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Abstract

We construct a one-parameter family of self-repelling processes on the Sierpirski gasket, by taking
continuum limits of self-repelling walks on the pre-Sierpinski gaskets. We prove that our model interpo-
lates between the Brownian motion and the self-avoiding process on the Sierpinski gasket. Namely, we
prove that the process is continuous in the parameter in the sense of convergence in law, and that the
order of Holder continuity of the sample paths is also continuous in the parameter. We also establish
a law of the iterated logarithm for the self-repelling process. Finally we show that this approach yields
a new class of one-dimensional self-repelling processes.

1 Introduction.

In this paper we construct and study a one-parameter family of self-repelling processes on the Sierpiriski
gasket by taking continuum limits of self-repelling random walks on the pre-Sierpinski gaskets.
The continuum limits for the following two cases are known on the pre-Sierpinski gaskets:

(1) The simple random walk, whose continuum limit is the Brownian motion on the Sierpiriski gasket
[2, 8, 19].

(2) The self-avoiding path, whose continuum limit is a self-avoiding process on the Sierpiniski gasket
[12, 13, 15].

Note that the self-avoiding process on the Sierpiriski gasket has a non-trivial distribution [12, 13, 15] (in
contrast to the one-dimensional self-avoiding process, which is a deterministic linear motion).

Our family of processes is parametrized by u € [0,1] such that the Brownian motion corresponds to
u = 1, and the self-avoiding process corresponds to u = 0. The processes corresponding to 0 < u < 1
interpolate between the two extreme cases in the sense that the path measure P* (the image measure of
the process defined on a space of continuous functions on the Sierpiriski gasket) converges weakly as u — ug
for any 0 < ug £ 1, and that the scaling exponent v for the ‘speed’ of the process is continuous in u € [0, 1].

The initial work on self-avoiding and weakly self-avoiding (self-repelling) random walk arises from
defining models for polymers. The classical problem is to define a path measure on R? in which self
intersections are penalized by an exponential weighting factor and then study the almost sure behaviour of
the paths under this measure. The one dimensional case is reasonably well understood as well as for d > 4
but in two and three dimensions there are still major open problems.



An important property is the behaviour of the end to end length of the polymer. This is captured in
an exponent for the speed of the walk, (the reciprocal of the walk dimension) 7, which can be defined by
v = lim,,_, o log | X,|/log(n). On the one dimensional integer lattice [5, 9, 18] proved that there is ‘ballistic
motion’ in that v = 1. The models proposed in [21, 22] are consistent with v = 2/3,~y = 1/2 respectively.
In these cases the exponents v are independent of the self-repelling factor. A model which continuously
interpolates between 1/2 < v < 2/3 is given in [20].

All these models obtain the self-repelling property by introducing weights depending on the number
of returns to bonds [20, 21, 22] or sites [5, 9, 18]. For a recent review of the site case see [17]. For some
models it is possible to construct continuum limit processes, and [6] constructs such a process on R in the
diffusive phase (7 = 1/2). In [23] a continuous self-repelling process is constructed in the case v = 2/3 and
many of its path properties are examined.

Our approach is different in that we introduce a parameter u which allows us to interpolate between
the simple random walk and a self-avoiding walk. Our path is weighted according to a revisiting factor,
which counts visits to ‘higher level’ points, and a reversing factor, which counts back tracks. (By reversing
we mean, for the Sierpiniski gasket, that the path remains within the same triangle, not necessarily going
back the way it came.) We will take a continuum limit of the random walks to obtain a self-repelling
process. It is known that the scaling exponent + is different for the Brownian motion and the self-avoiding
process. We prove that « is continuous for 0 £ u £ 1. Since all the processes we consider are self-similar,
this should imply that various exponents of the sample paths of the processes are also continuous in w in
our model, and interpolate between those of the Brownian motion and the self-avoiding process on the
Sierpinski gasket.

We note that our parameter does not directly count the number of returns to bonds or sites. Therefore,
our construction gives an alternative model for self-repelling walks on Z. We can construct a one-parameter
family of self-repelling processes on R by taking continuum limits of these self-repelling random walks,
and the resulting family of processes continuously interpolates the exponent v between that of the one-
dimensional Brownian motion and the one-dimensional self-avoiding process (deterministic linear motion).

The structure of the paper is as follows. We will begin with a sequence of random walks on graph
approximations to the Sierpinski gasket and show in Section 2 that there is a continuum limit process for
each value of the interpolating parameter. In Section 3 we prove that the processes are continuous in the
interpolating parameter. We also note that though we construct our continuum limit processes on a finite
Sierpiniski gasket, the extension of our processes to the (infinite) Sierpiniski gasket in a self-similar way
apparently poses no difficulties. The corresponding results, with the expected self-similarity, will imply
that the exponents of mean square displacement lie between the value of the Brownian motion and the
self-avoiding process for our model, and that the value is a continuous function of the parameter. Thus
it is natural to consider our model as a family of self-repelling processes which interpolates between the
Brownian motion and the self-avoiding process on the Sierpinski gasket.

In Section 4 we will discuss the path properties of our self-repelling process. In particular we show
that - controls the mean square displacement and prove a law of the iterated logarithm. A crucial part of
the proof is that there is a supercritical branching process which describes the path. In what follows we
will mainly work on the more difficult case of the Sierpinski gasket. In the final section we will summarize
the basic ingredients (and the main differences from the Sierpiriski gasket case) of the construction of the
corresponding self-repelling processes on R.
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2 Construction of the processes.

The pre-Sierpiniski gaskets and the Sierpinski gasket are defined as follows. Let O = (0,0), a = (%, \/75), b=

(1,0), and let Fj be the set of all the points on the vertices and edges of AOab. We define a sequence of
sets Fy, Fy, Fy, ..., inductively by

1 1 1
TIL+1:§ T’LU§(FT’L+G)U§(FT’L+b)7 77/20,1,2,...,



where A+a={z+a : € A} and kA ={kz : z € A}. Let
F, =F)U(F, —b).

We call F,’s the (finite) pre-Sierpiniski gaskets, and F' = cl(UX2 o F,,) the (finite) Sierpiriski gasket. We
denote the set of vertices in F,, by G,,. Let us denote by 7,, the set of all the closed triangles in R? that
are the translations of 27" AQab (without rotation) and whose vertices are in G,, .
Let
C={wel(0,00) = F) : w(0)=0, tli)m w(t) =a}.

Let |z — y|, 7,y € R?, denote the Euclidean distance. C is a complete separable metric space with the
metric
d(u,v) = sup |u(t) —v(t)|, u,v € C.
t€[0,00)
We define the ‘hitting times,” T} : C — Ry U {oo}, k,i € Z, as follows. Let T¥(w) = 0, and by
induction, for i > 1, let

T (w) =inf{t > T (w) = w(t) € Gi \ {w(TF (w))}},

if the right hand side is finite, otherwise, 7 (w) = co. T¥ is the time when the path w hits a vertex of Gy
for the i-th time under the condition that if w hits the same element of Gy more than once in a row, we
consider it ‘once’. Writing w(oo) = a, and noting that w(t) — a as ¢ — oo, we obtain a finite sequence
{TF}iz1,. m such that w(T¥ (w)) = aand w(T}, ,(w)) # a. Let S¥(w) = TF(w) — T | (w).

For n € Z ., we define a ‘decimation’ map @, : C — C by setting

(Qnw)(i) = w(T}" (w)),

fori =0,1,2,..., M, where M is as above, and by using linear interpolation
_ (Z+1_t)(Qn )() (t_l)(an)(l+1)7 Z§t<7’+177’:0717277M_17
@ ={ ¢ =
Note that
(2.1) QroQ,=Qr, if k< n.

Let us denote by W, the set of continuous functions w : [0,00) — F}, such that there exists L(w) € N
for which

w(0) =

w(t) = t > L(w),

w(t) €G0\{0}, t < L(w),

|w(i) —w( +1)] =1, i=0,--,L(w) — 1,
w(w(i + 1) C Fy, i=0,---,L(w) -1,

w(t) =(+1—-t)w() + (t—-—iw(i+1), iSt<i+1l, i=0,1,2,---.
These are all the paths from 0 to a which remain in a pair of triangles about 0 and first exit at a.

Also we denote by W the set of continuous functions w : [0,00) — F), such that there exists L;(w) € N
for which

w(0) =

w(t) = t > Ly(w),

w()€Go, 0<t< Ly(w),

lw(t) —w(i+1)] =1, i=0,,Li(w) -1,
w()w(i + 1) C Fy, i=0,---,Li(w) -1,

wt)=(G+1—-t)wi@)+(E—Dw(i+1), i<t<i+l, i=0,1,2,---.
These are the excursions from 0 which do not reach a or b.

Finally we denote by W the set of continuous functions w : [0,00) — F,, such that there exists
Ly(w) € N for which

w(0) =0,

w(t) =a, t > La(w),

w(t) & Go, t < La(w),

|U}(l)— ( )|:17 iZO,"-,LQ(U})—l,
w(iw(i +1) C F,, 1=0,---,Lo(w) — 1,

wit)=0C+1-t)w@)+E-w(iE+1), i<t<i+l, i=0,1,2,---.
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These paths are the excursions from 0 which exit at a.
We call L(w), Ly (w) and Ls(w) the length of the path w.
W,, and WT(L2) are subsets of C'. We define T/"’s and (),,’s also on Wr(Ll) analogously to the definitions
on C.
Each w € W,, makes a polygonal curve on F,. For w € U (W, UW D UW!?)), define the reversing
n>k
number Nj(w) and the returning number M (w) for level k by

Ne(O(w) = ${T; ) <i<T/™ 0 (Qrw)(i — 1)(Qrw) (i) - (Qrw)(d)(Qrw) (i + 15 <0,
(Qrw)(i) # w(T; (w)) },

where @ - b denotes the inner product of @ and b in R?, and

Mi(O(w) = H{I/S <i <Ty™ : (Qrw)(i) = w(TyZ (w))},
= 17 T ,L(Qk,11U),
L(Qx-1w)
Ni(w) = > Ne()(w),
=1
L(Qk—1w)
Mi(w) = Y Mp(O)(w).
=1

Thus Ni(w) counts the number of times the path w on Gy makes two steps within the same triangle and
My (w), the number of times the path on Gy revisits a vertex in G—1. It is these types of steps that we
will suppress in our self-repelling path measure.

For z > 0 and 0 £ u £ 1, define

(22) q’n(a},u) = Z (H uNk(w)Jer(w)) iIJL(w),
weW, k=1
@n(ﬂj,u) = Z (H uNk(w)+Mk(w)) ZULl(w),
wewH k=1
U, (z,u) = Z (H uNE @)+ Mi(w)y glaw)
wew? k=1

!
Let WY be the set of the reflection of the paths in Wi with regard to the y-axis. Each w € W,, can
!
be regarded as a juxtaposition of some elements of WT(LI) U Wy(ll) and WT(LQ), that is, for some 0 = tg < t; <

! .
c <t < L(w), wy, -+, W € Wr(tl) U WT(Ll) and W41 € WT(LZ),
w(t) = wi(t — t,;l), ti 1 é t<ty, ti—t;_1= Ll(wi), 1=1,---,m,

W) = Wmt1(t — tm), > tm, L(w) —tm = Lo(Wmt1)-
This decomposition leads to the relation,
Dy (z,u) = Uy (z,u) /(1 — 2uO1(z,u)).
In the following, we shall write ®, ©® and ¥ instead of ®;, ©; and ¥;. For each u, within the radii of
convergence as power series in z, we have the following explicit forms of ¢, ©® and V:

Qua?

(14 ux)(1 — 2uzx)

JjQ

(1 +uz)(1l — 2uz)
2?{1+ (1 +uw)z —u(l —u?)z? +2(1 — u)?u?2®}
(1 4+ uz)(1 —2uz) — 4uz2{1 + 2(1 — u2)z? — 2u(1l — u)2z3}’

O(z,u) = {14 2(1 — u?)2? — 2(1 — u)?uz’},

U(z,u) = {14+ (1 +w)z —u(l —u?)z? +2(1 — u)?u’z},

O(z,u) =
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Proposition 2.1. Forn > m,
D, (z,u) = P (P (z,u), u).

Proof. Assume n > m and w € W,,. Note that

L(Qmw) L(Qmw)
(2.3) L(w) = Trq,,.w)(w) = Z {17 (w) = T2 (w)} = Z S (w).

This together with (2.1) implies that for k=m+1,---,n

L(Qx—1w) L(Qmw) T (Qr-1w)
New)= > Ne(O(w)= > > Ni(6)(w).
= =1 =T (Quorw)+1

A similar decomposition holds also for Mj,(w). Using these and (2.3), we can rewrite the summands in
(2.2) as

n m n L(Qmw)
(T wetwr+Metw)y ghw) = T uNe+Me) . T H AN OO T ST,
=1

k=1 k=1 k=m+1 i=1
where )_, is taken over £ =T/, (Qp—1w) + 1, -, T/ (Qr—1w).
Fori=1, -, L(Qmw), let A and A} be two adjacent elements of 7, determined by

w(T{™ (w)) € Ai N A,

w(T{™ (w)) € A; N (A7)°.

Consider each path segment w; = { w(t) : T/, (w) £t < T/ (w) }. Note that w; C A;UAL. Since A;NF,
and Al N F, are both similar to F m there is w; € Wy,_,, such that { w;(¢t) : 0t < L(w;) }NE._,,
and { wl( ) : 05¢t< L(wl) YN (F._,, —b) are similar to w; N A; and w; N Al (or, to their reflections),
respectively. In terms of w; ’s, the right-hand side of the above expression of the summand can further be

rewritten as

L(Qmw) n—m

[ e+ - T (10 WS T N (O B+ M (5} L)
k=1 =1 k=1
m L(Qmw) n—m
H ) (W) + M (w) H (H wNE @)+ M (0)) pL(),
k=1 i=1 k=1
Summing up over W,,, we have
B ()
DI I KA CCAT
veW,, k=1
1 3 ) Lﬁ) nﬁn (@0)+ My (1)) 5 L(5:)
Ny (w;)+ My (w; L(w;
. e (T w ) x ]
{(I)"*m(m’u)} W1 EWn—m Wy () EWnem i=1 k=1
m L(’U) 1 n—m _ ~ _
_ Z [H uNk(U)+Mk(U){¢n,m(£IJ,U)}L(U) . H{(I) (m u) Z (H uNk(wi)Jer(wi)) mL(wi)}]
vEW,, k=1 i=1 T GieWn k=1
= Z H WNROEME@) P () )
veEW,, k=1

= O, (Pp_m(z,u),u).



We next define a family of probability measures {P¥(z)} on C (supported on W,,) by assigning to each
w e W,,
(2.4) Py () (w) = (JT u™t#M000) o200 /@, (2, w).
k=1

Let n > m and w € W,,. Using the decomposition in the proof of Proposition 2.1 we rewrite (2.4) as

Qmw)

(2.5) Pyl (2)(w) = Py (®n—m(z,u) (Qmw) - H (;),

where w;’s are as in the proof of Proposition 2.1.
The following proposition follows immediately from (2.5).

Proposition 2.2. Ifw € W, and m < n, then Qnw € Wy,. The probability law of Qnw under ]5#(37) 18
P (@ (,0)).

Let r, be the radius of convergence for ®(x,u) as a power series in .

Proposition 2.3. (1) For each u € [0,1], there is a unique fixed point x, of the mapping ®(-,u) :
(0,74) = (0,00), that is,
D(xy,u) = Ty, Ty > 0.

As a function in u, x, is continuous and strictly decreasing on [0,1].

0d
(2) Let Ay, = a—m(xu,u) Then A, is continuous in u and Ay, > 2.

Proof. (1) ®,(z) = ®(x,u) is expressed as a power series in  with non-negative coefficients, starting from
a quadratic term. It follows that ®,(0) = @ (0) = 0, ir;% P! (z) = ®7(0) > 0. Therefore &' (z) —1is

increasing in = > 0, negative at z = 0 and diverges to +o0o as & — 7,,. Existence and uniqueness of
the fixed point follow. The rest of the statement follows from the application of the implicit function
theorem to F(z,u) = ®(z,u) — x.

(2) Since the terms in ®,(z) are degree 2 or higher, and since there are terms of degree strictly higher

than 2, we have

2
P! (z) > E<I>u(:v), 0<z<ry.

S, (zy)

0d
Therefore A\, > 2 = 2. The continuity of z, in u and the continuity of — (z,u) in (x,u)

Ty or
imply the continuity of A, .
d
-1 — 1
In the two extreme cases, we know that zg = \/52 , Ao = ! 2\/5 (see [14], [12]), and z; = 7

A =5 (see [2], [19]). For m < n, let Q,,P¥ be the image measure of P* induced by @Q,,. Combining
Proposition 2.2 and Proposition 2.3, we have

Proposition 2.4. Ifw € W, and m < n, then Q,,w € W, and

By virtue of Proposition 2.4 and Kolmogorov’s extension theorem, for each u € [0, 1], there is a proba-
bility measure P** on Q = CN = C x C x --- such that

Pl w=(wi,ws, ) : QmWp =Wn, n>m]=1,

and R
Y, P* = P (zy),



where Y, P** denotes the image measure of P** induced by the natural projection Y;, from  to the n-th
C in the product. We regard each Y, (w,t) as an F-valued process on (2, B, P**), where B is the Borel
algebra on 2. The following properties are used later.

Y, eW,, as.

QY. =Y,, m<n, as.

In particular,
(2.6) Yo (T (V) =Yn(i), m<n, as.

(2.7) 7" (Ye) = Ty, (Ya), m=n<k, as.
(2.5) and Proposition 2.4 imply the following.

Proposition 2.5. Assume n > m and N > 2™. Under the conditional probability P*"[ - | Y, €
{87 (Yn), 53" (Yn), -+, Sy (Yn)}

are i.i.d. random variables. They are jointly independent of Y,,. The law of ST*(Y,,) is equal to that of
SO(Y—m) under P**.

Proposition 2.6. Fiz m € {0,1,2,---}, N > 2™ and i € {0,1,2,---,N}. Under P**[ - | Y,, €
Wi, LYn) > N |, {S*(Yingn)}, n=0,1,2, - - - is a supercritical branching process starting at ST*(Yn) =1
and with offspring distribution equal to the law of SY (Y1) under P* with the properties:

(1) The characteristic function of SY(Y1) is given by

1 .
Elexp(itSY(V1))] = —®(zue,u), teR

(2) E*[S?(Y1)] = Au,
(3) 0 < E¥[(SY(Y1) — \u)?] < 400,
(4) P*[SP(Y1) > 2] = 1.

Proof. (2.7) implies that

Tim(Ym+n)
Tim(Ym+n+1) = Tﬂj&mﬂ)(ywmﬂ) = Z S]T'n+n(Ym+n+1)'
j=1
Hence,
S (Yimtnt1)
T (Ymtn)

= Z ST (Vingnt1)

F=T 0 (Yomtn ) +1
57 (Ymn)

m—+n
Z ST Vgn)bd Ymetn)-
Jj=1

This combined with Proposition 2.5 implies that {S7"*(Ys4n)}, n = 0,1,2,--- is a branching process.
(1) is immediate from (2.4), and (2) through (4) are the immediate consequences of (1). Since A, > 2,
{S™(Yim+n)} is a supercritical branching process. O



Proposition 2.6 suggests that we consider F'-valued processes with time appropriately scaled. We
introduce a time-scale transformation Up(a) : C = C, a € (0,00), n € N. For w € C, define

(Un(@)w)(t) = w(a®t).

Let us denote by P¥ the image measure of P¥(z,) induced by U,()\,). Define
Xn = Un(Au)Yna n= 17 27 Tt

The convergence theorem for supercritical branching processes (See [1]) leads to the following proposi-
tion.

Proposition 2.7. Assume N > 2™. Under P**[ - | Y, € Wy, L(Y,,) > N |, we have
(1) For eachi € {1,---,N}, S™(X,) converges a.s. and in L* as n — oo to a random variable S;™.
(2) Sfm,i=1,---,N are i.i.d. random variables and are jointly independent of Y,,,.
(3) Si™ is equal in law to \;™S;°.
(4) PSP > 0] =1, B[] = 1.
The characteristic function of S;°, ¢.(t) = E“[exp(itS;°)] is the unique solution to
Buut) = —B(audu(0) ), 6,(0) = 1.

We denote by p** and p¥ the law of S7° and SY(X,,), respectively.
Theorem 2.8. p** has a C* density p, which satisfies p(x) =0 for x <0, and p(x) > 0 for x > 0.

In general, a C*° density exists for the limit distribution of supercritical branching processes such
that the number of offspring is almost surely greater than one. In our case the condition is ensured by
Proposition 2.6 (2). For a proof see [2], [16].

Let T;™ = Z srm,
=1

Theorem 2.9. For each u € [0,1], X,, converges uniformly in t a.s. as n — oo to a continuous process
X.

Proof. Choose w € Q1 such that Y,, € W,,, li_)m Si"(Xp) = SI™ exists and S™ > 0 for all m € N and

i€ {1, TP(Yy) }. Let M = Ty + ¢, where € > 0 is an arbitrary constant. It suffices to show that
Xn(w) converges uniformly in [0, M]. In fact, if t > M, X,,(t) = a for large enough n.

Fix m > 0. Let L = TP(Y,,,). Note that T;"(X,,) = TP(X,) a.s. Letting n — oo, we have T;™ = T}°
a.s.

By the choice of w, there exists n; = nj(w) € N such that

T™(X,) — T™ < min S'™
Org%xLl (X)) = T I_OrgnilélLSl ,

and
T (Xn) —T7™| <e,

forn > mny.
For each t € [0, M], either of the following holds.

() 0t <Tpm.

(i) Ty <t S TPm +e.



In case (i), choose j € {1,---, L}, such that T;"} < ¢ < T/™. Then we have T/",(X,) <t < T (X,),
for n > ny. Thus
| X (T(X,) — Xa(t)] £3-27™

(
In case (ii), let j = L. Since TE”(XM)_I(X” <t
X (T (X)) = Xn(H)] S 2277

(2.6) implies that X, (77" (X,)) = Yiu(j) for any n > m and j € {0,1,--- L(Yy,)}. Therefore, if n,n" > ny,
then for any ¢ € [0, M],

|Xn(t) - X t)|
S [Xn(T7"(Xn)) = Xa(®)] + [ X (17" (Xnr) = X (0)] + [ X (T (X)) = X (T7" (X))
< 6-27™
Since m is arbitrary, we have the uniform convergence. O

Corollary 2.10. Assumen > m.
(1) X(T;m) = Xn(T]m(Xn)) = Ym(]) € Gm; fOf‘ all] € {07 L-- JTIO(Ym)}; a.s.
(2) With probability 1, there exist adjacent closed triangles A, A" € Ty, such that
X(T;™) e An A,

X(T7;™) e An(A'),
and
X(t) € AUA" for T/ St T
(3) X(t)=a, t>T7° as.

Proof. Xn(T"(Xp)) = Yin(j) for n > m and the a.s. uniform convergence of X;, to X imply the statement
of (1). The definition of hitting times and (1) imply that X,(t) € AUA' for T/*,(X,,) < t £ T/ (X,) ass.
Letting n — oo, we have (2). (3) follows from X, (t) = a, t > TP (X,,) a.s. O

This result implies that the limit process for 0 < u < 1 maintains the self-repelling property of the
original walk when observed at the 27 ™-scale for each n € N.

3 Continuity of the limit processes in the self-repelling parame-
ter.

In this section, we show that the process is ‘continuous’ in u. Denote by P* and P} the laws of X and X,

under P**, respectively. P* and P are measures on C'. We will show P* — P%0 weakly as u — ug.

We start with the ‘continuity’ of p** in w. Since p¥ and p** have supports on [0,00) as stated in
Theorem 2.8, their Laplace transforms,

€ > u 1 —n
Ga(s)™ [ expl-sm) pildn) = o Balzuexp(-X,"s)u),
0 u
and

G(s) & / " exp(—sm) p(dn).

are holomorphicin { s € C : R(s) >0 }.
Let
def .

(31) 91(5) ™ ~ log{ @, (y exp(~2,"5), )}, 5 €C

9



and

wy ~def 1
H*(q) = —®(zuq, u).

Ly

Proposition 2.1 with m =n — 1 and =z = z, implies

exp(—gn(s)) = H*(exp(—gy_1(A,"s)))

and
(3.2) 94(s) = gt (Nugl_1 (N, 's)).

Proposition 3.1. There exist positive constants Co, and Mo, such that for any u
g(s) is holomorphic on |s| £ Coo and satisfies

(3-3) l9n(s) = 8| = Muo|s?, 3] £ O

€ 10,1] and any n € N,

Proof. The implicit function theorem implies that for each u € [0, 1], there exists a positive solution z = a,

to
O(z,u) =1

Ay
and that a, is a continuous function of u. Note that ®(z,,u) = z, < 29 < 1. Hence C; 4 min 2 > 1.

s

1
Since | —®(x €™
x

uw€l0,1] Ty

,u) — 1] is finite and continuous on the compact set {(u,s) € [0,1] x C : |s| £ logCi},

it is uni?ormly continuous. It follows from this and ®(z,,u) = z, that there exists Co > 0 such that
1 1

| —®(zye % u)— 1| < 3 for {(u,s) €[0,1] x C : |s| £ C2}. Thus (3.1) implies that g¥(s) is holomorphic
Ty

in {s € C :|s| £ C3/A,}. This combined with gi*(0) = 0 and (g*)'(0) = 0, implies that there exist positive

constants C' and M such that for any u € [0, 1], g¥(s) is holomorphic on {s € C :

(34) |93 (s) = s| S Mls|*, |s| = C
Fixe > 0. Let A\_ = inf A,, and
u€[0,1]
M(1+e¢)? EA_ -
3.5 Mo = , Coo==—-NC,
(35) [ M

where C is a positive constant defined by
5 CMs
(3.6) c <1 + —) =C.

Note that Co, < C<C.
Define a sequence M,,n=1,2,3,---, by

1 Me(2
M, =M, [1-—)— w
A" At
It is straightforward to see that
(3.7 M, < My, n=1,2,3,.-,
(3.8) M, = M,
1 1
M, = Mo|(l-— —M,
i < /\> b
1
(3.9) = M(1+5)2+/\—Mn, n=1,23"--.

We prove by induction in n that g%(s) is holomorphic on |s| £ Cw and satisfies
(3.10) |95 () = 8| £ Mals?, |s| £ Ces .

10
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Then (3.7) and (3.10) imply Proposition 3.1.
Coo < C, (3.4) and (3.8) imply that gi(s) is holomorphic on |s| £ Cs and (3.10) holds for n = 1.
Assume that for n = k, gj/(s) is holomorphic on |s| £ Cs and (3.10) holds. Note that A_ > 1 implies
that if |s| £ C then |s/\,| < C . Hence by induction hypothesis, g;(s/A,) is holomorphic and satisfies

M
(3.11) Nulgk (5/Xu) = 5/Aul S S5 sl
This and (3.7) and (3.6) further imply, for |s| £ Cu,
M M
Aulgit (s/X)| < 3] (1 + /\—k|s|> <O (1 + A—’“%) <c

Therefore g;/, 1 (s) = 91" (Augy (s/Ay)) is holomorphic on |s| £ C and
|g%(/\ug;:(s//\u)) - /\ug;:(s//\u”

M 2
(3.12) < M|Augi(s/Aa)|? £ M <|s| + /\—k|s|2> <M <1 +
S M1 +¢)? sl

Mkcoo 2 2
o s

A
where we also used (3.7) and C, < j\/[— in the last line.
Using (3.11) and (3.12) we finally have

50 = 1 IO 6/0) = Mo/ M|+ Al s/A) =5/
< (Gl 4 MO+ 07 ) 1P 5 (T4 MA+2?) 1o = Mo, 1s] S Co,

u

which implies (3.10) for n = k + 1. By induction, we have (3.10) for all n. O

Proposition 3.2. There is a positive constant Co, such that for each u € [0, 1], g%(s) converges uniformly
on any compact subset of { s € C : |s| < Cs} to a holomorphic function g*(s) as n — oo. g“(s) satisfies
the following functional relation:

(3.13) 9"(s) = g1 (g™ (A, 's)),
and
(3.14) exp(—g“(s)) = H"(exp(—g“(A\;'s)))-

Proof. Fix u € [0,1]. (3.3) implies that the family of functions, {g%(s) : n = 1,2,--- } is uniformly
bounded. This combined with g¥(0) = 0 implies that {g¥(s) : n = 1,2,--- } forms a normal family
on {s € C:|s| < Cx}. Therefore for any subsequence of {g=(s)}, there exists a sub-subsequence that
converges to a holomorphic function g* uniformly on any compact subset of {s € C : |s| < Co }. Note that

exp(=gn(s)) = Gy (s)

on {s € C: |s] < Cs, R(s) > 0}. Proposition 2.7 implies that p¥ converges weakly to p** as n — oo,
which further implies G¥%(s) — G"(s) as n — oo. Thus

g°(s) = —log G*(s)

on {s € C: |s| < Cx, R(s) > 0}. This combined with the principle of analytic continuation implies
that the limit ¢g* is independent of the subsequences. Therefore {g%} converges uniformly on any compact
subsets of {s € C: |s| < Cx} to a holomorphic function g* satisfying

(3.15) exp(—g“(s)) = G“(s),
on {s € C:|s| < Co, R(s) >0 }. Letting n — oo in (3.2), we have (3.13). Rewriting (3.13), we also have
(3.14).

11



Let
Fo(s) = exp(—g“(s)),
Fo(s) = (H")"(exp(=g“(A,"s))), n=1,2,--,
and Ag ={s € C : |s] <Cx },An ={s€C : N7'Csx S |s] < \}Cx }, for n = 1,2,---. Define
G*:C— Chy }
(3.16) G(s) = Fp(s), on Ay, n=0,1,2,---.

n—1
Since H(q) is a rational function and (3.14) implies F,(s) = F,,_1(s) on U Ay, G¥(s) is meromorphic on

k=0
C. This combined with (3.15) implies

(3.17) GU(s) =G"(s), on { s€C : R(s) >0 }.
Proposition 3.3. For any ug € [0,1], p** converges weakly to p*“° as u — uyg.
Proof. Letting n — oo in (3.3), we see that
l9"(s) = 5| < Mg|s]?, |s] < Cus.

This implies { g* : u € [0,1] } forms a normal family on { s € C : |s] < Cx }. Let {u,} be a sequence in
[0,1] that converges to ug. Then { g¥» : n =1,2,---} has a subsequence that converges to a holomorphic
function h uniformly on any compact subset of { s € C : |s| < C }. h satisfies the functional relation,

h(s) = g7° Auoh(Ayy )
h(0) =0, '(0) = 1.

This equation has a unique solution g*°. Thus g*» — g*“° uniformly on any compact subset of { s € C :
|s| < Cx } as m — oo. This combined with (3.16) implies that G* (s) — G"°(s) for every s € C with
R(s) > 0. We have, from (3.17),

lim G*(s) =G (s), on {se€C : R(s)>0}.

n— oo

Since a Laplace transform determines a measure, we see that p*“» converges weakly to p*“° as n — oo.

O
Now we go on to the ‘continuity’ of P* in u, where P* is defined at the beginning of this section.

Proposition 3.4. The family of measures {P"}, 0 < u <1 is tight.
Proof. Since { w e C' : w(0) =0 } is a closed subset of C', we have

PYlw(0) =0 ]>limsup PY{w(0) =0 ]=1.

n—oo

We will show that for any € > 0 and ug € [0, 1], there exist positive numbers « and § such that

P sup |w(s) —w(t)] >e]<e, forany u with |u—wug| < a.
|s—t|<5

For an arbitrarily given e, choose k € Z satisfying
2-27F <e
Choose N large enough so that

PML(w) > N] < =, for all u € [0,1].

N ™

Let
V={weW, : L(w) £ N},
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and

D ={w € C : There exist s,t >0 with |s —t| < and Ay, Ay € T,
with A; N Ay = 0 such that w(s) € int(Ay), w(t) € int(Ay) },

where int(A;) = A;NGY, i =1,2. D is an open subset of C. Note that Theorem 2.9 implies that P¥ — P
weakly as n — oo. The choice of k and the continuity of w imply that if sup |w(s) — w(t)| > €, then

[s—t|<d
weD.
We have,
PY sup |w(s) —w(t)] >e¢]
[s—t|<d
s PY[D]
< liminf PY[D]
n— oo
< liminf Py SF < ¢ forsomei=1,...,L(Qpw) ]
L(v)
< liminf{ SN PUSE<S| Quw=0]-PYQsw=0]+Ps Quw e Wi\ V ]}
veV i=1
: u . k DU E
< N Z 7lhﬁngopn[s.s</\u(5] k[v]+2
veV
~ €
- N *U . k u =
Z P s < AL0 ] k[v]+2
veEV
< Np*"[s:s</\25]+i,

2

where we used Proposition 2.4, Proposition 2.5 and Theorem 2.8.
The continuity of p** in u proved in Proposition 3.3 combined with p**[{0}] = 0 implied by Theorem 2.8
shows that we can choose a § > 0 such that

p[s:s<AG]<p[s:s < (max A\,)H] < °

——, for all 0, 1].
u€[0,1] aN’ O ue[0,1]

Then we have
P sup |w(s) —w(t)|>e]< =

+ ¢ _ g, forall ue]|0,1].
|s—t|<6 2

[\

This completes the proof.

O
Now we will show the convergence of the finite dimensional distributions. Fix an arbitrary m € Z and
0<t; <...<ty. Forwe C, let us define

i:z:1~w(t1)+...+iwm~w(tm)

h(wam):e ) m:(mlw--;mm)E(Rg)m;

where z -y denotes the inner product in R2. For a probability measure @ on C, define F(Q) : (R*)™ — C
by,
def

F(Q)(z) =
Proposition 3.5. For each z € (R*)™, F(P“) = F(P")(x) is continuous in u € [0, 1].

E°[h(-,z)]-

Proof. Fix z € (R?)™. Let € be an arbitrary positive number. Define f : (R?)™ — R, by f(y) =
exp(i Z;nzl zj-y;),y = (Y1, - ,Ym) € (R*)™. Since f is uniformly continuous, we can choose a positive
integer k such that

(3.18) [f(y) = f(z)] <e, forany y,z€ (R*)™, with |y; —z| <27% j=1,---,m,
where y = (y1,- -, Ym), 2 = (21, -+, Zm). Furthermore, we can choose a positive integer N such that
PY[L(w) > N] < e, forall uel0,1].
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Let V={weW, : Llw) LN }.
For n > k,
F(PY)
= EY[ X, x)]

S EPT[h(X,z) | Xp=v] P Xt =v]
veV
+EP [ WX, 2) | Xpe e W \V | P*[ X, e Wi \V ).

The first term on the right-hand side is further decomposed as

S EP [ h(X,z) | Xp=v] P Xz =0]
veV

= > D> EP[MX, )| Xp=v, TSt <Trh, i=1,.,m]
veV {r;}
xP [T <ti<Try, i=1,...om | Xpy=v] P Xk =v ],

where Z is taken over (ry,---,7m) € {1,2,...,L(v)}™ with r; <ry < ... £ 7pp. Using |h(w,z)] £ 1 and

{r:}
the definition of N and V,

|EP [ h(X,2) | X € Wi \V ] P*[ Qrw € Wi \ V]|
S PYYQrweW\V]<e

Denote for simplicity,
E(w)=EX" [ n(X,z) | Xp=v, T <ti<T, i=1,,m ],
Py =PI <ti<Tihi=1,m| X =v ],
P, =P X,=v].
Fix ug € [0, 1] arbitrary. For any u € [0, 1],

[F(PY) = F(P™)|

< DD B -EBuw) | Py Py+Y ) |E(uw) | Py - P" | Py

veV {r;} veV {r;}
+ >N |E(uo)| Py | Py — Py'| + 2.
veV {r;}

Corollary 2.10 implies that if X}, = v then X (T7**) = v(r;) a.s. and that if T;% < t; < 7%, then
X(t;) is almost surely either in A € T such that v(ri) v(r; +1) € A or in its nelghborlng elements of T
adjacent at v(r;). This means | X (¢;) —v(r;)| £ 2%

Therefore,

B () = B(uo)
= |EP [ f(w(tl)a"'aw(tm)) - f(U(T1),"',U(Tm)) | Xi =, T:lk § i < T:,fl—lv | = 17"'7m]

+ flu(r), - v(rm))
- EP“O[ f(w(tl)a' T 7w(tm)) - f(v(rl)a' T 7U(Tm)) | Xk = v, T:lk é t; < T:ik+17 i = ]-7' Ll ]

= fl(ry), -, o(rm))|
< 2,

where we have used (3.18) for the last inequality.
Theorem 2.8 and Proposition 3.3 imply that qu is continuous in wu, thus there exists §; > 0 such that

|P, —P°| <&, foranyu with |u—ug|<d;.

14



If we note that P**[X; = v] = P#[w = v] for v € W}, we see that P**[X}, = v] is continuous in u.
Thus there exists do > 0 such that

[Py —P,’| <&, foranyu with |u—ug|<dy.
Let 6 = min{d;,d2}. Then
|F'(P") — F(P")| < 6e for any w with |u— ug| <.

This completes the proof. O

Proposition 3.4 combined with Proposition 3.5 leads to the following theorem.

Theorem 3.6. For any ug € [0, 1], P* converges to P“* weakly as u — ug .

4 Path properties.

Let

__ log2 ﬂ_l—'y
7_7u_log/\u’ oy

Large deviation estimates for the supercritical branching process allow us to state the following Lemma.
Lemma 4.1 ([4]). There exists a multiplicatively periodic function H such that
—log P** (5% < 2) = =P H(z) + o(z~"/7).
Using this result we have

Proposition 4.2. There exist positive constants Co 1 — Co 4 and K such that
(4.1) Co,1 exp(—Ca,5(3t77)77) £ P X(1)] > 9]

1
forallt >0 and 0 <0 < 1 with 6t~7 > K, and

(4.2) PIX(8)] > 6] < P*[ sup |X(s)] > 6] £ Coys exp(—Caa(5t7)T7),

0<s<t
forallt >0 and 0 <9 < 1.

Proof. Consider w € Q2 such that li_)m SiM(Xp)(w) = S;™(w) exists and S;™(w) > 0 for all m and 3.

Lemma 4.1 implies that there exist positive constants Cy,; — C 4 such that
(43) 0171 exp(—CLgx*ﬁ) § P*u[ SIO < J?] § 0173 exp(—CM:v*ﬁ), T Z 0.

For the lower bound, choose n € {2,3, -} such that 27 "~! < § £ 27", Note that Corollary 2.10 implies
that if 7;"~! < t and Sit >tforj = S1(Y,,) + 1 then | X (t)| > ¢ a.s. In terms of branching processes,

since 77" and S with j = Sp~1(Y,,) + 1 are related to the limit of the numbers of offsprings coming
from different children, they are independent. (In other words, S;™ is independent of oS (YVlias) -
r=0,1,---].) These combined with (4.3) imply

PHIX(#)] = 4]

> PUTY <t St > t]

— P*u[ Tl*n—l <t ] P*u[ Tl*n >t ]
> Craexp(—C (AP 7T ){1 = Cy 5 exp(—Cy 4 (A1) T })
> O, exp(—4C12(6t )77 ) {1 — Oy 3 exp(—Cya(8t7) ™7 }).

\Y

1
Choose K > 0 large enough so that the last factor exceeds 3 for 6t77 > K.
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For the upper bound, choose n € N such that 27" < § < 27"+, Let A, A’ € 7, be the adjacent
triangles such that O € AN A" and X (T7") € AN (A")e.

Corollary 2.10 implies that for 0 £ s < 77", X (s) € AUA’, thus |X(s)] £ 27" < 4. It follows that if
sup |X(s)| > 0, then T} < ¢. Combining this with Lemma 4.1, we have

0<s<t
PX ()] 26 ]
< PY[T"<t]=P* S < \'t]
< Crsexp(~Cra(A\jH) ™)

ot 1
),

A

01,3 eXp(—C1,4(

This completes the proof. O

For a sharper result we could obtain large deviation estimates using the approach of [3].
Integrating (4.1) and (4.2), we see that for each p > 0 there exist positive constants Cs1(p), Cs 2(p)
and 7(p) such that
Cs1(p)t"? = E*[IX ()] = C32(p)t77,

for any t with ¢ < 7(p). Thus we have

Theorem 4.3. For each p > 0, there are positive constants Cs 1(p) and Cs2(p) such that

L EMIX @) EM[IX ()]
< — ANl L — U<
Cs.1(p) < liminf ——0= < hn}ﬁ)up = Csa(p)-
We can conclude with a law of the iterated logarithm for our self-repelling process.

Theorem 4.4. There exists a positive constant ¢ such that

¢ < limsup X @) <1
T wo Y() T

P - a.s.,

)

1
where Y (t) = C};ltv(log log ;)177'

Proof. The upper bound is straightforward to prove using (4.2) with a standard Borel-Cantelli argument.
The lower bound is more difficult and the standard approach applied to Brownian motion cannot be used
as it relies on the Markov property of the process. In our setting we do have a distributional self-similarity
property for our path which we can exploit.
In order to prove this result we consider the sequence of stopping times {77" | n > 0}. Thus | X7:»
27" under P*". We can describe the sequence of times via the limiting random variable in the supercritical
branching process defined in Proposition 2.7. Note that for & < m,

St (Ym)
(4.4) Sik = S;(m) , a.S.,
j=1

where the summands are i.i.d. and equal in law to A\; ™S;°.

The behaviour of the asymptotics of a sequence of random variables satisfying this type of equation is
discussed in [10, 11] in the context of random recursive fractals. Here we have the somewhat easier task of
proving an almost sure lower bound on the oscillation in S;°.

Our result will follow from the following Lemma.

Lemma 4.5. There ezist positive constants ¢, Ny such that if my = kN for N > Ny, then

P g < cllog(my)) P i.0.) = 1.
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Proof. Let A,, = {\"S;™ < §(logm) ?} and write AS, for the complementary event. Using the fact that
there is a Markov structure (4.4) inherited from the branching process in the sequence of random variables
ArST™ we have
(4.5) P (A, | AS,_4,. .., A5) = P™ (A, | AL _q).

m—1

Then a straightforward extension of the second Borel-Cantelli Lemma shows that we will have the claim
of the Lemma, P*“(limsup 4;) = 1, if

k—o0

(4.6) S PU(AAS, ) = .
m=1

Note that as
= = P (A, NAS, )
E P (A, | AS,_y) = E m
( | ! Pru(Ag, )

m=1 m=1

> 30 P (A A

m=1

it is enough to establish
47) S P (An N AL = oo
m=1

to obtain (4.6) and prove the claim.
At this stage we consider A,,,, where m; = kN for some integer N. Using [10] Lemma 4.2 we let
x, = b P (log(my)) P (b > 0) and hence

P*u(Sikm’C § Tk, Sfm]kl > xk—l)

SyE (Yo,
=P*(S]™ < ay, Z S > xp )
1=1
Sy (Yiny)

ok *Mm *m
:/ Pl S Sy s | PUUST™ € dy)

0 1=2

STET (Yimy)

> P™(Sy™ € [ermp—1, 2] P ( Z Si™ > (1—e1)zp-1),

=2

for some constant 0 < ¢; < 1. Observing that, as zj is decreasing in k, the second term in the product will
be bounded below by a constant ¢s. If we now set ¢z = (¢; A+ ~™+~1)~1/8 and apply the tail estimates in
Lemma 4.1, then

P*U(Sikmk § Tk, Sfm]kl > xk_l)
> ¢y exp(—blog(my) H((blog(m)) ™))
% (1= exp (—csblog(mi_1) H((csblog(mu—1)) ™) + blog(my) H((blog(mi)) ) + o(log(ms))))
> ol (1= exp (— (e log (k — 1) — cs log k) + o(log(k))))
for small enough b > 0. By choosing N large enough, we can make ¢4 = bez max, H(z) sufficiently large

to ensure that the term exp(—(cqlog (k — 1) — ¢5log k) + o(log(k)) < 1 for large k, and hence we have the
divergence of the sum in (4.7), giving the result. O

Finally to complete the proof of Theorem 4.4 we apply Lemma 4.5 to a suitable subsequence of the
stopping times to show that for N sufficiently large, where mj = kN we have T;™* < X\, ™* (log(my)) ?
almost surely. Letting t, = 7;""* we have

log(t) £ —my log(Au) — Blog(log(my)),

and, by taking the inverse, this implies the existence of a constant cg such that

1
> log(ty) = Blogloglog(;-) n log cg .
log(Ay) log(Ay) log 2
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Hence 1
[Xggmel =27 > et 182 (loglog (o))t e 2/ tos e,

and hence we have a subsequence which is exceeded infinitely often with probability one. O

For the behavior of the path at arbitrary times, we have
Proposition 4.6. For any t,t +h >0 and 0 < § < 1, it holds that

O|lh|=7 | 1
PLIX (B~ X ()] 2 6] £ Coexp(~Cou(TT) ),

where Cs 3 and Cs 4 are as in Proposition 4.2.

Proof. Tt is sufficient to prove the statement for h > 0. Choose w as in the proof of Proposition 4.2. For
any given §, 0 < 6 < 1, choose n € N such that

272 <5 <27,
Corollary 2.10 (3) implies
PUX(E4+h) = X(8)] > 6, £ > T | =0,

and
P |X(t+h)— X(#)|>6, T;™, St < Ty =170, for some i | = 0.

In the case that 77", <t < TF" < Ty0,if Si7 > h, then |[X(t+h) — X ()] <3-27" < 4.
These, combined toghether, imply

P X(t+h)— X(t)] > 0] Pl|X(t+h) - X(@t)] >0, T, St < T < T;° for some i |
P T St < T <Ty°, Si < h, for some i |

PHST" <R,

A A

w

and we have the statement from (4.3). O

Proposition 4.6 leads to the Holder continuity of the paths. Since the proof is standard, we omit it
here. (See for example, [7].)

Theorem 4.7. For any M > 0 and any ' with 0 < ' < v, the following holds P**-almost surely. There
are positive constants b = b(y',w) and H = H(v',w) such that

|X(t+h) — X&) < blh|", for any t€[0,M] and any h € [~H, H).

5 Self-repelling processes on R

Here we summarize the basic ingredients of the construction of the corresponding self-repelling processes
on R. We start with a sequence of random walks on Z (instead of the pre-Sierpiriski gasket in Section 2).
The vertex set that we will use for our walks is G, = {k27 " | k = -2",-2"+1,---,0,1,2,---,2"}.

Remark. We could alternatively consider, for example, G, = {k37" | k =-3",-3"+1,---,0,1,2,---,3"}.
That is, we have the choice of how we divide up the unit interval and any geometric disection into halves,
thirds, quarters, etc could be used. The resulting self-repelling processes will be different (even when they
are constructed to have the same value of 7). Thus our method produces more than one family of self-
repelling processes that continuously interpolate Brownian motion and straight motion on a line. On the
Sierpinski gasket, there is an obvious natural unit scale, so our method naturally points at one family of
processes. Here we will take the dyadic partition as it is the simplest to work with.
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As in Section 2, W, is the set of continuous functions such that at integer times it takes values in
G, with nearest neighbor jumps from 0 to 1. A sequence of decimation maps @y can be defined in a
similar way as in the Sierpiriski gasket case. The ‘reversing number’ Ny (w) is now, verbally, the number of
points in Gy, \ Gj—1 where the decimated walk reverses its jump direction. The ‘returning number’ retains
the same interpretation as before. The generating function ®,(z,u) in (2.2) is much simpler than for the
Sierpinski gasket and is given by Proposition 2.1 with

__ Y(=u)
1 -2uO(z,u)’

Dy (z,u) U(z,u) =%, O(z,u) = uz’.

In particular, we have ®,,(x,0) = z2", which implies that when v = 0 we have a single path which connects
0 and 2™ by a straight line (i.e., the self-avoiding path on Z), and for u = 1 we reproduce the generating
function for the simple random walk. In general, ®, (x,u) has non-trivial (z,u) dependence.

We can give explicit formulas for the key quantities z,, > 0 and A, > 0 in Proposition 2.3. They are

P
defined by ®(z,,u) =z, and A, = g—x(:vu,u) and are given by

vu= g (VITBE 1), A== VTH8@+1.
u

Note that z, > 0 exists for all v > 0, and that ®(x,u) is regular at z,. Since for 0 < u < 1, the
paths with a large number of steps are suppressed, we expect that the corresponding walk is self-repelling.
For u > 1, we expect that the corresponding walk is self-attracting. Also, A\,, 0 £ u < 1, continuously
interpolates A\g = 2 (linear motion) and A; = 4 (simple random walk). The basic quantities are ‘smooth’
in the parameter u for all w > 0. Hence we expect that everything is smooth also for v > 1, and as u — oo
we see that z, = 0 and A, — 0o and the model eventually approaches a completely localized model.

Once we have established these properties of the generating function the subsequent analysis follows
quite similar lines to the Sierpinski gasket case in Section 3 and Section 4. For example, the probability
measures on the paths are defined by (2.4), and the existence of a continuum limit (Theorem 2.9) and the
weak continuity of the path measure P* in u € [0,1] (Theorem 3.6) hold. The sample path properties such

log 2
as Theorem 4.3, Theorem 4.4, and Theorem 4.7 also hold with v = ] og/\ .
0g Ay
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