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Abstract

A new class of fractals, the scale-irregular abb-gaskets, is defined, and
the asymptotically one-dimensional diffusion processes are constructed on
them. The class contains infinitely many fractals which lack exact self-
similarity, and which also lack non-degenerate fixed points of renormal-
ization maps (hence are not in the class of nested fractals).

An essential step in the construction of diffusion is to prove the exis-
tence of appropriate time-scaling factors. For this purpose, a limit theo-
rem for a discrete-time multi-type supercritical branching processes with
singular and irregular (varying) environment, is developed.

1991 Mathematics Subject Classification.  Primary 60J60; Secondary 60J25,
60J85, 60J15.

1 Introduction.

In this paper we define a new class of fractals which we call the scale-irregular
abb-gaskets, and construct asymptotically one-dimensional diffusion processes
[16] on the scale-irregular abb-gaskets. The class scale-irregular abb-gasket is
a generalization of the Sierpinski gasket, a triangle based fractal, which we
introduce as examples of finitely ramified fractals which are scale-irregular, i.e.
do not have exact self-similarity, and moreover, which lack non-degenerate fixed
points of renormalization maps (hence are not in the class of nested fractals).
See [17, 16, 15] for the motivation on the latter point. The class scale-irregular
abb-gasket is a scale-irregular extension of the abc-gasket defined in [17].
Intuitively speaking, a scale-irregular abb-gasket is obtained by recursively
repeating a procedure of joining ‘triangle graphs’ to form a larger triangle, and
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‘shrinking’ them by giving appropriate metrics. Namely, join (ag + 2by) copies
of a triangle Hy as in Figure 1 to form a triangle H_;. In a similar way, for
n € Z,, form H_, 1 from (a—pn + 2b_,,) copies of H_,. A scale-irregular pre-
abb-gasket as a graph ﬁ[éo is defined to be the inductive limit of two copies
of H_, joined at origin O. ﬁ[éo is specified by a sequence of pairs of positive
integers ¥ = ((ao, bo), (a_1,b_1), (a_2,b_3),---). Denote the vertex set of H’_
by Go(Z)
Given a sequence of pairs of positive integers {(an,by), n € Z}, put

Sy = ((an,bn), (anv—1,bn—-1), (an—2,bn=2), - ),

and define Gy = Go(Sn) for N = 1,2,3,---. Gn has a graph structure inherited
from fIc’)O, which we denote by Hy and call the scale-irregular pre-abb-gasket
of scale N. For z € Gy we call y € Gy an N-neighbor of z if {z,y} is an
edge of the graph. If N < N’ there is an injection from Gy to Gn (see
(A.9)), with which we identify Gy to a subset of Gys. An intuitive meaning

of this injection is that G is obtained from Gy_; by adding a substructure
o0

specified by (an,by). We can define a metric d on G def U Gy such that

N=1

N

d(z,y) = H min{ay + 1,b + 1} 71 if  and y are N-neighbors (see (A.8)). We
k=1

define the scale-irregular abb-gasket, which we denote by G, as the completion

of G by the metric d.

If ay and by are independent of N, the corresponding fractal is an abc-gasket
(with b = ¢) of [17]. The Sierpiriski gasket is the scale-irregular abb-gasket with
any = by =1, N € Z. Inspired by the case of the Sierpinski gasket, we use
the terminology ‘horizontal’ (edges) and a ‘unit triangle’ of scale-irregular pre-
abb-gaskets, in the following. We give a precise definition of the scale-irregular
abb-gasket, together with the definition of these terms, in Appendix A.

For a process X taking values in G we define T), ;(X), n € Z, by T,, o(X) =
inf{t >0] X(¢t) € Gp}, and

Tpivr(X) =inf {t > T i(X) | X(£) € G \ {X(Ths(X))}}, i =0,1,2,--.

For an integer n and a Markov process X on G or on Gy for some N > n, we call
a random walk X on G,, defined by X" (i) = X(T,,.:(X)) the n-decimated
walk of X. By definition,

Proposition 1.1. If n < N and X™ and X™) are the n and N-decimated
walks of X respectively, then X is the n-decimated walk of XN).

For N € Z and w > 0, we define a simple random walk Xy, on Gy as
follows. At each integer time, the random walker jumps to one of the four N-
neighbors, and the relative rates of the jumps are 1 for a jump in horizontal
direction and w in the other directions. We prove in this paper the following.



Theorem 1.2. Assume that {(an,bn), N € Z} is a bounded sequence of pairs
of integers satisfying

(].1) any > 2, by > 2, by <2an, N €Z,

and let G be the scale-irregular abb-gasket defined by this sequence. Then there
ezist a sequence of positive numbers wy, N € Z satisfying

(1.2) lim wy =0,

N—o0

and a symmetric Feller diffusion process X with a measure p on G defined

by [ fdu= A}im (H,]j:o(ak +2bk)71) > weay f (@), such that for N € Z, the
N-decimated walk of X is equal in law to the random walk Xy -

The assumptions (1.1) are to avoid complications. We will prove Theorem 1.2
for any wy satisfying

(1.3) wo € Icg(O,i]r\lff{QaN/bN} - 1).

Proposition 1.1 and Theorem 1.2 imply that the (N — 1)-decimated walk of
XnN,wy is equal in law to Xy_1,4,_,, from which it follows that the sequence
{wp} satisfies a recursion relation

(1.4) WN-_1 = f(aN,bN)(wN)a N € Z,

where

(1.5) Fam (w) = b2w{(1 +a)b+ (ab+a+buw}

(b+2)+2(b>+a+bw+ b2w?’
Proof of (1.4) is elementary (but lengthy), and is similar to that of [16, Propo-
sition 1.1]. It is elementary to see that

Proposition 1.3. If (1.1) and (1.3) are satisfied, there exists one and only
one sequence {wy} which satisfies (1.4) and which is in the open interval I.

n—oo Wy

S
w
Moreover, {wn} is strictly decreasing and satisfies (1.2). lim s H Optk =
k=1

of 2(1
1 uniformly in s € Z, where d, def M
2+ by,

holds that I = (0,1) and Nlim wy = 1.

> 1. Ifby =an, N € Z, it also

The ratio of the rate for a off-horizontal to horizontal jump of Xy, is
wy, hence (1.2) means that on small scales the process favors horizontal moves,
while wy > 0 means that the process span the whole fractal space and is not
confined in a line. If by = any, N € Z, we have Nlim wy = 1, which implies
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that isotropy is asymptotically restored.



The fractals may be regarded to have ‘obstacles’ or holes in the space, when
compared to uniform Euclidean spaces. Intuitively, a random walker that favors
horizontal motion performs a one-dimensional random walk between a pair of
obstacles, and eventually is forced to move in off-horizontal direction before they
could move further horizontally. There are obstacles of various scales (sizes),
separated by distances of the same order as their scales, hence globally, the
random walker is scattered almost isotropically [4]. This phenomena is absent
on regular spaces such as Euclidean spaces. The intuition implicitly guided the
studies in [16, 17], but in spite of the generality in the intuition, it was not clear
how to obtain such diffusions for fractals which lack exact self-similarity. Also
the statements for the diffusion in that work were not referring to the properties
which explicitly embodied the picture. It is the purpose of this paper to report
some positive answers (Theorem 1.2) to these points.

We construct the diffusion as a weak limit of Xy .y ([Lnt]), N € Z, for
a time-scaling constant Ly. A key step in the construction is an asymptotic
estimate of number of steps of Xn .., whose expectation value is Ly. We
apply a limit theorem for discrete-time multi-type supercritical branching pro-
cesses with singular and irregular environment. We need multi-type branching
processes because the horizontal and off-horizontal jumps have different tran-
sition probabilities. Branching rates change with the generation N (irregular
environment) because the substructure of pre-gaskets varies with its scale N.
Environment varies also because the transition probabilities of the random walk
XnN,wy vary with N. In particular, birth rates of types corresponding to the
numbers of off-horizontal jumps approach 0 as N — oo (singular environment).
Compared with existing related results, there are two major complications aris-
ing from these requirements; criterion for supercriticality, and scaling factor for
total number of descendants. For a construction of spatially symmetric diffusion
on an exact self-similar finitely ramified fractal [22, 6, 24, 21], the expectation of
off-spring for the associated branching process is a constant matrix independent
of generation N. For a construction of asymptotically one-dimensional diffusion
on an exact self-similar finitely ramified fractal [16, 18], the off-spring expec-
tation matrix has a limit as N — oo. In these cases, the largest eigenvalue of
the (limit of) off-spring expectation matrix gives the (asymptotic) growth rate
of descendant expectations and governs supercriticality. A pioneering work for
scale-irregular fractals by Hambly [10] deals with spatially symmetric diffusions
on fractals called HSG(7) (which have much in common with scale-irregular
abb-gaskets with by = an, N € Z, as far as construction of diffusions are con-
cerned). Due to the spatial symmetry, the associated branching process is of
one-type, hence the off-spring expectation is one-dimensional, which gives the
growth rate. In the present study, off-spring expectation is a multi-dimensional
matrix, and neither is constant nor has a limit. Thus a criterion for supercrit-
icality cannot be given in terms of growth rates. Furthermore, the ratios of
expectations of the population between different types are unbounded, which



obscures at first site, the existence of scaling factor for total descendant num-
bers.

Our approach is partly inspired by a study on multi-type branching processes
in random environment by Cohn. Much of our proof of Proposition 2.1 follows
the idea in [8]. In that work, a probability measure on environments is con-
sidered, and the assumptions on stationarity and ergodicity implicitly assured
the last two assumptions in Proposition 2.1 (including supercriticality) to hold.
The assumptions are not suitable for our purpose to consider singular environ-
ment, where some of the branching rates vanish in the limit. To formulate a
sufficient condition of supercriticality in Theorem 2.2, we introduce a recursion
relation in Appendix B which reflects recursive nature of branching processes.
We apply this recursion relation also to prove continuity of limit distribution in
Theorem 2.5. The idea of using recursion relation to prove continuity originally
appeared in [16, Lemma 2.7], which we refine to handle irregular environments.
It turns out in Proposition 2.4 that the existence of scaling factor for total
descendant follows from a fact that the distribution of normalized population
converge to a limit independent of types. Consideration on the branching pro-
cesses may be interesting in its own respect, so we will discuss this in Section 2
independently of other sections.

To apply the general theory of branching processes to the diffusion, we con-
sider in Section 3 estimates for generating functions. An algebraic part of our
proof of estimates (Proposition 3.1) is computer-aided because it requires a rou-
tine work of rather lengthy calculations. We use these basic estimates to obtain
estimates for number of steps of Xn ., , to which one can apply [16, Sect. 3].

Note added in Nov. 1995. While the present paper was being refereed,
some new works on related subjects have appeared. There is now an alterna-
tive and a quite general convergence results for multitype branching processes
(partly motivated by the present paper), which are very nicely applicable to
the construction of the same diffusion [19]. An alternative and more general
construction of the asymptotically one-dimensional (lower dimensional) diffu-
sion on a subclass of nested fractals, together with some detailed studies such
as the asymptotic estimates of the ¢ dependence of the (diagonal) heat kernels
pt(x, ) and the homogenization problems also appeared [13]. Estimates of the
x,y dependence of pi(x,y) require tail structures of limit distribution of the
branching processes, which we hear is now in progress by Hambly and Jones
[12]. A characterization of asymptotically one-dimensional diffusions on the
Sierpiriski gasket by the exit distributions is given in [27]. Our standpoint is
developed further in [5] where we deal with the Sierpiriski carpet.
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2 Branching process with singular and irregular
environment.

Let d > 2 be an integer and put Edéf{l, 2,3,---,d}. Consider a discrete time

d-type branching process Zy = (Zn;, j € £€), N € Z,. Given n € Zy and

1 €&, let
=3 def .
Zn,N;ié(Zn,N,i,jv J 65), N:nan+1a"'7

be random vectors which give the number of descendant at time N from a single
ancestor of type ¢ at time n. We have, for r € Z; and j € £,

Zn.'i

ZnJrr,j = E § Zn,n+r,i,j,u7

i€ u=1

where (Zy ntriju, J €E),u € Zy, areii.d. copies of Zﬂn’ner' when conditioned
on Zy ;. Let {e,} be a sequence of non-negative real numbers.

Proposition 2.1. Assume that following three conditions hold for each i € £.
def ZnNij

(1) Uniform estimates for second moments of Wynij = ————;
E[ Znnij ]

def .
v=E sup  sup e, EJ W,%Nij | <oo, jEE,
n€Zy N>n+ng

lim  sup B[W7Zy; Wanig >p]=0, je&neZy,
P30 N>n+ng

for some constant ng € Z.

(2) For eachn € Z4, vni def

dent of j € £.

El Z,nii
lim 7[ Nij |

> 0 exist, positive and indepen-
N—oo E[ Zanj ]

(3) 1\fli—I>nooPrOb[eNZNj Zp] =1,5€& p>0.



Then the sequence of normalized random vectors (Zn;/E[ Znj ], j € €) con-
verges in Ly as N — oo to a random vector (W, W,--- W) with E[ W ] = 1.

Proofs of the results in this section are postponed to the end of the section. Gen-
eralization to include ey is for our application in Section 3. A simple sufficient
condition for the existence of 7,; is given in Appendix C, in terms of off-spring
expectation matrices Ay (Ani; = E[ ZN_1,N,j ]). The last assumption states
supercriticality. One of our main concern here is a useful condition for the last
assumption to hold.

Definition. A family of sequences of pairs of reals {(xkn, Ykn), n=0,1,--- k},
k € Zy, is said to satisfy the assumption R, if there exist sequences of non-
negative numbers {a,}, {wy,}, {wh}, n € Z4, satisfying 2 < inf,, a,, sup,, a, <
00, and max{w,,w,} < min{l, C,d "}, n € Zy, for constants C,, > 0 and
§ > 1, such that

an+1 : an+1
T < A weer min{l =20 Yk}
/
Yen < Thntl T Woiq Yent1, 0<Sn<k,

hold for all k € Z. Similarly, {(xkn,Ykn), n € Zy}, k € Z, is said to satisfy
the assumption R, if similar relation hold forn € Z, and k € Z..

Theorem 2.2. Assume that for some jo € €, Zoj =1, j = jo, and Zyj; =0,
otherwise. Let p > 0 and j € £. Suppose that there exists an integer ng and
a non-empty subset &' C &, not equal to £, such that the family of sequences

{(xkm, Yu,n)} defined by

Thn = MaxProbl eng ik Znnothij <PJs
Yen = mAx, Prob[ engtk Znno+hij <p|, 0<n<k, ke€Zy,
1

satisfies the assumption R, and

. 1/k
2.1 lim inf —1 >1.
(2.1) o tminf {( 08 T 1) Hae}
(=0
Then
A}im Problen Zny ;> p]=1.

The assumption (2.1) is an ‘a priori estimate’ that Prob[ eng4xZk no+k,i,j <P ]
is not too large. The Theorem then says that it is in fact small. Let us call the
types j € £ the dominant types, and the types j ¢ £ the recessive types. The
assumption R reflects the recursive nature of branching process. It is satisfied



when the probability that recessive types appear in the off-springs of a parent at
generation n vanishes exponentially as n — oo, and if recessive type do not ap-
pear in the off-springs, then at least one dominant type off-spring appears from
a recessive parent, while at least a,+1 (no less than 2 but bounded) dominant
off-springs appear from a dominant parent. {w,} represents singular environ-
ment, while n-dependence of {a,} implies irregular environment. Though the
branching rate to recessive types vanish in the limit, the recessive types may
contribute significantly to the growth of dominant types, because a recessive
parent may give birth to exponentially many dominant type off-springs. Thus
in general, we can not discard the recessive types from consideration for limit
theorems. Note also that supercriticality is non-trivial because of the recessive
types. Assumption on initial condition Zj ; is chosen to be simple, to avoid
complications.

The following is useful in obtaining an a priori estimate of type (2.1) from
moments of Z,nij.

Proposition 2.3. Letp € R and X a real valued random variable. If E[ X | >
p then Prob] X <p| <1—d++/d? -1, whered =1+2"'V[ X ] (E[ X |-p) 2

The next statement is on the existence of norming factor for total descendant
numbers.

Proposition 2.4. Assume that the sequence (Zn ;/E[ Zn,; ], j€E), N € Zy,

converges in probability as N — oo to a random vector (W, W,--- W). Then
Zjes ZNJ

—=—————— conwverges in probability as N — oo to W.

> jee Bl Zn ;]

We complete our list of the results with a sufficient condition for the conti-
nuity of the limit distribution, stated in terms of the assumption R. Let W, ;,
n€Zy, i€ &, be real valued random vectors, and let

def

®,,(t) = E[ exp (V-1t Wy;) ],
denote the characteristic function. We assume an ‘a priori’ estimate of the form
(2.2) |@,:(1)] <1 —Cpt?, —t, <t<t,,n>ng, i€,

for some non-empty subset £ C £ not equal to &, an integer ng, and positive
reals C,, and t,,.

Theorem 2.5. Assume that {tx, k € Z,} in (2.2) diverges to infinity as

k — oo exponentially fast at most (klim tr, = oo and limsupt,lc/k < o0), and
—00 k—o0
satisfies
t,
9% inf sup —— > 0.
k; E|tJ'<tk Ji tj<tk 2 tk



If for any sequence of reals {sk, k € Z1} the family of sequences {(Trn, Jr.n),
neZi}, keZy, defined by

i'k:,n = I;Iéag),( ‘©n0+n,i(sk)|
gk,n = max ‘¢n0+n,i(5k)| P ne Z+a ke Z+7
ICENE

satisfies the assumption R, and if

k—no 1/k
lim inf (tick 11 a¢> >1,

£=0
holds with ay as in the assumption R, then the distribution of W, ; is continuous
foralln € Zy andi € &.
The intuition for the assumptions is similar to those for Theorem 2.2, with W, ;
> ZnNij
>k El Zowws |
The rest of this section is devoted to the proofs of the stated results.

being a weak limit of

Proof of Proposition 2.1. We follow [8] and prove first that Zy ;j/E[ Zy,; | con-
verges weakly. Since W, ni; > 0 and E[ W,y ] = 1, the family of random
variables {W,ni;, N =mn,n+1,---} is tight, hence there exists a subsequence
of integers {kn} such that W, x, ;; converges weakly as N — oo to a ran-
dom variable ij By assumption {WnNij} is uniformly integrable. Weak
convergence and uniform integrability imply convergence of expectations;

(2.3) E[ W)= lim B[ Wky;]=1.
(2.4) sup enE[Wfij]gv.
neZy T

def  Zn,N.iju
Put Wn,N,i,j,u = 0.
E[ Zpn,N,iju |

of (Wh.n,ij, j € E) when conditioned on Z, ;. Hence (Wp ky.iju, J € &,
u € Z4), conditioned on Z, ;, converges weakly as N — oo to a random vector

Whijus J € E, u € Zy), where Wy 50, j € E), u € Zy, are i.i.d. copies

of (Wh,ij, j € €) when conditioned on Z, ;. Hence (2.3) and (2.4) imply, for
positive integer p,

WaNyiju, §€E), u€ Zy, areiid. copies

oo

2
Zni
E[ (Z;il Z(an]u - 1))  Zpi 2p)= qulE[ (Waist = 1)*; Zni = q|
u=1 q=p

< (v/en+1)/p.



This implies, with the assumption on supercriticality and Chebyshev’s inequal-
ity, that for n > 0 and € > 0, there exists ng such that if n > ny then

i Z
7” niju —

< Prob] ‘ ml Z niju — 1

Prob| > €]

2w +ey)

€aZniZ 2
nNeen

J+n/2 < 7.

Convergence in probability follows;

i
(2.5) lim Prob[ |Z,}! ZWWU —1|>€]=0, e>0,i€cf.
u=1

The second assumption in the statement and a property of branching process
(2.6) B[ Zn; 1= Bl Znk Bl Znnk; ]
keE
implies that the limit

6. def E[ Znky,ij ] _ Vi
N—oo E[Zyy,;] SB[ Znk g

exists, positive, independent of j, and satisfies Zﬁm E[ Z,; ] = 1. This, with
=
(2.5) and the non-negativity of Z and W implies convergence in probability,

15 (2 Do) - i

ie€ ie€

(2.7)  lim Prob|

n—oo

>e]=0, e>0.

Note that in (2.7) everything except possibly Wm-ju is independent of the choice
of subsequence {kn}.
Put

€n(z )def lim Prob| Zyy j/E[ Ziy. ] < ;. jeE| Zn].

§n(x) is a bounded martingale, hence converges as n — oo to a random vector
&(z) a.s. The definitions of W, and B,; with (2.6) imply

Zni
&n(z) = Prob| Z (ﬂm ZW’ILZJU> <wj, jEE| Zn],

€€ u=1

on set of continuity points. This with (2.7) implies that £(z) is independent of
the choice of subsequence {ky}. In particular,

E[g(x) ] = A}EHOOPI‘Ob[ Zk'NJ/E[ Zk'ij ] < Lj, JE 5]

10



is independent of the subsequence, hence {Zn ;/E[ Zn; ], j € £} converges
weakly to a random vector with distribution function E[{(x) |. Furthermore,
(2.7) implies that this random vector has equal components. Convergence in
probability, and then in L, is now proved exactly as in [8, step 4]. O

Proof of Theorem 2.2. By definition 0 < x5, <1 and 0 <y, < 1 for all n and
k. With the assumption R and (2.1), we see that {(zk.n, Yrn)} satisfies all the
assumption of Theorem B.2. Theorem B.2 implies klim max{xr0, kot = 0,

which gives A}im Probl enZonij > p] = 1. m|

Proof of Proposition 2.3. PutY = X —E[ X ],
p >0, and t = Prob[Y > —b] = Prob[ X
—b]4+E[Y; Y >0]impliesE[Y; Y >0] >
we have

v
>
b(1

VX ]=V[Y],b=E[X]-
. 0=E[Y]<E[Y; Y <
t). Using Schwarz inequality

3

tv>Prob[Y >0]E[Y?% YV >0]> (E[Y; Y >0])2>b*(1 —t)%.

The statement follows by solving this algebraic inequality in . O

Proof of Proposition 2.4.

> j€E ZN.j
lim E[ min{l, |=———"— - W|}]
N—oo Zjes E[Zn,; ]
. E[Zn;] . ZnN,
< Ilm E ————7 - _min{l, 7’]—W’
T N-ooo [Zj: KBl Zn k] ¢ E[Zn,; ] .
ZN.j

< ZZ\}EHOOE[ min{1, B ZnJ ] W‘}] 0

JjeE g

The assumption implies the last equality. Hence the statement follows. O

Proof of Theorem 2.5. Note that the definition and assumption on € imply 0 <
0 < 1/2. Let ny > ng, and let {sg, k € Z;} be a sequence of reals satisfying

(2.8) Otn,+k < |8k| <tny+k, k€ Zy.

11



Put

Tkn = I;Iéa‘g),( |<b’ﬂ1+’ﬂ,i(sk)|
Yen = Max ‘(I)n1+n,i(sk)| , 0<n<k keZ,.
i€E\E!

The assumption R implies that {(zgn, yk,n)} satisfies the recursion relation in
the assumption of Theorem B.2. with {wp,+n—n,} and {an,+n—n,} in place of
{w,} and {a,}. Also (2.8) and the assumption on a priori estimate (2.1) imply

k

k k—no ﬁ
hknigf{—logxk,knamg_no} zliknigf{WC’kt% 11 a[} > 1.

=0 @:nl —no

We see that {(gn,yrn)} satisfies all the assumption of Theorem B.2, hence
there exist positive constants C; and Cy (which may depend on nq but not on
k) such that

(2.9) @y, i(s)| < O exp(—Cak?), k€Zy, i€k,

/

The assumptions 111131 tr = oo and limsup t,1c F < o0 imply that there exist con-

k—oo

stants C3 > 0 and Cy > 1 such that t,,.x < C3CF, k € Z,. This and (2.8)
and (2.9) imply

|@,,,i(s8)| < Cs exp(=Cs (log |sk])?)
with positive constants Cs and Cg independent of i, k, and si. Note that si is

an arbitrary number satisfying (2.8). Note also that for any ¢ € R satisfying
t] > mkin tn,+k, there exists j € Z, satisfying

(210) Btmﬂ' < |t‘ < tn1+j.

In fact, let j = min{k | tn,+% > [t|} —n1. (The assumption klim tr, = oo implies
— 00

that the minimum exists.) The definition of 6 implies that there exists j' € Z

such that t,,4; > tn, 457 > 0ts,4;. Hence (2.10) follows.

Therefore,
(2.11) |[®n,i(8)] < C5 exp(—Cé (log [¢])?)

for sufficiently large |t|. This implies ®,,; € L1(R), n > ng, i € £. By the
assumption of recursion relation, it follows inductively that &, ; € Li(R) for
any n € Z_, which implies that W), ; is continuous. O

12






3 Convergence of path measures.

Consider a pre-gasket Hy and its vertices G. One needs to consider 4 types
of vertices A, B, D, E, and 8 types of edges (as ordered pair of vertices) Ap,
Ar, Bp, Bq, Br, Dq, Ep, Er, as in Figure 2 (see Appendix A for definitions).
We put

Sdéf{Ap, Ar, Bp, Bq, Br, Dq, Ep, Er}.

Let (a,b) be a pair of positive integers, and consider the case that Hpy-
substructure of the pre-gasket Hy_; is parametrized by (a,b): In the notation
of Section 1 and Appendix A, (ay,by) = (a,b). Let Q(a, b, i) be the set of walks
on Gy whose starting point X and stopping point form an edge of type i € £
in Hy_1, and such that do not pass through points in Gy_1 \ {X}:

Q(a,b,i) = {@ = (@(0), -, &(L)) C Gy for some L | (&(0),&(L)) is type 7,
o(k) ¢ Gy \ {@(0)}, @Kok +1) € Hy, k=0,---,L—1}.

For i € £ and @ € Q(a,b, 1), let L;(®) be the number of steps in & (ordered
pairs of the form (@(j),o(j + 1))) which are of type i. Define

Fi(a,b;u) def Z H uij(o) , ueCt.
oeQ(a,b,i) IEE

Note that, by definition, there is no N-dependence in F;. F; is a generating
function of number of steps of walks, hence is a rational function of w.
Let II(w) = *(Ilap(w),- -, g, (w)) be as in Table 1. The random walk

Table 1: Transition probabilities

i Ap Ar Bp Bgqg Br | Dq| Ep | Er
H(UJ) w 1 w w T T w T
? 242w 242w 143w 143w 143w 2 14w 14w

XnN,wy on Gy defined in Section 1 is specified by a positive number wy, defined
in (1.3) and (1.4). It is easy to see from Figure 2 that the (one-step) jump
probability of Xn ., for a jump of type ¢ is IT;(wx). The definitions of II and
F together with (1.4) imply

(31) H(f(a,b) (U})) = F(aa b; H(U})) .
Define §€-dimensional matrix A(a, b, w) by

A(a, b, w);; gf (a,b;u = (w)).
J
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It turns out that A(a,b,w)pg; for j # Ap, Ar, Dq diverge as w — 0. We
therefore define f€-dimensional diagonal matrix S(w) = diag(S;(w), i € £) by

(3.2) Spg(w) =w, S;j(w)=1, i+# Dgq,

and define rational functions Fj(a, b, w;u), i € £, u € C¢, by

(3.3) Fi(a,b,w;w)  8i(fram (w) Fi(a, b; S~ (w)u) .

Also we define a vector II(w) and a matrix A(a, b, w) by

H(w) < S(w)(w),
A(a,bw); g%(a, bwsu = T(w)) = Si(fap (w)) Aa,b,w)y; S7 ' (w).

Proposition 3.1. Let a, a’, b, and b’ be integers no less than 2, and let I be
the interval defined in (1.8). Then the elements of matriz A(a,b, w) are positive
forw eI and

(3.4) supfi(a,b,w)ij<oo, 1€ je£&,
wel
(3.5) inf (A(a',b',w');x(a, b,w)) >0, i€é, je&,
w,w’ ij

(3.6) A(a,b,0) ar ar > (a+1)%.
For each i € € put gopi(w,h) = ﬁ‘i(a7 b, w; f[(w)—i—w h). Then gqp,; is a rational
function in h € C€ and w, analytic at h = 0 forw € I, and for each ji,---,js €
&,

1 a2gabj1 ’ 1 83gab ;
sup | — =222 (y h = 0)| < 00, and sup |———2I _(w,h =0)| < 0.
U,EI} w Ohj,0hj, ( ) wEI} w Ohj,Ohj, Oh, ( )

Proof. A(a,b,w) has non-negative elements because it is an expectation matrix
for number of steps. Graphical considerations shows that every type j of steps
appear with positive probability for any ¢, hence they are positive. F is related
to the generating function for number of steps of random walks (see also Propo-
sition 3.2 below), from which we see that g, ;(w, h) are rational functions both
in h and w, and analytic at h = 0. The parameter w is the relative jump rate
of the random walk. Therefore for w € I there are no singularities. The only
possible relevant singularities of F are at w = 0. The estimates in the state-
ment are proved by explicit calculation of F with aid of computer. We give in
Appendix D explicit form of A(a,b,w = 0) obtained as the first derivatives of F
using REDUCE. The explicit formula implies (3.4), (3.5), and (3.6). The esti-
mates on higher derivatives of F at w = 0 is also obtained using REDUCE. See
Appendix D for more information on computer aided proof of this Proposition.
O
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Note that (3.4) and (3.5) imply

(3.7) inf Y A(a,b,w); >0, jEE.
welise

We go back to the gasket and look into the N-dependence. Assume that

(déf{(aN,bN), N € Z} is a bounded sequence of pairs of integers satisfying

(1.1), which determines the gasket G. For N € Z, let Fx = (F'n,ap, -, FN,Er)
be a C¢-valued function in #€ (= 8) variables defined by

(3.8) Frn.i(u) < Fy(an,byiu), i € €.

Also define a diagonal matrix, Iy o diag(Il(wy)). Using Fx and Iy, we can
write the generating functions for the number of steps of Xy 4, . Let i € &,
j €& ,andn < N. Let Z,, n;; be the random variable which counts the number of
steps of type j € € between the times T}, 1 (X n,wy ) and T o(Xn,wy ), under the
condition that (Xnwy (Tn,0(XN.wx))s XNwn (Tn,1(XNwy))) forms an edge of
type i in Hy,. Tj, ; is a hitting time of G,, defined in Section 1. By strong Markov
property of simple random walks, the distribution of Z,,n;; is independent of
the starting point of Xy ,,, and the random variables which count the number
of steps of type j € £ between the times T}, x41(X) and T}, x(X), £ =0,1,2,-- -,
are independent and equal in distribution to Z, n;;, under similar conditions.
By definition, Zpni; =1 (j =1), =0 (j #19).

Proposition 3.2. Fian € Z and i € €. (Zunij, j € £), N = n,n+

1,---, is a multi-type branching process whose gemerating functions ¢p,n =

(d)nN,Apv ) ¢nN,E7‘) deﬁned by ¢nNz(Z) défE[ H Z]‘ZnNij ]7 satisf% fO?” n < N;
jee

(3.9) Gun(2) =0, (Fryq 00 Fy)(Inz), 2 € CE.

Proof. The strong Markov property of simple random walks and the finite rami-
fiedness of the fractal imply that {Z,;;} is a branching process. In particular,

(3.10) N (2) = dn,n-1(dN-1,8(2)), N >n,

holds. The definitions of Il and Fy imply

(3.11) Gnnt1(2) = T By (g 2)

which, together with (3.10) implies (3.9). O

Proposition 1.3 implies that some off-spring branching rates vanish as N —
00, hence we are considering branching process with singular environment.
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For integers n and N satisfying n < N, define §€-dimensional matrices

My © diag(M(wy)), Ay % Alan, by, wn), Ban ® AppiAnia - Ax.

Then (3.9), (3.1), and (1.4) imply

(3.12) E[anj]:(ﬁ;anNﬁN)u, ic& jEE N>n.
ij

Elementwise positivity of Ay and hence of B,y were noted in Proposition 3.1;
(3.13) Anij >0, Bunij >0, i,j€E N>n.

Proposition 3.3. (1) For each ng € Z there exist positive constants C1 and
Cs such that if n € Z and N € Z satisfy N —2 > n > ng, then

N
Buni; > Ci [] (ax+1)%,
k=n-+1
w2 N by 2
. % ) )
BnNijw_% > Oy H <1+5> , 1€, je&.
k=n-+1
(2) There exist limits
e . Bn ©j . .
Wmd=f lim ~—NJ, nel ie€f je&,

N=oo BN,
independent of j, which satisfy, for each ng € Z,

0< _inf 4 < sup v < 00.
n>ng,i€E n>ng,icE

(8) For each ng € Z there exists a positive constant Cs such that if integers
n, m, and N satisfy m —1 > n > ng and N > max{m,n + 2}, then

Z Brom—1,ik Z Bonwj <C3Bunig, 1€E, jE&.
ke€ ke

Proof. Since F is rational in w, A is also rational. Therefore (3.6) implies Apog >
(ax + 1)? + Cywy, k € Z, where Cy is a positive constant. Proposition 1.3
implies that >, -, wr < Y45, wk < 00, n > ng, hence we obtain the first
estimate for BnNij. Proposition 1.3 implies that for each ng there exists a

N
w
constant Cs > 0 such that il > Cs H 5,;1, N > n > ng. With the first
Wn,
k=n-+1
estimate, we have the second estimate. The estimates (3.4) and (3.5) imply
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that the elementwise positive matrices Ay, N € Z, satisfy the assumption of
Theorem C.1 in Appendix C with ¢ = 2. Theorem C.1 then implies the second
assertion. ( déf{(aN, bn), N € Z} is a bounded sequence, hence contains finite
number of distinct pairs; as far as { is concerned, taking supremum or infimum
in N is taking maximum or minimum among finite possibilities. Assume N >
m + 2. Then

Bunij > Brom—1.ik Ak min By nge
ke
ke€ keE

i’g/f{Bme”j /Bumnij}

ZE Bn,m—l,i,k’g By nkry  inf E Apyop .
% ™ eg€ ,m’'>ng v - -
it SUP{Bme”j /Blej}
kl/

It is now easy to see that the second assertion and (3.7) imply the third assertion.
The cases N =m and N = m + 1 can be proved similarly. O

def Zn ij
R v )
nNij

Proposition 3.4. Leti € £ and j € €. For each ng € Z there exists a positive
constant C' such that for all N and n > ng satisfying N > n + 2,

E[ W2y ] < Cllpsw, "

Also, for each n € Z the third moment is bounded in N; sup E[ WT?L)Nij | < o0.

N>n

Proof. By taking derivatives of ¢, in Proposition 3.2 we obtain

(3.14)  wnll JE[ W2y, ]

nit n

N
= wadl B[ Zonis |70 ), D)
k1,ko,ks€E m=n+1
0% Fy, -
a a m bm7 m; H m
ik OUk, OUl, (a v (wm))
X (Bm NIy , (Bm,NﬂN)k o+ (1:[;1 Bn,N ﬂN)‘ '}
3,]

,]

w s ]' 82 mbm K
- Z Z — Bn,mfl,ikrl - M(wmv 0)

k1,k2,ks€€ m=n+1 Wm W 3hk28hk3

XBmegj BrNksj n W,

)

Bunij  Bnnig Byunij Unjj
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where we used (3.12) and the definition of g in Proposition 3.1.
Table 1 and (3.2) imply that there exists a positive constant Cs independent
of n, N, i, j, such that

Wn Wn,

= = < Cg——= < CCy ;
Bnnij Unjj wNBnnij Wy, H,]j:nﬂ (1+%)

wWN

where, in the last inequality, we used the first assertion in Proposition 3.3.
b > 0 and wy < w, (Proposition 1.3) therefore imply that the second term in
the right hand side of (3.14) is bounded.

Next note that Proposition 3.1 implies that there exists a positive constant
Cr independent of n, N, i, j, such that the first term in the right hand side of
(3.14) is bounded from above by

N
o Wn, Bn,m—l,ikl Bmegj Bme‘gj
DD Wy B B '
k1,ko,ks€E m=n4+1 " nNij nNij

Using the third, second, and first assertions of Proposition 3.3 in turn, we see
that this quantity is further bounded from above by

N -
w Nksj
cier 3oy Do
m=n+1 " kse€ nNij
N
Z Wn, 1
CS - =
m=n+1 Wm ZZEE Bnmij[
(o)

< CBZ Lm

2
m=n+1 Wn Hkm:n+1 (1 + %k)

for some positive constant Cg independent of n, N, i, j. Using w,, < w,
(Proposition 1.3) and by > 2, we see that this quantity is bounded. Therefore
we have the bound in the statement of the proposition for the second moment

E[ W2y;; ]. The bound on the third moment is proved in a similar way. O

IN

Let £ C &£ be the set of horizontal edges;
(3.15) & déf{Ar, Br, Er}.

Note that Table 1 and (3.2) imply that there exist positive constants C' and C”
such that for w € I we have

(316) C<IL(w)<C', ief, Cw<Iw)<Cw, icE\E.

Define, for N € Z,
(3.17) Ly SN E| Zoni |

i€E jEE

18



The next Theorem shows that Ly is the appropriate scaling factor for the
random walk X = Xy w, on Hy. Note that T, 1(X) = Tno(X) = Y Zunij,
JjEE
where 7 is the type of edge formed by the endpoints of X in this time interval.
Theorem 3.5. Letm € Z andi € £, Wpnij, j €E), N=mm+1,--,
converges in Lo (hence in probability and in law) as N — oco. The limit is a
random vector with equal components (Wi, -+, W), satisfying E] Wy,; ] =1
and sup w, E[ W2, | < 0. Lj}l Z ZmNij converges in probability as N — oo to
n>m :
= V=

gy def i Y mi , With Ymi as in Proposition 3.3. The distribution

> Bl Zomjk | ymik
s continuous.

of Wy,
Proof. As noted in Proposition 3.2, (Zunij, 7 € €), N =m,m+1,---, is a
branching process. The number of descendant at time N from a single ancestor
of type k at time m is equal in distribution to that of (Z,,nkj, j € £). Fix
j € €. Proposition 3.4 implies, with (3.16),

sup sup wp,E| W,%Nij ] < 0.
n>m N2>n+2

The uniform bound for E[ W3

wnij | in Proposition 3.4 implies

lim sup E[ W,%Nij; Wani; >p] =0, n>m.
P00 N>n42

Proposition 3.3 with (3.12) implies that for each n > m, lim ElZnxis )
N—o0 E[ Zanj ]

positive and independent of j € £. Hence, if we prove that wy Z,,ni; diverges
in probability to infinity, then all the assumptions of Proposition 2.1 will be
satisfied, with ey replaced by w,,+n and ng = 2. Proposition 2.1 then will
imply that (Wi, j € €) converges in Ly as N — o0, to a random vector
with equal components.

By definition, Zmij =1 (j =4) and =0 (j #14). Fixp >0 and j € £, and
define a family of sequences {(Txn,Yrn)} 0 <n <k, k€ Z;, by

exists,

Tkn = gleag; PI‘Ob[ merno(k:)Jrk Zm+n,m+no(k)+k:,i’,j S } 5
Yen = max PI‘Ob[ merno(k:)Jrk Zm+n,m+no(k)+k:,i’,j < ] 5

VEENE!

where & is defined in (3.15). ng(k) is an arbitrary function of k£ taking non-
negative integer values (to be specified later). Define a sequence {a,, n € Z}
by an = amin + 1, and {wy,, n € Z1} by

- def
Wn, = rpeag); PI‘Ob[ E Zm+n—1,m+n,i’,k >1 ] .
i
keENE!
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Wy, is the largest probability among i’ € £’ that the random walk X = Xy
with N = m + n jumps off-horizontally at least once in the time interval
[Tn-11(X), Tn-1,0(X)], under the condition that the endpoints of X for this
time interval forms an edge of type ¢’ in Hy_1. By definition, 3 < inf, a, <
sup,, G, < 00. Also 0 < @, < 1 and is of order w4y, for which Proposi-
tion 1.3 implies w, < C7d6~"™ for some constant C; > 0 and § = mkinék =

2(1 + ax)

mkin ST > 1 (recall that there are only finite number of distinct pairs
k
(ak, b))

A graphical consideration shows that

Thn < r/nez?,: Prob| E Zmtnmant1,i,j = 0] T ppr "
K3
J1EENE!

+Pr0b[ Z Zm+n,m+n+1,i’,j’ > 1 ]yk,nJrl
JIEENE!

(The first term in the outmost parenthesis corresponds to those paths whose

(m+n+ 1)-decimated walks do not contain jumps of type j' € £\ &', while the

second term corresponds to those with at least one such jumps.) We may either

use Yk, < 1 or use Prob| Z Zmtn,min+1,ir,j7 = 0] <1, to conclude that
jIEENE

2, satisfies the inequality in the definition of the assumption R in Section 2,

with {w,} and {a,} replaced by {w,} and {a,}, respectively. Similarly, we find

Yo < max Prob[ Y Zmsnmtntrig 2 1] Tnt
1
jree’

+Prob[ > Zminminiting =01 Uknt1 ¢ -
j/eg/

hence we see that yi ., also satisfies the inequality of the assumption R.
For k€ Z, and i’ € £ put
def
erit = B[ Wntno)y+k Zmthmtnok)+hsi'j | »

def
Ukt = V[ Wingng (k) +k Zimtkym-+no(k)+k,i’j | -

Proposition 3.3, (3.12), (3.16), and by > 2 imply ex i > Cow?, 4m0(k) wwhere
Cy > 0 is a constant independent of ng € Z; and k € Zy. For each k, define
no(k) to be sufficiently large so that ey > 2p for all k € Z. Proposition 2.3
then implies that Prob[merno(ka Zm+k,m+n0(k)+k,i,j < p] < 1-=1/(2d),
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where d < 1 4 2wy e,;?/. Applying Proposition 3.4 and (3.16) we see that

Zir < 1 — C3Wp4r, where C'3 is a positive constant independent of k. Propo-
k

sition 1.3 implies wy,+r > Cy wip H 5m+£ with 0 = 2(1+ag)/(2+ bx), and for

£=0
a positive constant Cy independent of k. Hence

(—log zp k) Hag>C'3C'4me 14 byge/2)
£=0 =

1/k
hich implies  liminf —1 > 2 1. We see that all
which 1mplies k_mlomglﬁlklk#o 0g Tk, k Hag} = > € see at a
the assumptions in Theorem 2.2 are satisfied, with ey replaced by w;,+n, and

ZNj bY Zmm+n,i,j. Theorem 2.2 then implies A}Enoo Probl wn Zmnij > p] =
1, p > 0, which, as we noted in the first part of the proof, proves the conver-
gence of (Wiunij, § € €) to (Wi, -+, Wini). Weak convergence and uniform
integrability imply convergence in expectations. Therefore, from what we have
proved, we obtain the statements on E[ W,,,; ] and E[ W2, ].

Let n € Z,. The j independence of v,; in Proposition 3.3 implies, with

(3.12),
- > Bl Zunis ] _
N2 S B Zanig ]

Also from (3.12) one sees, for m <n < N,

mNZ] ZE mnzk ZnNk:j ] .

ke&
. . — Yni
Hence, with (3.17), we see that lim L' E[ Z.Nii ]| = .
( ) N—oo N zj: [ NiJ ] Zj,k E[ ZOnjk ]’Ynk
> Znnij
Convergence of (Wy,nij, j € ) and Proposition 2.4 imply that =—2———
> Bl Znnij |

converges in probability to W,;. Therefore we have the convergence in prob-

ability of Lx,l ZZ”NU to W/,. With E[W,; ] = 1 and Proposition 3.3, we
je&

have

Tni -1
3.18 W > E[ Zon ,
( ) [ } Z] k E[ ZOn]k ’Ynk Z 0 ]k

for some positive constant Cy independent of n > 0 and 7 € £. Similarly, there
exists a positive constant Cg such that

(3.19) E[W.?] < Cs( ZE Zonjk ) 2wyt n>0,i€f.

n
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Let
D, i(t) LR exp (V-1tw,,) ], teR,

denote the characteristic function. With obvious bound 0 < 1 — R®,,,;(t) <
E[ W, ]/2 and [3®,;(t) —tE[ W, ]| < ’E[W},;*]/2, t € R, we can proceed
as in the first half of the proof of [16, (2.45)], using random walk representation
[16, (2.30)] for ®,,;(t), to obtain

1@, ()] <1—-Cpt*, —t,<t<t,, n>0,icé&,

min, E[ W), , ]

max; E[ WT/L—‘rl,jQ ]
a positive constant independent of n > 0. (Replace 6t in [16, (2.45)] by ¢ and
(3/4)"* by w,,.) We may use a narrower interval (—t,, t,) with ¢, </, for the
estimate above, in applying Theorem 2.5. Put

2 .
ni1; ) and t), = where C7 is

with C, = C7w,, }, min E[ W},
J

def _
tn = C5Ce ™" wn > B[ Zonjn |-
3k
Then (3.18) and (3.19) imply ¢, <t/ . With (3.18), Proposition 1.3, and Propo-
sition 3.3, we see that an assumption of Theorem 2.5

ktfno

1/k
lim inf (tiék I (angsers + 1)> >1,
£=0

is satisfied with a, replaced by ang+e+1 + 1. ~
Proposition 3.3 and (3.12) imply klim tj, = oo, while boundedness of A;;;
implied in (3.4) with Proposition 1.3 and (3.16) gives sup;> t,lc/k < oo. Let

n > 0 and m > 0. Proposition 3.3, Proposition 1.3, (3.12), (3.16), and b, > 2

imply
7% Cswn,

< - < Cy q4-m s
tndm  Wngom MiNg Yy cer Brongm ok

where Cy is a positive constant independent of n and m. Therefore there exists
< 1for all n > 0. With the boundedness of A,,;; we also

ln

an mg such that
n+mo

> 0. Hence all the assumptions for {¢x} in Theorem 2.5 hold.

n

see inf

n>0 tn—i—mo

Using [16, (2.30)], we can proceed with similar arguments as we did for
Prob[ Wy ng(k)+k Lmtn,mtno(k)+k,ir,j < P ], from which we see that ®,, ; satis-
fies the assumption R condition of Theorem 2.5. We have now proved that ®,, ;
satisfies all the assumption of Theorem 2.5, which implies that the distribution
of W/ . is continuous. a

n,i
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Let DdéfD([O, 00); G) be the set of cadlag paths on the scale-irregular abb-

gasket G. For n € Z and x € G,, we define a family of probability measures
P,T(N)[ -, N=n,n+1,---, on D, by P,T(N)[w(()) =z]=1and

PJEN)[ w(t)) =4, 1=1,2,---,7 | =Prob[ Xnwyo([Lnti]) =2, i =1,---,7],

where Xy .2 is the random walk X 4, with starting point z; Xy wy,z = 2.
We use abbreviations such as

PM[w(0) =2 % PM [ {w e D | w(0) =z} ],

and write EéN)[ - ] for the expectations with respect to P;N)[ - ]. Define T, ;(w),

- S . def
w € D, similarly as we did in Section 1 for processes, and put W, ; = nyitl —

T Let N>n,z € Gy, i€ Zy, and let x, 1, -, z; be a sequence of points
in G, such that each adjoining pair is an n-neighbor pair and x¢ and z are in a
unit triangle of H,. Consider the distribution of W, ;, 7 =0,1,---,7—1, under
the conditional probability

PJEN)[ | w(Th,o(w)) = zo, w(Thi(w)) =x1, -+, w(Thi(w)) =2;].

Since the probability is based on random walks, this distribution is a direct
product of the distributions of each W), ;, and as we noted before Theorem 3.5,
the distribution of each W), ; under the conditional probability is equal to that of
Lf\,l > vee ZnNke, if (25,2541) forms an edge of type k € £, and is independent

of i, j, z, and x;’s. We denote this distribution of W, ; by QS\Q[ - ], and their
limit distributions as N — oo by Qni[ - |, k¥ € €. Theorem 3.5 implies

(3.20)]\}2110062;%)[5\a<s<b]:Qn7k[s\a<s<b], 0<a<b<oo.
We need a following type of uniformity to handle processes starting from ‘irra-
tional’ points.

Proposition 3.6. Let N, M, n be non-negative integers satisfying N > M >
n, and let x € Gy and y € G, such that x and y are in a unit triangle of H,.
Then there exists a positive constant Cy independent of x, y, n, M, and M,
such that

(=1

Proof. By similar arguments for the proof of [16, (3.2)], we see that there exist
positive constants Cy and C3 such that for X,, = X, w,, 2/

(321) B[ Too10(Xm) | X(Tor0(Xm)) = ¢' ] < Oy + 22,

m
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forallm e Z;, 2’ € G \Gm—1, and ¢y’ € G171 , with 2’ and %’ in a unit triangle
of H,,—1. For an m-neighbor pair (u,v) forming a type k edge, Proposition 3.3,
(3.17), and (3.12) imply

LN'E[ W i(XNawon) | XNy (Tmi) =t XNy (Trnjie1) = 0]

(3.22) =L Z Znnike < Cs 1:1;;3 (Z Bom—1.00)""
e Ll

where Cj is a positive constant independent of m, N, u and v. Proposition 3.3,
(3.21), and (3.22) imply

(3.23) B[ Tno10(w) [ w(Tm 1o(w) =31 < Cy [T +b0/2)72,
/=1

foral N>m >0,z € Gy \ Gm—1, and ¢ € Gp,—1, with 2’ and ¢ in a unit
triangle of H,,_1. C4 is a constant. The estimate (3.23), combined with the
strong Markov property of the random walks, implies for N > M > n, x € Gy,
y € Gy, with x and y in a unit triangle of H,,,

EM Tro(w) | w(Tno(w) = y]
=3 Y EM[Tisro(w) | w(Tio10(w)) = yii ]
{yi} i=n+1

X P;N)[w(Ti,o(w)) =y, n+1<i<M-1|wTho)=y]
< JJa+0be/2)72,

(=1
where the first summation is taken over {y;} = (Yn, Yn+1, -+, ynm) with y; € G,
Yn = Y, Yy = x, such that y; and y;—1 are in a unit triangle of H;_1, for
i=n+1,-, M. =

The following result is used to prove that an N-decimated walk of a diffusion,
obtained as the continuum limit N — oo of a sequence of random walks, is equal
to the original random walk.

Proposition 3.7. For N € Z., let X be a simple random walk on G with
N -neighbor jumps. Assume that there exists a sequence Ly diverging to infinity

as N — oo such that, Xn(-) f XnN([Ln]) converges almost surely as N — oo
to some continuous strong Markov process X (-) on G. Let n € Z. If for each
N > n, the n-decimated walk (defined in Section 1) of Xn is equal in law to

X, then the n-decimated walk of X is also equal in law to X, .

Proof. Fix 2 € G, and y € G,. Denote by P(®*[ . ] the conditional prob-
ability with condition Xx(0) = x, N € Zy, X(0) = z, and let E(r)[ ]
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be expectation with respect to P®*)[ - ]. For N > n and a positive integer
g, define oy, inf{t > 0 | d(Xn(t),Gn \ {2}) < 1/q}, 0g & inf{t > 0 |

A(X (1), G\ {2}) < 1/}, on.co Linf{t > 0| Xn(t) € Gp\ {2}}, 000 < inf{t >
0| X(t) € G, \ {z}}, where d is the metric on G. The almost sure convergence
of X to X implies

(3.24) o4 < 1}\1{1;1(1}15 ON,g < h]{[ﬂ supon,g < 0gy1, a.5., ¢q>0.
— 00

Define a harmonic function h : G — [0, 1] as follows; for z € G, i.e., z € Gp,
for some m > n, define h(z) OléfProb[)Z'm(am’oo) =y | X;n(0) = 2]. The

assumption on the decimation property implies that Prob| )N(m/(am/yoo) =y |
X,v(0) = z] is constant for m/ > m, hence h is well-defined on Go. We
can see that [16, Proposition 3.2] holds in our case, which implies that h is
continuous. In particular, A is uniquely extendable as continuous function to
G. By definition, h(y) = 1 and h(y') = 0, ¥’ € G, \ {y}. Xn is a simple
random walk, and h, restricted on G, is an associated harmonic function.
Therefore h(Xn(t A ong)), t > 0, is a martingale (a A bdéfmin{a,b}), hence
E@[W(XN(tAong))] = h(z), N> n. This with (3.24), Jim Xy = X, and

continuity of h implies

E@[  min  h(X(tAs)]<h(@) <E®[ max h(X(tAs)].

0q<s<0g+1 0q<s<0qt1

Continuity of X implies that lim ¢, = 0o.. Hence we have h(z) = E@ [ h(X (tA

q— 00

0s0)) ], t > 0. Since this is independent of ¢, we have h(z) = E®)[ h(X (o)) ] =
Prob| X (0) =y | X(0) = z ], which implies that the transition probability of
n-decimated walk of X is equal to that of X,,(0). ad

Proof of Theorem 1.2. We can apply [16, Sect. 3], with [16, Theorems 2.5, 2.8]
replaced by Theorem 3.5, [16, (3.1)] by (3.20), and [16, Proposition 3.1(1)] by
Proposition 3.6. Then for zxy € Gy, N € Z., satisfying Nlim Ty = x, the

sequence of measures Péff)[ - | (the distribution of X wy,zx([Lnt])), N € Z,
converges weakly as N — oo to a symmetric Feller process X. Skorokhod’s
Theorem implies that there exists a probability space and G valued processes
Xn, N € Z, such that Xy is equal in law to Xy 4y ,«n and converges almost
surely to a process equal in law to X. Proposition 3.7 implies that the n-
decimated walk of this process is equal in law to the original random walk
Xnow,- That this random walk has the asymptotically one-dimensional (and
isotropy restoration) properties, is proved in Proposition 1.3. O
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Appendix A. The scale-irregular abb-gasket.

The scale-irregular pre-abc-gasket as a graph.

A mathematical definition of a wide class of pre-fractals, including pre-abc-
gaskets, is given in [15, Section 5.1]. The definition of a scale-irregular pre-abc-
gasket as a graph is an easy scale-irregular extension. For convenience to the
readers, we reproduce relevant part of the definition in [15], with implementation
of scale-irregularity for the scale-irregular pre-abc-gaskets.

Denote a set of positive integers by NN, and a set of non-negative inte-
gers by Zy. For 0 = (a,b,c) € N3, define an equivalence relation < on Zi,
parametrized by o, by the defining relations

(i,1) X (i +1,0) 0<i<a,

(4,2) X (i +1,1) a<i<a+b,

(4,0) X (i +1,2) a+b<i<a+b+tc—1,
(a+b+c—1,0)<(0,2).

Let Yoo = (01,02,03, ), 0 = (an,bn,cn), n € N, be a sequence in N3.
Write ¥ = ¢ and %,, = (01,09, -+, 0y, ) for n € N.

For n € Z, the finite scale-irregular pre-abc-gasket at n-th stage construc-
tion fIn(En), parametrized by X, is a triplet

of a set of vertices V(X,), a set of edges (a set of unordered pairs of vertices)
B(X,), and a set of three vertices P(X,) = {Pno, Pn1,Pn2} C V(5,), defined
inductively as follows.

Hy(Xp) is defined by V(3g) = {0, 1,2}, B(3o) = {{0,1},{1,2},{2,0}}, and
P(X0) = {poo; po1,po2}, where po; =i, i =0,1,2.

Assume that H,_1(X,_1) is defined for an n € N. Define an equivalence
relation ~ on a set of pairs

{(m,v) | m e Z+7 v E V(En—l)}a
by the defining relation

(m,v) ~ (m/,v") if and only if v =p,_1,, V' =pn_1,,
On

for some 4,j, and (m,i) < (m/,j).

(A1)

V(£,) is then defined by

V(En)Z{(m,v)|m=0,1,2,~-~,an—|—bn—|—cn—l, UGV(Zn—l)}/N .
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Denote the equivalence class of (m,v) by ((m,v)). B(X,) is defined by

B(En) = {{((m,v)),((m,w))} |
m=0,1,--,an+byp+c,—1, {v,w} € B(XE,_1)},

and P(X,) = {pno; Pn1, pn2} is defined by
(A-2)pno = ((0,pn=1,0)); Pn1 = ((an,Pn—1,1)), Pn2 = ((an + by, Pn-12)).
For each n € N, there is an injection ¢ : V(X,-1) — V(X,,) defined by
t: V(Ep—1) 30 ((0,0) € V(E,).

¢ maps a bond {v,v'} € B(X,,_1) to a bond {((0,v)), ((0,v"))} € B(X,). We can
therefore identify (V(¥,-1), B(X,-1)) as a subset of (V(X,), B(¥,)). Define a
graph Hoo(Yoo) = (V (o), B(Xeo)) by

neZy

with the identification induced by ¢ assumed.

Note that with the identification ¢, pno = poo = 0 holds for any n € N. We
call 0 € Hy(Xoo) the origin, and also use the notation O.

For o = (a,b,c) € N3, define R(c) by R(c) = (a,c,b), and for a sequence
Yoo = (01,02,03,---) in N3, define R(X4) by

R(¥o0) = (R(01), R(02), B(a3), - -)-

Define also an equivalence relation 2 by (+,0) X (—,0). A graph H'_(S.) =
(V'(Es), B (X)) (scale-irregular pre-abc-gasket as a graph) is defined by

(1) e vE U= ) v e VEE)}) / 2,

V'(Ee0)
and

B'(2x) = {((+ ), ((+,w)} [ {v,w} € B(Zx)}
(= 0)), (= w)} [ {v,w} € B(R(Sx))},

where ((4+,v)) denotes the equivalence class of (+,v). Again, we write O for
(+,0)) = ((—,0)) € V'(2) and call it the origin.
Metric on the scale-irregular pre-abc-gasket.

Metrics on the pre-abc-gaskets and abe-gaskets, i.e. for the case without scale-
irregularity, are given in [17]. We extend the definition to allow for scale-
irregularity.
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Let s € {+,—}, N and n be integers satisfying n > N > 0, for each k €
{n,n—1,---, N + 1}, my, be an integer satisfying 0 < my, < aj, + by + ¢, and
i € {0,1,2}. Then the sequence

(A3) (S7mnamn—1a"'amN+17N7i)
determines an element x € V/(X,) by the sequence of equivalence classes

Tr = ((8,1})), v = ((mnavn—l))v Un—1 = ((mn—lvvn—Q))v
Vp—2 = ((Mn-2,vn-3)), ~+, UN41 = ((mN+17pN,i))'

We take (A.3) as a representation of x and write
(A.4) x = (8, Mp,Mp_1, - ,mnyy1,N,i) € V().

As a convention, we write x = (s,n,4) with N = n for © = ((s,pni))-

Fix N € Z4, and define G_n(¥) C V'(Ex) as a set of vertices x €
V'(¥) which has a representation (A.4). P(Xg) = V(o) implies that each
element x € V/(X.,) has a representation of the form (A.3) with N = 0, hence,
Go(Z) = V'(Zs). Also (A.2) implies

Go(Boo) = V' (Z0e) DG 1(Z00) DG 2(X00) D -+ - .
For each N € Z define a shift 7y on the space of sequences in N3 by
(A.5) n((01,02,08, ) = (ON+1,0N+2, 0N 3, ).

Let ¢ € Go(Ex) \ {O}. = may have more than one representations. However,
(A.1) implies that for each fixed N,

. / ! !/ ! -/
x:(svmnvmnflv"'va+lanl):(Svmnvmn—lv"'vaJ,-lval)
if and only if ) TN (mlyy,.i) and s = 8, my = mi, k =
if and only if (myy1,7) ~  (my,,i') and s = ', mgp = mj, k = n,n —
1,---, N + 2. Hence there is an injection

’TN'XI : Go(’IN'N(EOO)) — GfN(Zoo)
defined by

TN(S7mnamn—1a o 'amlvovi) = (S7mnamn—1a o 'amlvNy Z) .

Put
E_N(Zs) = {Th (@), TN (W)} | {z,y} € B'(Tn(2x0))}-

Let x and y be elements of Go(X). Denote by path(x,y) the collection of
finite sequences

z={z0=2,21,+,25 =y}, forsomer=rx,€Zy,
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which has a property that for each i = 0,1,---, k. =1, {2, 2zi11} € E_,_5(Xo0)
for some v,(i) € Z.
For z € path(z,y) put

L(z) = _ (min{an, bp,cn} +1).

where, 0, = (an,bn,cn), and X = (01,09, --). (By convention, we define the
product in the definition of L to be 1, if v,(¢) = 0.) Then the metric d(X) is

defined by d(Xs0)(x,y) = %f( )L(z). It is straightforward to see that d is
zepa T,y

a metric, and, in particular,

N
(A6)  d(Xeo)(@y) = [[(min{an, bp,ca} +1), {z,4} € E_n(Ew0).

n=1

In considering (anisotropic) random walks on H’_(X..), it is convenient to
have the notion of vertex types and edge types [16, 17]. One sees [17] that a
vertex x € V/(2) is classified into 6 types; A, B, C, D, E, F, and an edge as
an ordered pair of vertices is classified into 18 types; X, with X = A, B,C and
Yy =p,q,7,8, Xy with X = E, Fand y = p,r, and D,, D, by the following rule.

(1) The origin O is of type A.

(2) A vertex which has two representations of the forms (s, my,---,m1,0,4)
and (s, My, -, m},0,4') for some s, n, i, i’, and my’s, satisfying (my,4) <
(mf,1) is of type A, B, or C, if (i,4") = (1,0), (0,2), or (2, 1), respectively.

(3) Any other vertex with a representation of the form (s, my, -, m1,0,1) is
of type D, E, or F, if i = 2,0, or 1, respectively.

(4) Let {z,y} € B'(X¥x). Then z and y have representations of the form
x = (s,Mp, --,mq,0,4) and y = (s,mp,---,m1,0,i). If = is of type A
then (z,y) as an ordered pair is of type 4,, A,, A, or Ay, if (,i) = (0, 2),
(1,2), (0,1), or (1,0), respectively. If x is of type B then (x,y) is of type
B, By, B,, or By, if (i,7") = (0,2), (2,1), (0,1), or (2,0), respectively. If x
is of type C' then (z,y) is of type Cp, Cy, Cy, or Cs, if (i,i') = (1,2), (2,0),
(1,0), or (2,1), respectively. If x is of type D then (z,y) is of type D, or
Dy, if (i,i") = (2,0) or (2,1), respectively. If = is of type E then (z,y) is
of type E, or E,, if (i,7') = (0,2) or (0,1), respectively. If z is of type F
then (x,y) is of type F), or F,, if (,i") = (1,2) or (1,0), respectively.

Inspired by the Sierpinski gasket, we call the edges of types X, with X =
A,B,C,E,F, and A, the ‘horizontal” edges.

29



The scale-irregular abc-gasket.

Fix S : Z — N3. For N € N, define Sy = (S(N),S(N —1),S(N —2),---)
(note that the numbers are now in decreasing orders), and put Gy = Go(Sn).
Gn has a graph structure with the edge set

(A.7) En ¥ B'(Sy).

Define a metric dy on Gy by

N
(AS) dN(x’y) = d(SN)(Q:?y)H

n=1

xayeGNa

1
min{ay, bp,cnt + 17

where we wrote S(n) = (ay, by, cn). (We define the product to be 1, if N =0.)
For each pair of non-negative integers N, N’, satisfying N < N’, there is an
injection from Gy = Go(Sn) to Gy = Go(Sn+) defined by

(Ag) (S7mna Mp—1,""", m0707 Z) = (S7mna Mp—1,""", mOvN/ - N7 Z)
We identify G with a subset of G/ with this injection;
Go(So) cGicGacCcGsC---.

Let Goo = U G N with this identification assumed. Using (A.8) and (A.6),
NEZy
we see that if N/ > N

(A.10) dyni(z,y) =dn(z,y), z,y€ Gn C Gy

For any z and y in G, define d(z,y) as follows. There exists N € Z; such
that =,y € Gn. Then define d(z,y) = dn(z,y). With (A.10) we see that d is a
well-defined metric.

The scale-irregular abc-gasket G is the completion of G, by d.

A subset G C G has a graph structure with the vertex set Gy and the edge
set En given by (A.7). We use the notation Hy = (Gn, Ex) (= H'_(SN)) to
refer to the graph structure, and call it a scale-irregular pre-abe-gasket (of scale
N). For z € Gn, we call a vertex y € Gy an N-neighbor (of x) if {z,y} € En.
We use, for Hy, the notion of vertex types and edge types, A4,, A, etc., and the
terminology ‘horizontal (edge)’, in accordance with the corresponding notations
for H'_(Xs0).

If S has a property by = cy for all N, where S(N) = (an,bn,cn), We
call G the scale-irregular abb-gasket and Gy the scale-irregular pre-abb-gasket.
For a scale-irregular pre-abb-gasket, we identify the types A, = Ay, 4, = A,
By =By, C =B, D, =Dy, and F = E. Hence for a scale-irregular abb-gasket,
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there are 4 vertex types A, B, D, E, and 8 edge types Ay, A, By, By, By, Dp,
E,, E,.

We also use the notion of a ‘unit triangle’. By a unit triangle of Hy (or a
unit triangle of scale V) we mean a closure (in G with respect to the metric d)
of a set

U {(Samna"'am()vm—la"'am—N/—‘rNaOai) S GO(SN/) | 1= 071527
N'>N

m—k:051725"'7aN+k+bN+k+CN+k_17 k:172a"'aN/_N} (CG)

for some fixed s, my, -+, mo. ($,Mpn, -+, mp,0,7) € Go(Sn) = Gn, i =0,1,2,
are defined to be the three vertices of the triangle.

If S is a constant map defined by S(0) = (a,b,c), then G is an abc-gasket
[15, 16, 17]. If, furthermore, a = b = ¢ = 1, then G is the Sierpinski gasket.

Remark. Assume that S is a bounded map. As in [17], (min{an,bn,cn} + 1),
n € Z, in the definitions of metrics can be replaced by ¢,, n € Z, satisfying
£, < (minf{an,bn,cn} + 1), n € Z, and inf ¢,, > 1. The first condition implies

(A.6), with (min{an, by, ¢, } + 1) replaced by ¢,,. The second condition with the

boundedness of the map S implies that there exists C' > 0 such that if x and y
N

is in a unit triangle of G then d(z,y) < C H 0,7t

n=1

Appendix B. Decay estimate from non-linear re-
cursion relations.

The Lemma below gives a mild decay estimate from a non-linear recursion
relation. We apply the Lemma to prove a Theorem which states a sharp decay
estimate from another recursion relation with more involved assumptions.

Lemma B.1. Let {wy, n € Z} be a sequence in [0, 1] satisfying >, w, < 00,
and {an, n € Zy} a sequence satisfying Ddéf inf,, a,, > 1 and sup,, a, < oo.
For each k € Z define a sequence {zyn, n =k, k—1,---,0} by a recursion
relation

an
xk,n:(l_wn+l)mk7rj—i1 + Wnt1, n:k—l,k—Q,"',O,

with initial condition xy ) satisfying 0 < xpp < 1. If

k
lim (— logxkyk) H Ay = O
=0

k— o0, wk,k¢0
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holds, then there exist positive constants Ci and k1 (independent of n and k)
such that

ZTrpn < Crsupwg + exp (—Df’“_"_l) , 0<n<fi, k>k,

L>n
where
k
fe=sup{n <k —1|VD(-logzys) H ag>1}+1,
l=n+2

with a convention H’g:kH ar=1, and fr =k if vir = 0.

Proof. Put Cy = sup,, exp(a,). »_, w, < oo and D > 1 imply that there exists

—1
a constant n; such that H(l —Cywy) > VD , n > n;. By assumption,
>n
hm fr = 00, hence there exists a constant ki such that fr > ny — 1, k > ky.

Let k > kp in the following. We first prove that
(B.1) T <exp(=D7'), k>k.

If x5 = 0 then (B.1) directly follows, so we assume zj > 0. Put up, =
—log 2, . The assumptions and the recursion relation imply 0 < zj , < 1 for
all n, hence uy,, exist and are non-negative. Furthermore,

( —Qn+41

Uk,n = Opt1Uknt+1 — lOZ (1 Ty — 1) wn+1) < Qpt1Ukn+1

which implies

k
(B.Q) uk7n§uk7k< H az) , 0<n<k.

l=n+1
The definition of fi implies fir < k and the following three inequalities;

(B.3) Uk > VD ', fe=Fk,
k
(B.4) \/Euhk H ag | > 1,
£=fr+1
k
(B.5) \/Bu;@k(H az)ﬁl, fe<n<k-1.
l=n+2

The estimates (B.2), (B.5), and D > 1imply ug n41 < 1, fr <n < k—1, which,
together with the recursion relation implies

Uk = Ang1Uknt+1 — 10g(1 + exp(Ur nt1an+1) Wnt1 (1 — exp(—Uknt10n41)))

> Apy1Uknt1 — 1og (1 + Cowyp1 Uk 1 Gntt)
> apt1(l — Cowpg1) Uk nt1, fo<n<k-—1.
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This with k > ki and (B.4) implies wy s, > wer([T5_ s 11 ae)([Tj_, 41 (1 —
Cowg)) > D7Y if fr, < k—1. If fr. > k then fr = k, hence (B.3) implies
ug,f, > D' Therefore we have (B.1).
Put v, = supwy. {v,} is decreasing, bounded above by 1, and lim v, = 0.
L>n

n—o0

Define a sequence {zkn, n = fi,fr — 1,--+,0} by 2kn = 2knt1” + Unt1,
0<n<fr—1,and z; s, =exp(—D1). Then

(B.6) Teon < 2k, 0<n< fi.
Put
(B.7) Zkp = exp (=D ") v

Taylor’s formula implies (a+8)P —a®? < DB (a+3)P~1, forany a > 0, 3 > 0,
and D > 1. If we put a = exp (—ka*”*Q) and 3 = Up41 rgnt1 we have, with
Zk:,n+1D = Zk,n — Un+1,

Thn = vt (an — exp (—ka*n*l))

Un+1 —n— D-1 Un+1
Tk:,n+1 D (exp (—ka n 2) + Un+1 'rk,nJrl) + )

Un

<

which, with v,41 = sup wy <wv, and D > 1,
£>n+1

(B.8) rgn <Tknt1 D (e + vnge rk7n+1)D_1 +1, 0<n< fr—2.

1
Put p = 3 (14+ De P, D > 1 implies 0 < De P*! < p < 1. Therefore
there exists a constant ko defined by

ky=inf{n>0|D(e ' +v,(1—p) HP 1 <p}.

Monotonicity of {v,} implies D (e™* + v, (1 —p) )P < p,n > ko If fi, >
k2+1 then we can prove by induction that ry, , < (l—p)*l, ko <n < fi. Infact,
we explicitly have ry 5, = 0 and 74,5, —1 = v, /vs,—1 < 1. (The latter holds,
because (B.7) implies zx f,—1 = €' 4+ vp 17 f—1, While z f, 1 = Zk7fk,D +
vp =t tup) rg e < (1- p)~* holds for some n with ks <n < fi, — 2,
then (B.8) and the definition of ks implies 74, < (1 —p) p+1=(1—p)~".
Thus if f; > ka+1, 74, for kg < n < fi, are bounded by a constant independent
of n and k. kp is independent of n and k. Therefore ry , for 0 < n < kg are
bounded by a constant independent of n and k. If fi < ka4 1, similar argument
shows, with ry ¢, = 0, that 7, for 0 <n < f are bounded by a finite number
independent of n and k. This with (B.6) and (B.7) implies the statement. O
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Theorem B.2. Let {w,}, {w)}, n € Z, be sequences in [0, 1] satisfying
max{w,, w,} <Cyé ", neZy,

for positive constants (independent of n) Cy, and § > 1. Also let {an, n € Z1}
be a sequence satisfying inf,, a, > 2 andsup,, a, < co. For each k € Zy consider
a sequence in [0, 1]?

{(xk,nvyk,n)a n:k7k_laa0} C[071]27

and assume that it satisfies a recursive inequality

An+1 : An+1
T < T Wapn min{l — 20 Ykt )
Vi
Yoo < Thptl +Whiq Ykntl, R=k—1,k—2---,0.

If
& 1/k
(B.9) lim inf {(—1oga;k,k)Hag} >1
=0

k—00, T k70
holds, then there exist positive constants Cy and Cy (independent of k) such that
max{zk 0, yko} < C1 exp(—Cs k2) , keZ,.
Proof. Define {Zkn, n=k,k—1,---,0} by Tk = zk, and
Thon = (1= wnp) Ty + Wngr, n=k—-1,k—=2,---,0,
Then the recursion relation for z, , and the assumption yi , <1 imply
Toon L Thpm, 0<n<k, k>0.

{Zk,n} satisfies all the assumptions of Lemma B.1 with D = 2, hence there exist
positive constants C3 and k1 (independent of n and k) such that

(B.10)  zg,, < Cysupwy; + exp (—2f’°_"_1) , 0<n< fr, k>ky,
L>n

where

k
(B.11) fe =sup{n <k —1|v2(=logzyys) H ag > 1} +1.
l=n+2

Since (B.9) implies klim fr = oo, there exists a constant ko > ki such that for
0<n<fr/2and k > ko,

exp (—2f’“*"*1) < exp (—2fk/2*1) < C’wéff’c/Q < Cpd ™.
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This with (B.10) implies xp, < (C3+1)Cyp 07", 0 < n < fi/2, k > ka. Ap-
plying this estimate to the original recursion relations and using w, < C\y,d~",
w!, < Cwd™ ™, and a, > 2, we have

Tkon S Cw 5—n—1 ((03 + 1) Tkn+1 + yk,n+1) )
<

Yk,n Tkn+1 + Cw 57”71 Yke,n+1, 0 <n< fk/27 k > k2 .

Iterating once, we find
max{zkn, Yrn} < C56 "' max{zrni2, Ykmiat, 0<n< fir/2-1, k>ky,

where Cj5 is a positive constant independent of n and k. Iterating this [f/4]
times, where [z] is the largest integer not exceeding z, and using zj, < 1,
Ykn < 1, we find

(B.12) max{zxo, yro} < exp{[%] (log Cs) — [%r (1og5)} k> k.

The assumption (B.9) implies that there exist positive constants ks > ko and
k

0’ > 1 (independent of k) such that (—logxzy k) Haz > 8% k > k3. The defi-
=0

log &’
_ 980y, k} k > ks. Applying
log sup, ay
this to (B.12), increasing constants for terms with &k < ks if necessary, we have

the statement. O

nition (B.11) then implies f > min{

Appendix C. Products of matrices with positive
elements.

We present an elementary theorem on the existence of a limit of normalized
products of matrices with positive elements. We assume no relation among
matrices in the product, such as commutativity or stationarity. We also allow
the infimums of some components to be zero.

Theorem C.1. Let d and q be positive integers, Sdéf{l,l -+,d}, and {An,
N =1,2,3,---} be a sequence of d-dimensional matrices whose elements are
positive and bounded, satisfying I\i/nf'(ANAN+1-~-AN+q,1)ij > 0. Then for
6,J
def (A1~ An),;

1e€€andje&, v = lim Y

| ———————~ exists, positive, and is independent
N—o0 (Al .. AN) ) p p
of j.
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Proof. For N > n > 0 define

def
BnN é An+1An+2 e AN
and put
def Bonij . )
’YNZJ:B ) Zega.]eg'
ON1j

The elementwise positivity of Axy1 and By, imply for each ¢ that {rr}cm YNik}
is increasing and {m’?xymk} is decreasing in NN, in particular, the sequence

{vnij, N =1,2,---} is bounded. Therefore, for each i and j, and for any
subsequence of positive integers there exists a further subsequence {ax} such
that the limit (@) det
€ .

(C.1) Vi = A}floo%w,z‘j >0.
exists and is positive.

ForO<n< Nandi€f&, je€&, put

def Bon1i Bnnij
PnNij = — @/ -

Bonij
The definition and the elementwise positivity of Bj,n;; imply, for 0 < n < N,
i,j €€,

(C.2) 0<panig <1, D Panks =1, YNij = Y Vnik Puk; -
kee kee

We prove a couple of Lemma for p,n;.

Lemma C.2. Fiz {an}, and let %(j'-l) be as above. If for every i,j € & either
. . B . . - . (a) .
rlgfo N1>r}lf+qpnm] >0 or 7llI;fO N1>rilf+qpn1vﬂ > 0 hold, then for everyi € £, ;5" is
independent of j.

Proof. Put n =ap and N = app in (C.2). We see from (C.1) and (C.2) that for
each € > 0 there is an integer My such that for any integers M, M’ satisfying
M' > M > M, we have

(03) Z(’yz(;l) - ryz’(]?))pa]\ha]u'vkj <E€.
ke&

Now suppose that the Lemma is wrong; 'yz(,(:l) < 72(,?2) and 'yl(;jl) < 'yz-(;) < 'yi(;;),
j €& If weput j =kyin (C.3) and keep k = k1 term in the summation we

have € > (71(,?2) — 72(,?1) )Pant,ays kaske» While if we put j = k1 and keep k = ks term

we have € > (%(132) —’ygjl) JPanrs,ay kike- Since € > 0 is arbitrary, these inequalities

contradicts the assumption of the Lemma. O
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Lemma C.3.

inf inf >0, i€& jek&.
n>ON>n+qpnN” ’ y J

Proof. Note that each p,n;; is positive by (C.2). Therefore it is sufficient to
consider the cases where N and n are sufficiently large. For sufficiently large N,

Y " Asik, BaN ks
Alli ko Alli . A2,i,k2
> m

P1Nij = > 1 2 )
E Ak, max E A2 iy ko B2, N ko E Ang, P2 MEX A2k K
k1 ! k2 k1

where we used an inequality among non-negative numbers a;, b;, ¢;, i € &;

Z a;C; . a4 . .

> min — . Hence inf i; > 0. If we prove inf
Zbici i b,L N>1p1NZJ P n>0 N>n-+q P1Nij
then the Lemma is proved. For sufficiently large N and n with N — ¢ > n,

inf PoNi > 0,

Panij mkin A1k BinkiBnnij min Aq1xAokk, Bn—g,n,kei Bnn+tq,iks
> > min .
Pinij — mMax A11iBinikBankg — {ki} A11iAoik, max Br—gn,kakBnntq,kks

Taking the infimum of both sides with respect to N and n, we see, with the

. . . Nij
assumptions of Theorem C.1, inf inf PnNij > 0. a
n>0 N>n-+q P1Nij

Let us continue the proof of the Theorem. Lemma C.2 and Lemma C.3 imply
that %(ja ) of (C.1) is independent of j. Fix i € £, and consider two subsequences
of positive integers. There are subsequences, {ay} and {by}, for each of the
subsequences respectively, such that the limits

(C4) 72-((1) 4 Jim Yan,ij >0, and 'yi(b) ' Jim Yon,ij > 0,
N—oo N —o0

exist, positive, and are independent of j. Put n = by; and N = ap in (C.2);

(C.5) Vayvij = Z%M,ikaM,aM,,kj, apyr >by, €&, jEE.
kee

The equations (C.4), (C.5), and (C.2) imply that for any positive e there exists
an integer Ny such that if ap; > by > Ny hold, then

a b
'Vi( ) ('Vz( ) Zpr,aM“kj>

ke&

%(“)—%(b)‘: <e,jEE.

Hence %(“) = i(b), which implies that the limit is independent of subsequences.

Positivity of the limit also follows from (C.4). ad
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Appendix D. Estimates on generating function.
We give an explicit formula for the generating function
Gapi(w, h) = Fi(a,b,w;TI(w) +wh),

introduced in Section 3. As mentioned in the Introduction, an algebraic part of
our proof of estimates (Proposition 3.1) is computer-aided, because it requires a
routine work of lengthy calculations. A complete proof the formula is long and it
would not be worthwhile to describe the details of the calculations. But it may
be reasonable to specify which part of our estimates are computer-aided. In this
Appendix, we summarize the notations we used for the computer calculations,
and the results obtained by using REDUCE on computers. The derivations are
basically as in [16, 17], to which we refer for further explanation.

For each i € &, gq,; has an expression gq 4 ,(w, h) = Num;/Den;, where

’ 0 ]o
Den; = det W + det( = ) ,
azfl T | W

0|0;
Numi——det<1.i, W)

The definitions of Oy, 14, O} I], and W, in the above equations are as follows.
Put Z(i) = H(w); +w S~ (w)s hi, i € E. Then Oy = (Z(Ar),0,0,0,0, Z(Bq)),
02 = (0,Z(Ar), Z(Bq),0,0,0), and O3 = (0,0,0, Z(Bp), Z(Bp),0). For X €
{A,B,D,E} and t € {p,q,r}, we write Xt to specify an element in £, with an
obvious rule. With this convention, O, = O3, X € {4, B, E}, O}, = O1, and
O, = Oy, otherwise. I p, = 0, otherwise I x; = *(Z(Xr),0,0,0,0,Z(Xp)).
I a4 =%(0, Z(Ar), Z(Ap),0,0,0), otherwise I x; = 0. I3 x; = 0,if X € {A, E},
otherwise I3 x; = *(0,0,0,Z(Xq), Z(Xq),0). Iy, = ‘I3 xq, while for t # g,
Iy, = I x¢+. W is a 6 dimensional matrix given by

W =1-

Wa(1) Ws(l) 0 0 0 Z(Bg)

W) Wal) ZBy O 0 0

0 Z(4p) Wa(2) WH2) 0 0

0 0 Ws(2) Wa(2) Z(Br) 0

0 0 0 Z(Br) Wu(2) Ws2)

Z(Ap) 0 0 0 Ws(2) Wal2)
For j = 1,2, Wa(j) + /() = War () + aj) = 1 - B) % W) =
BG) _ (BO\" o BG) (BOYE s
Ao (ﬁ’(ﬁ) W)= R (ﬁ(ﬁ) » where () =
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N 6'(5), 2a(§) = alj) + o an _ag ()rO — g (j)n0H!
B(I) B (), 2a(4) = aj) + a'(j), and A(j )n(] = PROEERE)

() = 14 60) = VAU 213G 6(j) = = “2%)(525‘”. Finally,

n(
(7), &/(4), B(j), and B'(j) are given by n(1) =a —1,n(2) =b—1, a(1) =
(1) = Z(Ap) Z(Dq), (2) = Z(Br) Z(Er), o/(2) = Z(Bq) Z(Ep), B(1) =
p'(1) = Z(Ar)+ Z(Ap) Z(Dq), B(2) = Z(Bp)+ Z(Br) Z(Ep), #'(2) = Z(Bq) +
(Bq) Z(Er).
With these explicit formula, we obtain the following order estimate. Define
Ci,i€& by Car =1/2, Cg = Cg = 1, and C; = 0, otherwise.

7),

«
«

Proposition D.1. For all i € £, w™> Den; and w™* (Num; — C; Den;) are
rational in w and h, analytic at w =h = 0.

We also find by REDUCE calculation that O(w?) terms in Den; do not
vanish;

(D.1) 1})121010*3 Den; #0, i€€f.

The matrix A(a, b, w) defined in Section 3 is rational in w, and has no poles
in w > 0. The explicit form of fi(a7 b, w = 0) given below is obtained by explicit
calculation of the first derivatives of F' given above, using REDUCE.

Define, for notational simplicity, a matrix M (a,b) by M (a,b);; = (b+2)*(a+
1)t A(a,byw = 0)ij, 4,7 € €, and put By = b+ 2. Then

[ 2B, 0 (b3 + 9b% + 14b + 12) /12
(aBy +b)By  (a+1)B3  (b*+4b+6)(b—1)/6
2B, 0 (b% + 9b? + 200 + 24) /6
B 0 0 b(b+4)(b—1)/6
M{a,b) = 2(aBy —1)By  2aB3 b(b? +4b+7)
0 0 b(b+ 1)By/4
28> 0 (b +9b? + 14b + 12) /6
2(aBs —1)By  2aB3 (b>+4b+6)(b—1)/3

b(b+4)(b—1)/6 b(b+5)(b+1)/12 0
b(b* 4+ 6b+ 11)/3 b(2b2 +9b+13)/12  (a—1)B32
b(b+4)(b—1)/3 b(b+5)(b+1)/6 0
(b3 +9b? + 14b + 12)/3 b(b+5)(b+1)/6 0
2b(b* + 3b+ 5) (202 +5b+8)(b+1)/2 2(a—1)B3
b(b+1)By/2 b(b+1)By/4 B2
b(b+4)(b—1)/3 b(b+5)(b+1)/6 0
26(b% 4 6b +11)/3 b(262 +9b+13)/6  2(a—1)B32
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(b% +10b + 12)(b — 1)/12 b(b+7)(b—1)/12 1
(B> +4b+6)(b—1)/6  (2b%+11b+24)(b—1)/12
(b* +10b+12)(b—1)/6 b(b+T7)(b—1)/6
b(b+4)(b—1)/6 b(b+7)(b—1)/6
(b? 4+2b42)(b—1) (202 +3b+8)(b—1)/2
b(b—1)By/4 b(b—1)By/4
b(b+8)(b+1)/6 b(b+T7)(b—1)/6
b(b% +6b+11)/3 b(2b% + 15b + 37) /6

It is straightforward to see that Proposition D.1 and (D.1) imply the estimates
in Proposition 3.1 for second and third derivatives of g.

Remark. It may be interesting to summarize a possibility of proofs without com-
puters. At present, the estimates for which REDUCE calculations are inevitable,
are the proof of (D.1) and the explicit form of A. The required estimates in
Section 3 concerning A are (3.4), (3.5), and (3.6), among which (3.4) and (3.5)
reflects a network structure of the (pre-) fractal, and (3.6) is actually an expec-
tation with respect to one-dimensional simple random walk. It therefore suffices
with relatively soft estimates of A. With these considerations, presumably, we
may be able to avoid computer aided proof after all. For our purpose, rigorous
derivation of the above results by REDUCE on computers is sufficient.
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