstable degenerate fixed points.
We take the 111-gasket (which is just the Sierpinski gasket), as an example
to explain briefly our idea of the construction, with emphasis on how the
problem is related to non-stationary branching processes.

Let Gn denote the set of vertices of the pre-Sierpinski gasket with
the smallest unit being the equilateral triangle of side length 2−n (see,

for example, [1] for the notation), and let G =
∞⋃

n=0

Gn denote the Sier-

pinski gasket. For a process X taking values in G we define a stopping
time T n

i (X) , n = 0, 1, 2, · · · , by T n
0 (X) = inf{t ≥ 0 | X(t) ∈ Gn} , and

T n
i+1(X) = inf{t > T n

i (X) | X(t) ∈ Gn \ {X(T n
i (X))}} for i = 0, 1, 2, · · · .

T n
i (X) is the time that X hits Gn for the i-th time, counting only once

if it hits the same point more than once in a row. Denote by Wn(X) =
T n

1 (X) − T n
0 (X) the time interval to hit two points in Gn. For an integer

n and a process X on G or on GN for some N > n , decimation is an
operation that assigns a walk X ′ on Gn defined by X ′(i) = X(T n

i (X)) .
The constructions in [4][8][1] use the sequence of simple random walks;

random walks with same transition probability in every direction. The
sequence of simple random walks {YN} on GN (N = 1, 2, 3 · · ·) has the
property of decimation invariance; namely, the random walk Y ′ on Gn de-
fined by Y ′(i) = YN (T n

i (YN )) has the same law as Yn. This implies that
{W n(YN )} , N = n + 1, n + 2, n + 3, · · · , is a (one-type) stationary branch-
ing process (see, for example, [1;Lemma2.5(b)]). A limit theorem for a
stationary branching process gives a necessary estimate, which, together
with other ingredients, finally leads to the theorem that the sequence of
processes XN , N = 1, 2, 3, · · · , defined by XN (t) = YN ([λ−N t]) , where
λ = E[W 0(Y1)] , converges weakly to a diffusion process as N → ∞ . The
situation is similar for the case of multi-dimensional parameter space, which
appears in nested fractals [8], where the limit theorems for multi-type sta-
tionary branching processes can be employed for necessary estimates [7].

As a generalization of the simple random walk let us consider a ran-
dom walk Z = ZN,�x , �x = t(x, y, z) , on GN defined as follows. Z
is a Markov chain taking values on GN , and the transition probabil-
ity is defined in such a way that at each integer time Z jumps to one
of the four neighboring points and the relative rate of the jump is x :
y : z for {a horizontal jump} : {a jump in 60◦ (or − 120◦) direction} :
{a jump in 120◦ (or −60◦) direction} . For a simple random walk, x = y =
z . The parameter space P can be defined as P = {(x, y, z) | x + y + z =
1 , x ≥ 0 , y ≥ 0 , z ≥ 0} . There is a one to one correspondence between a
point in P and a random walk.

ZN,�x does not have the property of decimation invariance. Instead,
the decimated walk Z ′ defined by Z ′(i) = ZN,�x(T N−1

i (ZN,�x)) has the same
law as ZN−1,�x′ , where �x′ = T�x = t(C (x + yz/3) , C (y + zx/3) , C (z +
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xy/3)) , 1/C = 1 + (xy + yz + zx)/3 . The map T maps P into P . The
dynamical system on the parameter space P defined by T is the renormal-
ization group. The simple random walk corresponds to (1/3, 1/3, 1/3) ∈ P
which is a non-degenerate fixed point of T . (0, 0, 1) ∈ P is a degenerate fixed
point corresponding to the random walk along a one-dimensional chain.

We choose a sequence {ZN,�xN
} as follows. Let 0 < w0 <

1 and define wN , N = 1, 2, 3, · · · , inductively by wN+1 = (6 −
wN )−1

(
−2 + 3wN +

(
4 + 6wN + 6w2

N

)1/2
)

. Note that w0 > w1 > w2 >

· · · → 0 . Put �xN = (1 + 2wN )−1 (wN , wN , 1) and consider ZN = ZN,�xN
.

One then sees that if n < N , then Zn is a decimation of ZN . This property
of {ZN} corresponds to the decimation invariance of simple random walks
{YN} . The special choice of the parameters simply means �xN−1 = T�xN .
Letting N → ∞ , �xN approaches the degenerate unstable fixed point
(0, 0, 1) . Put Wn

1 (ZN) = Wn(ZN ) , and let Wn
2 (ZN ) be the number of di-

agonal (off-horizontal) jumps in the time interval (T n
0 (ZN ) , T n

1 (ZN )] , and
Wn

3 (ZN ) be the number of visit in the same time interval to the points from
which two horizontal lines emerges. Let DN , N = 0, 1, 2, · · · , be a sequence

of diagonal matrices defined by DN = diag

(
1

1 + 3wN
, wN ,

1 + 3wN

2 + 2wN

)
.

Then by explicit calculations one obtains the following Proposition.

Proposition 3. WN = t(Wn
1 (Zn+N ) , Wn

2 (Zn+N ) , Wn
3 (Zn+N )) , N =

0, 1, 2, · · · , is a branching process of type (d = 3, {DN}, � = 6) .

With this proposition, Theorems 1 and 2 can be applied, which take a
part of the role of the limit theorems for stationary branching processes for
the fixed point theories. Together with other ingredients we finally obtain
the theorem that the sequence of processes XN , N = 1, 2, 3, · · · , defined
by XN (t) = ZN ([λ−N t]) , where λ = � , converges weakly to a diffusion
process as N → ∞ . (The resulting process is different from the already
known diffusion process on the Sierpinski gasket.) A Proposition similar to
the Proposition 3 holds for general abc-gaskets, hence the Theorems 1 and
2 are generally applicable.

In contrast to the decimation invariant (fixed point) theories, where
the existing limit theorems for the stationary branching processes worked,
we needed limit theorems for the non-stationary multi-type branching pro-
cesses. The present study grew out of such problems.

Appendix.

In what follows, we show that the matrix Bn,N defined by (5) and (6)
satisfies (15) and (22) for some constants C6, C8, r

′ > 0 with 1 < r′ < �
under the assumption 2 in Definition 2. The matrix Bn defined by (4) exists
if (22) holds.
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Proof of (15). Since

‖ �−1Ak ‖ ≤ �−1 ‖ A ‖ +�−1 ‖ A − Ak ‖
< 1 + �−1C2δ

−k,

we have

‖ Bn,N ‖<
N∏

k=n+1

(1 + �−1C2δ
−k) < C6.

Proof of (22). Since

Bn1,n2 − (�−1A)n2−n1 =
n2−1∑
k=n1

Bn1,k�−1(Ak+1 − A)(�−1A)n2−k−1,

we have

‖ Bn1,n2 − (�−1A)n2−n1 ‖ <

n2−1∑
k=n1

C6�
−1C2δ

−k−1

< C9δ
−n1 .

Then

‖ Bk,N − Bk,N ′ ‖
≤‖ Bk,N−(�−1A)N−k ‖ + ‖ Bk,N ′ − (�−1A)N ′−k ‖

+ ‖ (�−1A)N−k(1 − (�−1A)N ′−N ) ‖
< 2C9δ

−k + C10(
�1

�
)N−k,

where �1 < � is a positive constant such that the absolute values of eigen-
values of the matrix A except � are less than �1. Therefore we have, for
m ≤ k ≤ N ,

‖ Bm,N − Bm,N ′ ‖ ≤‖ Bm,k ‖ ‖ Bk,N − Bk,N ′ ‖
< C6(2C9δ

−k + C10(
�1

�
)N−k).

We here assume that N − m is even without loss of generality and put
k = (N + m)/2. Then the above estimate turns out to be

‖ Bm,N − Bm,N ′ ‖< C6(2C9δ
−N+m

2 + C10(
�1

�
)

N−m
2 ).
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Choosing r′ = min(δ1/2, (�/�1)1/2), we obtain (22). Obviously, 1 < r′ < �
holds.
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