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ABSTRACT

Let W (x, y) = a x3 + b x4 + f5 x5 + f6 x6 +(3 a x2)2y + g5 x5y +h3 x3y2 +h4 x4y2 +n3 x3y3 +

a24 x2y4 + a05 y5 + a15 xy5 + a06 y6, and X =
∂ W

∂x
, Y =

∂ W

∂y
, where the coefficients are

non-negative constants, with a > 0, such that X2(x, x2) − Y (x, x2) is a polynomial of x
with non-negative coefficients.

Examples of the 2 dimensional map Φ : (x, y) �→ (X(x, y), Y (x, y)) satisfying the
conditions are the renormalization group (RG) map (modulo change of variables) for the
restricted self-avoiding paths on the 3 and 4 dimensional pre-gaskets.

We prove that there exists a unique fixed point (xf , yf) of Φ in the invariant set {(x, y) ∈
R+

2 | x2 � y} \ {0}.
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1 Introduction and main results.

In this paper, we study existence and uniqueness of fixed point for a 2 dimensional discrete
time dynamical system in the first quadrant R+

2, generated by the gradient

Φ = (X, Y ) = gradW = (
∂ W

∂x
,
∂ W

∂y
) : R+

2 → R+
2 (1)

of a polynomial W : R+
2 → R+ with non-negative coefficients, such that the set

Ξ = {(x, y) ∈ R+
2 | y � x2} (2)

is an invariant set of Φ = (X, Y ).
Let us state our main results. The first result deals with the existence of fixed point in

the interior of Ξ.

Theorem 1 Assume that W : R
2 → R satisfies the following:

(i) W is a polynomial in 2 variables x and y, each term of which has positive coefficient
and of total degree 3 or more. Moreover, the term x3 exists (i.e., the coefficient of x3

is non-zero).

(ii) Ξ of (2) is an invariant set of Φ = gradW : if (x, y) ∈ Ξ, then Φ(x, y) ∈ Ξ. Moreover,
Y (x, x2) < X(x, x2)2, x > 0, for Φ = (X, Y ).

(iii) There exsits a term of the form xny in W , i.e., the coefficient of xny is non-zero for
some n � 2.

(iv) R(x, z) = X(x, x2z)2 − Y (x, x2z) is a polynomial in z, 1 − z, and x, with non-
negative coefficients. Namely, there exists a polynomial R̃(x, z, s) in 3 variables with
non-negative coefficients such that R(x, z) = R̃(x, z, 1 − z). Moreover,

R(x, z)

Y (x, x2z)
= O(x), x → 0, (3)

where O(x) is uniform in z ∈ [0, 1].

Then there exists a fixed point (xf , yf) of Φ in the interior Ξo = {(x, y) ∈ R
2 | x > 0, y >

0, x2 > y} of Ξ. �

We note that Theorem 1 is not a direct consequence of standard topological fixed point
theorems on Ξ, which allows for a fixed point on the boundary of Ξ, ∂Ξ = {(x, 0) | x �
0} ∪ {(x, x2) | x � 0}, which is trivial, because (0, 0) is a fixed point of Φ under the
conditions in the Theorem. We are looking for a fixed point in Ξo, the interior of Ξ, not on
the boundary.

We also note that restricting our attention to the subset Ξ ⊂ R+
2 is essential, because

outside Ξ, fixed points may dissappear and appear with small changes in the coefficients

of W . For example, let Wε(x, y) =
1

3
x3 + x4y + εy6. (This choice satisfies the conditions

in Theorem 1 and Theorem 2 below for 0 � ε � 8/3.) Then for positive ε, there are 4
fixed points of Φε = gradWε in R+

2; (0, 0), (x1, y1) = (0.662 · · · + O(ε), 0.192 · · · + O(ε)),
(0, (6ε)−1/4), and one of order (O(ε1/8), O(ε−1/4)), while for ε = 0 the last 2 are absent and
we have only 2 fixed points.
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An intuition for the specific conditions on W in Theorem 1 arises in an attempt to
extend a corresponding simple fact for function with 1 variable. Let f(x) be a polynomial
with non-negative coefficients with lowest order term of x3. Then there is a unique fixed
point xf of f ′ on the positive x axis (f ′(xf ) = xf > 0). Note that this is not the direct
consequence of a standard topological fixed point theorem on an obvious invariant set
R+ = {x � 0} of the map f ′, because x = 0 is a fixed point. Rather, the unique existence
of the fixed point xf > 0 is due to the positivity of the coefficients in the map. (Note
also that if f further contains a term x2 then f ′(x) � 2x > x, and there are no positive
fixed points, hence the orders in x of the terms are important for existence.) A simple way
of extending this fact to 2 variables would be to assume that the second variable y is of
order x2, at least for small x, and that this relation is preserved under the map Φ = (X, Y )
in consideration. This motivates the non-negativity of the coefficients and conditions on
R = X2 − Y in Theorem 1. We have added a couple of conditions to exclude fixed points
on the boundary on ∂Ξ \ {0} to avoid complications.

We turn to our second result, which is on the uniqueness of the fixed point (xf , yf) of Φ
in Ξo. This is a more difficult problem than the existence result, and we have results only
with 12 adjustable coefficients for W , in contrast to Theorem 1 which allows for indefinitely
many terms.

Theorem 2 Let W : R+
2 → R+ be a polynomial defined by

W (x, y) = a x3 + b x4 + f5 x5 + f6 x6 + (3 a x2)2y + g5 x5y + h3 x3y2 + h4 x4y2

+ n3 x3y3 + a24 x2y4 + a05 y5 + a15 xy5 + a06 y6,
(4)

where all the constants a, b, f5, f6, g5, h3, h4, n3, a24, a05, a15, a06, are non-negative, and a > 0,
and R(x, z) = X(x, x2z)2 − Y (x, x2z) is a polynomial in z, 1− z, and x, with non-negative
coefficients, in the same sense as in the corresponding condition in Theorem 1. Then there
exists a unique fixed point (xf , yf) of Φ = gradW in Ξo. �

The condition on R in Theorem 2 can be made explicit.

Proposition 3 The conditions on W in Theorem 2 is equivalent to the following: W is as
in (4), with the coefficients being non-negative, a > 0, and Rn � 0, 5 � n � 10, where the
Rns are defined by

R5 = 24 a b− g5 − 2 h3 ,
R6 = 16 b2 + 30 a f5 − 2 h4 ,
R7 = 216 a3 + 40 b f5 + 36 a f6 − 3 n3 ,
R8 = 288 a2 b + 25 f 2

5 + 48 b f6 + 30 a g5 + 18 a h3 − 5 a05 − 4 a24 ,
R9 = 360 a2 f5 + 60 f5 f6 + 40 b g5 + 24 b h3 + 24 a h4 − 5 a15 ,
R10 = 648 a4 + 216 a2 f6 + 18 f 2

6 + 25 f5 g5 + 15 f5 h3 + 16 b h4 + 9 a n3 − 3 a06 . �

That this is necessary is easily seen, if one explicitly writes the coefficients of xn in R(x, 1)
for 5 � n � 10. That the conditions in Proposition 3 are sufficient is proved by looking into
the coefficients of xn in R(x, z) (each of which is a polynomial in z). It turns out that with
W of the form (4), terms with xn appear for 5 � n � 20, among which no explicit negative
signs appear for n � 11, hence the condition hold automatically, and for the remaining
5 � n � 10, the power of z in the terms with negative signs are larger than any of the
terms with positive signs, hence with the non-negativity conditions at z = 1, assumed in
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Proposition 3, it is straightforward to find a polynomial in z and 1 − z with non-negative
coefficients. Proposition 3 is thus proved.

Among the examples of W satisfying the conditions in Theorem 2, or equivalently, in
Proposition 3, are those related to the renormalization group (RG) map for the restricted
self-avoiding paths on the 3 and 4 dimensional pre-gaskets [5, 8, 6]:

W3(x, y) =
1

3
x3 +

1

2
x4 +

2

5
x5 + x4y + 2 x3y2 +

22

5
y5,

W4(x, y) =

√
3

9
x3 +

1

4
x4 +

2
√

3

15
x5 +

1

9
x6 +

1

3
x4y

+
2
√

3

9
x5y +

2
√

3

9
x3y2 +

13

18
x4y2 +

32
√

3

81
x3y3 +

22

27
x2y4

+
22

135
y5 +

44
√

3

81
xy5 +

31

81
y6.

(5)

It is straightforward to see that W3 and W4 satisfy all the conditions in Proposition 3. The
fixed point equation (x, y) = Φ(x, y) for Φ = gradW3 is

x = x2 + 2x3 + 2x4 + 4x3y + 6x2y2,
y = x4 + 4x3y + 22y4,

which coincides with that for �Φ in [5, (2.3) and (2.4)], and the fixed point equation (x, y) =
Φ(x, y) for Φ = gradW4 is, with the change of variables x =

√
3x′ and y = 3y′,

x′ = x′2 + 3x′3 + 6x′4 + 6x′5 + 12x′3y′ + 30x′4y′ + 18x′2y′2

+ 78x′3y′2 + 96x′2y′3 + 132x′y′4 + 132y′5,
y′ = x′4 + 2x′5 + 4x′3y′ + 13x′4y′ + 32x′3y′2 + 88x′2y′3 + 22y′4 + 220x′y′4 + 186y′5,

which coincides with the fixed point equation for �Φ in [8, (33)] with x �→ x′ and y �→ y′.
A motivation of the conditions in Theorem 2 was an attempt to generalize the known
examples (5).

The class of W allowed by the conditions in Theorem 2 is a subset of that in Theorem 1.
This may be easily seen from the following equivalent conditions to those in Theorem 2.

Proposition 4 The conditions on W in Theorem 2 is equivalent to the following:

(i) The conditions in Theorem 1 hold.

(ii) Each term has total degree no more than 6.

(iii) Terms containing positive powers of y has total degree 5 or 6.

(iv) xy4 and x2y3 are absent. �

That these conditions imply those in Theorem 2 is easily seen, if one notices that the extra
conditions in Proposition 4 implies (4) modulo the coefficient of x4y, which is fixed by the
condition R(x, z)/Y (x, x2z) = O(x). The converse is proved in a similar way.

In [5] and [8], the results in Theorem 1 and Theorem 2 are proved for W = W3 and
W = W4 in (5), respectively, but the proofs there explicitly uses the explicit values of
coefficients in W3 and W4. These values of the coefficients are essentially the numbers of
certain figures (self-avoiding paths) on the 3 and 4 dimensional gaskets, respectively, and
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the non-Markovian nature of self-avoiding paths makes it hard to count these numbers, not
to mention to find general formula for all d dimensional gaskets.

There is a long history of interests and studies in self-avoiding paths on the Sierpiński
gasket and its higher dimensional analogs (d dimensional gaskets). See [10, 1, 9] and
references therein for earlier studies, and [4, 2, 3, 7, 5, 8, 6] for detailed rigorous studies
of the subject. The RG approach is crucial in these studies, because the RG maps of self-
avoiding paths on d dimensional gaskets are finite dimensional, hence well-definedness is
obvious, while non-Markovian nature of the self-avoiding walks and lack of translational
invariance of d dimensional gaskets restrict effectiveness of other standard and powerful
tools for analysis. Through RG analysis, we know, for example, that existence of relevant
fixed point (the one we are looking for in this paper) leads to continuum limit construction
of continuous time self-similar process with non-trivial fine structures (e.g., Haussdorff
dimension greater than 1) [2, 3, 5, 8], and existence of convergent trajectory of RG to
the relevant fixed point implies asymptotic properties such as laws of iterated logarithms
[4, 7, 5, 8, 6].

A problem in the current RG approach is, as mentioned above, that one has to explicitly
classify and count the number of self-avoiding paths to find a RG map. It is therefore
important for the RG approach that the results in the above theorems could be derived
from ‘basic properties’ for W which can be derived by simple arguments. It is not very
difficult to derive the conditions in Proposition 4 (including those in Theorem 1) from basic
graphical considerations in the case of restricted self-avoiding paths on 3 and 4 dimensional
gaskets, so Theorem 2 provides rather satisfactory alternative proofs to the corresponding
original proofs in [5, 8], in that one no more needs to count the number of self-avoiding paths
exactly, for a proof of existence and uniqueness of fixed points in Ξo. We will, however,
avoid further details on self-avoiding paths or gaskets in this paper, in order to emphasize
that all the results and the proofs in this paper logically requires no knowledge from these
subjects, and are solely based on analysis of the maps.

We also note that the examples (5) do not seem to fit to any existing general theorems
on fixed point uniqueness, much less the class in Theorem 2. This may reflect the fact that
self-avoiding paths are non-Markovian and mathematically hard to analyze. The present
study may then provide a new direction in the study of fixed point theorems.

A plan of this paper is as follows. In Section 2 we prove Theorem 1 and in Section 3
we prove Theorem 2.

We note that our proof for Theorem 2 in Section 3 in fact proves a stronger property
than is stated in the Theorem, and does not hold for all W in the class satisfying the
conditions in Theorem 1. However, it seems that even for examples where the proof in
Section 3 breaks down, the statement in Theorem 2 still seems to hold. We therefore close
this Introduction with the following conjecture.

Conjecture 5 Uniqueness of the fixed point (xf , yf) of Φ = gradW in Ξo hold under the
condition in Theorem 1. �
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2 Proof of existence of fixed point.

Here we prove Theorem 1.
Let W = W (x, y) be a polynomial with non-negative coefficients satisfying the conditons

in Theorem 1, and define functions in 2 variables F and G by

G(x, z) =
1

x
X(x, x2z), (6)

and

F (x, z) = z
X2(x, x2z)

Y (x, x2z)
, (7)

where gradW = (X, Y ).
Note that with the change of variables (x, y) �→ (x, z) defined by y = x2z, the set

Ξ \ {0} = {(x, y) ∈ R+
2 | y � x2} \ {0} is mapped to a strip in the first quadrant R+

2

Ξ̃ = {(x, z) ∈ R
2 | x > 0, 0 � z � 1}. (8)

Since W (x, y) has a term of a form xny by a condition in Theorem 1, Y (x, x2z) > 0,
(x, z) ∈ Ξ̃, hence F (x, z) is well-defined, positive and analytic on Ξ̃.

Note also that (x, x2z) ∈ Ξ \ {0} is a fixed point of Φ = (X, Y ) if and only if (x, z) ∈ Ξ̃
and F (x, z) = G(x, z) = 1.

Lemma 6 G(x, z) is a polynomial in x and z with non-negative coefficients, satisfying

G(x, z) = 3ax (1 + O(x)), as x → 0, (9)

where a is the coefficient of the term x3 in W . Furthermore, the contour set for G = 1 in
the strip Ξ̃ is a smooth curve connecting the floor z = 0 and the ceiling z = 1; Namely,
there exists a positive continously differentiable function x∗(z) > 0 for 0 � z � 1 such that

{(x, z) ∈ Ξ̃ | G(x, z) = 1} = {(x∗(z), z) | 0 � z � 1}. (10)

F satisfies F (x, z) > 0 for all (x, z) ∈ Ξ̃o, and F (x, 0) = 0 and F (x, 1) > 1 for x > 0.
�

Proof. All the statements about G are obvious from the conditions in Theorem 1, except
perhaps the last one. To see that the stated x∗ exists, first note that by the conditions
in Theorem 1, W is a polynomial with non-negative coefficients with lowest order being

x3, hence G is a polynomial with non-negative coefficients satisfying
∂ G

∂x
(x, z) � 3a > 0,

lim
x↓0

G(x, z) = 0, and lim
x→∞

G(x, z) = ∞ for 0 � z � 1. This with an implicit function theo-

rem implies that there uniquely exists a continuously differentiable function x∗ : [0, 1] →
R>0 such that G(x∗(z), z) = 1, 0 � z � 1, and monotonicity of G in x implies that every
point satisfying G(x, z) = 1 is on the curve {(x∗(z), z)}.

Statements on F are also easy, if one notes that Y (x, y) contains a term xn, hence
Y (x, 0) > 0, x > 0, �

A proof of Theorem 1 is now obvious, because Lemma 6 implies F (x∗(0), 0) = 0 and
F (x∗(1), 1) > 1, for a smooth curve {(x∗(z), z) | 0 � z � 1} ⊂ Ξ̃ hence there is a z∗ ∈ (0, 1)
such that F (x∗(z∗), z∗) = G(x∗(z∗), z∗) = 1, which, as noted at the beginning of this
section, implies the existence of a fixed point of gradW = (X, Y ) in Ξo. �
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3 Proof of uniqueness of fixed point.

Here we prove Theorem 2.
Let JGF (x, z) be the Jacobian matrix of the map (x, z) �→ (G(x, z), F (x, z));

JGF =
∂ G

∂x

∂ F

∂z
− ∂ F

∂x

∂ G

∂z
. (11)

A core of our proof of Theorem 2 is to prove JGF 	= 0 on the contour curve G = 1 in Ξ̃. This
implies that the map is locally one-to-one, which further implies, with additional properties
such as (10) and Lemma 7 below, global one-to-one properties, implying uniqueness of the
fixed point.

The proof of Theorem 2 in this section starts with Lemma 7, then follows Lemma 8
where we prove that, with these properties, positivity of Jacobian JGF is sufficient for a
proof of Theorem 2. Up to this pont, the arguments are ‘soft’ and all the results hold for
the class in Theorem 1. The hardest part comes last, a proof that JGF > 0 for the class
assumed in Theorem 2. That this is hard may be seen if one notices that outside Ξ̃ there
may be more than one fixed points (as are the cases for the examples below Theorem 1 and
(5) [5, 8]), hence JGF < 0 actually occurs for some (x, z) ∈ R+

2. We must therefore find a
nice quantity which is explicitly positive only in a subset of Ξ̃ and then prove (as we will
in Lemma 9) that the quantity is a lower bound of JGF using inequalities in Proposition 3.

Lemma 7 Under the conditions in Theorem 1, if x > 0 is sufficiently small, then

JGF (x, z) > 0, 0 � z � 1,

and furthermore, the set of (x, z) ∈ Ξ̃ satisfying F (x, z) = 1 is a single curve for small
x, having (0, 1) as an endpoint. (More precisely, there exists δ > 0 such that {(x, z) ∈
(0, δ] × [0, 1] | F (x, z) = 1} is a curve whose endpoints are (0, 1) and a point on x = δ.) �

Proof. Note that (3) with F (x, z) = z

(
1 +

R(x, z)

Y (x, x2z)

)
implies

F (x, z) = z (1 + O(x)), (12)

uniformly in 0 � z � 1, which, with (9) implies JGF = 3a + O(x) > 0 for small x, say
0 < x < δ. This in particular implies grad F 	= 0, hence {(x, z) ∈ (0, δ]×[0, 1] | F (x, z) = 1}
is a finite union of non-intersecting smooth curves, each segment of which is either closed
or with endpoints at x = 0 or x = δ.

Lemma 6 implies F (x, 1) > 1 for x > 0 and F (x, 0) = 0, so that a contour curve for
F = 1 cannot intersect z = 0 nor z = 1 for x > 0. Also (12) implies F (+0, z) = z, which,
with F (x, 1) > 1 for x > 0 implies that a contour curve for F = 1 exists and intersects
x = 0 at z = 1. By definition,

F (x, 1 − u) − 1 = (1 − u)
X2

Y
(x, x2 (1 − u)) − 1 =

R(x, 1 − u) − uX2(x, x2 (1 − u))

Y (x, x2 (1 − u))
,

and

R(x, 1 − u) − uX2(x, x2 (1 − u)) = R(x, 1) − 9a2x4 (1 + O(x))u + x7 Ox(u
2)

= O(x5) − 9a2x4 (1 + O(x))u.

Hence, For small x and u, the contour F (x, 1 − u) = 1 is uniquely given by u = O(x) in
(x, 1 − u) ∈ (0, δ] × [0, 1]. �
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Lemma 8 In addition to the conditions in Theorem 1, assume that JGF (x, z) 	= 0 on

Ξ̃′ = {(x, z) ∈ (0,∞) × (0, 1) | G(x, z) � 1, F (x, z) � 1} ⊂ Ξ̃o. (13)

Then the fixed point of Φ = gradW = (X, Y ) is unique in Ξo. �

Proof. As noted at the beginning of Section 2, (x, y) ∈ Ξo is a fixed point of Φ if and only
if (x, y/x2) ∈ Ξ̃o and F (x, y/x2) = G(x, y/x2) = 1. Theorem 1 implies that there is a fixed
point (xf , yf) ∈ Ξo of Φ. Put zf = yf/x

2
f .

Then F (xf , zf ) = G(xf , zf) = 1, hence (xf , zf ) ∈ Ξ̃′.
As in the proof of Lemma 7, JGF 	= 0 implies gradF 	= 0, which further implies that

A = {(x, z) ∈ Ξ̃′ | F (x, z) = 1} ⊂ Ξ̃′

is a finite union of non-intersecting smooth curves, each segment of which is either closed,
or with one endpoint (0, 1) and the other on {(x, z) ∈ Ξ̃′ | G(x, z) = 1}. (See the next
paragraph.) (xf , zf) is on one of such curves.

Suppose that (xf , zf) is on a smooth curve C : [0, 1] → A with

d C

ds
(s) 	=

(
0
0

)
, 0 < s < 1, (14)

and F (C(s)) = 1, 0 � s � 1, whose endpoints are both on G = 1; G(C(0)) = G(C(1)) = 1
and C(s) ∈ Ξ̃′, 0 � s � 1. A mean-value Theorem then implies that there exists s0 ∈ (0, 1)
such that

0 =
d G(C(s))

ds

∣∣∣∣
s=s0

= (gradG)(C(s0)) · d C

ds
(s0).

F (C(s)) = 1 also implies

0 =
d F (C(s))

ds
= (gradF )(C(s)) · d C

ds
(s).

Therefore ⎛
⎜⎝

∂ F

∂x
(C(s0))

∂ F

∂z
(C(s0))

∂ G

∂x
(C(s0))

∂ G

∂z
(C(s0))

⎞
⎟⎠

(
C ′

x(s0)
C ′

z(s0)

)
=

(
0
0

)
,

where we wrote
d C

ds
=

(
C ′

x

C ′
z

)
. With (14), we find JGF (C(s0)) = 0, which contradicts

the assumption JGF 	= 0 on Ξ̃′. Therefore, a contour curve in A on which (xf , zf ) exists,
cannot have both endpoints on G = 1. Similarly, such a curve cannot be a closed curve in
Ξ̃′. Therefore the curve must have one endpoint (0, 1) and the other on G = 1, the latter
endpoint being the point (xf , zf).

By Lemma 7, a curve of the contour set F = 1 that has endpoint (0, 1) is unique.
Therefore there is only one curve C ⊂ A ⊂ Ξ̃′ on which there is a point satisfying
F (xf , zf ) = G(xf , zf ) = 1, hence, as noted at the beginning of the proof, the fixed point
(xf , x

2
fzf ) is unique in Ξo. �

8



A proof of Theorem 2 is now reduced to proving JGF (x, z) 	= 0 on (13) under the
conditions in Theorem 2. This follows as the direct consequence of the following Lemma 9.
In fact, the Lemma states positivity of JGF (x, z) on

Ξ̃′′ = {(x, z) ∈ (0,∞) × (0, 1) | F (x, z) � 1} ⊂ Ξ̃o, (15)

which is larger than (13).

Lemma 9 Assume that W satisfies the conditions in Theorem 2. Let e be a function
defined by

e(x, z) = (1 − z)x2 Y 2

X2
(x, x2z)

(
JGF − F (1 − F )

z(1 − z)

∂ G

∂x

)
(x, z). (16)

Then e(x, z) is a polynomial in x, z, 1 − z with non-negative coefficients. Namely, there
exists a polynomial f(x, z, s) in 3 variables with non-negative coefficients such that e(x, z) =
f(x, z, 1− z). Furthermore, f(x, z, s) has a term a4 s2zx9, hence in particular, e(x, z) > 0,
and consequently, JGF (x, z) > 0, (x, z) ∈ Ξ̃′′. �

Proof. The last claim is by explicit calculation of order x9 terms. See the term C[9, z, s] in
Appendix A. For this and for the calculations below, we use Mathematica software to assist
the simple algebraic manupulation such as expanding and factoring. (e(x, z) has more than
300 terms with positive coefficients and more than 80 terms with negative ones!)

The problem is to use the Rns in Proposition 3 to eliminate apparent negative signs in
e(x, z). It turns out that we have an expression

e(x, z) = ec(x, z, 1 − z) + er(x, z, 1 − z) (17)

where

ec(x, z, s) = 3 a R5 z x7 + 3 a R6 z x8 + 8 bR5 z x8 + 3 a R7 z2 (1 + s) x9 + 8 bR6 z x9 +
15 f5 R5 z x9 + 3 a R8 z3 (1 + 2 s) x10 + 8 bR7 z2 (1 + s) x10 + 15 f5 R6 z x10 +
R5 (a2 (144 z3 + 36 z3 s) + f6 24 z) x10 + 8 bR8 z3 (1 + 2 s) x11 + 15 f5 R7 z2 (1 + s) x11 +
R6 (6 a2 z3 (18 + 6 z + 6 z s) + f6 24 z) x11 + R5 (g5 (3 z2 + 45 z2 s + 6 z4 + 16 z5) + h3 (4 z2 +
12 z2 s2+11 z5)+a b 24 s2 z2 (8+z)) x11 + R9 (3 z4+9 z4 s) a x11 + R10 a 6 (1+4 s) z5 x12 +
R9 b 8 (1 + 3 s) z4 x12 + R7 f6 24 (1 + s) z2 x12 + R8 f5 (1 + 2 s) z3 15 x12 + R7 a2 18 z3 (3 +
4 z + z2 + 4 z2 s) x12 + R6 h3 (6 z4 + 9 z5) x12 + R6 g5 5 z2 (9 s + z2 + 5 z2 s + 4 z4) x12 +
R5 h4 4 z3 (1 + 8 s + z2 + 4 z3) x12 + R9 f5 15 (1 + 3 s) z4 x13 + R10 b 16 (1 + 4 s) z5 x13 +
R8 f6 24 z3 (1 +2 s) x13 + R8 a2 9 z4 (16 +4 (1 + z) s) x13 + R7 g5 (25 z3 s+ 25 z3 (1 + z) s +
25 z6) x13 + R5 n3 3 z3 (10 z s+7 z3) x13 + R7 h3 (5 z5 +10 z6) x13 + R5 a f6 108 z3 s3 x13 +
R6 h4 (16 z4 +8 z4 (1+z) s+8 z7) x13 + R10 f5 30 z5 (1+4 s) x14 + R9 f6 24 (1+3 s) z4 x14 +
R9 a2 18/5 (39 + 46 s) z5 x14 + R6 n3 (21 z5 + 3 z6) x14 + R7 h4 22 z5 x14 + R8 g5 (25 z4 +
8 z4 s + 6 z4 (1 + z) s) x14 + R8 h3 3 (5 + 3 s) z6 x14 + R5 a24 (10 z5 + 6 z6) x14 +
R10 f6 48 z5 (1+4 s) x15 + R10 a2 288 (1+2 s) z6 x15 + R9 h3 18 z5 x15 + R5 a15 12 z6 x15 +
R9 g5 2/5 (61 + 94 s) z5 x15 + R6 a24 24 z5 x15 + R8 h4 z5 (4 + 20 z + 20 z s) x15 +
R7 n3 21 z6 x15 + R8 n3 z7 (21 + 9 s) x16 + R10 g5 (50 z6 + 120 z6 s) x16 + R10 h3 (30 z7 +
24 z7 s) x16 + R9 h4 (23 z6 + 8 z6 s) x16 + R7 a24 26 z6 x16 + R6 a15 13 z6 x16 +
R10 h4 (48 z7+64 z7 s) x17 + R9 n3 (17 z7+z8 +7 z8 s) x17 + R8 a24 16 z8 x17 + R7 a15 (2 z8+
12 z9) x17 + R10 n3 (42 z8 + 24 z8 s) x18 + R9 a24 (3 z8 + 14 z9) x18 + R8 a15 (10 z8 +
5 z9) x18 + R10 a24 32 z9 x19 + R9 a15 (z9 + 8 z10) x19 + R10 a15 (10 z10 + 8 z11) x20 ,

9



with which the remainder e(x, z) − ec(x, z, 1 − z) has an expression er(x, z, 1 − z) for a
polynomial er(x, z, s) with non-negative coefficients, where non-negativity of er holds by
non-negativity of a, b, · · ·, without the conditions Rn � 0. For completeness, we give an
explicit form of er in the appendix.

By (17), e(x, z) = f(x, z, 1−z) with f(x, z, s) = ec(x, z, s)+er(x, z, s), which completes
a proof of Lemma 9, hence, as noted at the beginning of this section, a proof of Theorem 2
is also complete. �

We remark that Lemma 9 is a result much stronger than is required to prove Theorem 2.
In fact, with Lemma 9, a similar argument as for the contour curves F = 1 and G = 1 hold
for contours G = c for any c > 0 and F = c for any c � 1, hence in particular, we have the
following.

Corollary 10 Ξ̃′′ defined by (15) is a connected set, whose boundary is {x = 0} ∪ {z =
0} ∪ {F = 1}, and the map (x, z) �→ (G, F ) is globally one-to-one on Ξ̃′′. �

We also remark that the formula (16) and the rather lengthy ec was found to work by
trial and error, and it is an open problem to find their intuitive (either mathematical or
physical) meaning.

A An explicit form of er.

For completeness, we will give an explicit form of er defined in the proof of Lemma 9.
(Note that it is not unique. For example, there is more than one way of writing 3− 2z as a
polynomial of z and 1 − z with positive coefficients; 3− 2z = 1 + 2(1− z) = z + 3(1− z).)

er(x, z, s) =
30∑

n=9

C[n, z, s] xn, where,

C[9, z, s] = 12a (54a3 + 10 b f5 + 9 a f6) s2 z,
C[10, z, s] =
s2 z (320 b2 f5 + 144a b (18a2 z + f6 (3 + 2 z)) + 3 a (25 f2

5 (1 + 2 z) + 3 (22a g5 + 16a g5 z +
4 ah3 z + 5 a05 z2))),
C[11, z, s] =
s2 z (15 g2

5 + 38 g2
5 z + 110 g5 h3 z + 32h2

3 z + 16 g2
5 z2 + 43 g5 h3 z2 + 22h2

3 z2 + 144a2 h4 z (1 + z) +
2160a3 f5 z (1+2 z)+384 b2 (f6 +2 f6 z)+180a f5 f6 (4+2 z+3 z2)+40 b (3a05 z2 +10 f2

5 (2+z))),
C[12, z, s] =
s2 z (225a05 f5 z2 + 432 b2 h3 z2 + 360a f5 h3 z3 + f3

5 (375 + 750 z) + b f5 f6 (2160 + 2400 z +
1440 z2) + b2 g5 (400 z2 + 320 z2 s) + h3 h4 (90 z2 + 32 z3) + g5 h4 (104 z + 66 z2 + 56 z3) +
a f2

6 (972 + 216 z + 324 z2 + 432 z3) + a2 b f5 (12960z + 10800 z2 + 2880 z3) + a3 f6 (1296 z +
5832 z2 + 7776 z3) + a5 (23328z2 + 31104 z3)),
C[13, z, s] =
z (72a b n3 z5+a05 f6 360 s2 z2+f2

5 f6 300 s2 (5+10 z+9 z2)+a3 g5 1080 z4 (1+4 s)+a3 h3 216 z3 (3+
s (12 + 7 z)) + a f6 g5 36 z ( 5 z4 + 25 z3 s + 35 s2 + s3 (15 + 8 z)) + a f6 h3 36 z3 ((3 + 16 z) s + 3) +
a2 a24 (36 z4 + 144 z4 s) + h3 n3 72 s2 z3 + g5 n3 3 s z2 (32 s (1 + z) + 2 + 3 z) + b f5 h3 80 s z2 (5 +
s (10 + 7 z)) + b f5 g5 200 s2 z (10 + 10 z + 3 z2) + a2 a05 900 s2 z3 + a2 f2

5 900 s2 z (10 + 20 z + z2) +
b f2

6 288 s2 (5 + 10 z + 3 z2 + 4 z3) + a2 b f6 864 s2 z (20 + 13 z + 21 z2) + a4 b 51840s2 z2 (1 + z) +
a f5 h4 120 z2 (1 + 2 z3 s + 9 s2) + b2 h4 128 s2 z2 (5 + 6 z + z s) + h2

4 16 s2 z2 (1 + z + z2)),
C[14, z, s] =

10



z/5 (a f6 h4 360 z2 (3 + 6 s + 13 s2) + a a24 b (720 z4 + 720 z4 s) + b2 n3 240 z3 (3 + s (8 + z)) +
a24 g5 90 z4 s + h4 n3 30 z3 s2 + a g2

5 75 z2 (5 (1 + s)2 + s2 (35 + 12 z)) + a05 g5 975 s2 z3 +
b f6 g5 240 z (4 z3 + 6 z4 + 46 s + (9 + 64 z) s2) + a f5 n3 4950 s2 z3 + b f5 h4 400 z2 (3 z2 + 2 z3 +
22 s + 22 z s2) + f5 f2

6 900 s2 (11 + 22 z + 33 z2 + 12 z3) + f2
5 g5 125 s2 z (55 + 110 z + 126 z2) +

a3 h4 864 z3 (8 + 24 s + 23 s2) + a2 b g5 720 z2 (21 z3 + 105 s + (5 + 37 z) s2) + a2 f5 f6 1080 z (z4 +
z2 5 s + 55 s2 (2 + 4 z + 3 z2)) + a4 f5 6480 z2 (z3 + z2 5 s + 55 (1 + 2 z) s2) + a24 h3 180 z5 s +
ah2

3 135 z4 (1+ 4 s + 6 s2)+ f2
5 h3 375 s2 z2 (11+ 22 z + 3 z2)+ a g5 h3 90 z3 (5 z3 + 30 z2 s + 8 s2 (2+

5 z)) + b f6 h3 720 z2 (2 + 2 s (1 + z2) + s2 (7 + 3 z2)) + a2 b h3 432 z3 (21 z2 + 215 s + 5 s2 (1 + 6 z))),
C[15, z, s] =
z/5 (b f5 n3 (3000 z3 + 4200 z3 (1 + z)s) + n2

3 45 z4 s + b g5 h3 96 z3 (7 z2 + 75 s + 40 s2) +
a f6 n3 540 z3 (z2 + z 4 s + 12 s2) + b g2

5 80 z2 (14 z3 + 70 z2 s + 75 s2 (1 + 2 z)) +
f5 f6 h3 1800 z2 (z2 + 4 z2 s + 6 s2 (1 + 2 z)) + f3

6 4320 s2 (1 + 2 z + 3 z2 + 4 z3) +
f5 f6 g5 360 z (13 z4 + 65 z3 s + 50 s2 (1 + 2 z + 3 z2)) + a24 h4 (80 z5 + 400 z5 s) + a15 h3 (105 z4 +
15 s z4 (23 + 5 z)) + a05 h4 100 z4 s2 + ah3 h4 1800 z4 s2 + f2

5 h4 500 z2 (6 + 6 s (1 + z) + 5 z2 s2) +
a g5 h4 24 z3 (28 z2 + 285 s z + 25 s2 (12 + 5 z)) + b f6 h4 960 z2 (2 z4 + 12 s + 3 s2 z (4 + z)) +
a3 n3 3240 z4 (z + 4 s + 8 s2) + a2 f5 h3 10800 z3 (z3 + 3 (1 + s) s (1 + z)) + a2 f2

6 25920s2 z (3 +
6 z + 9 z2 + 2 z3) + a2 f5 g5 720 z2 (39 z3 + 539 s z3 + 5 s2 (30 + 60 z + 59 z2)) + a2 b h4 5760 z3 (2 +
6 s + s2 (4 + 13 z)) + a4 f6 155520s2 z2 (3 + 6 z + 4 z2) + a6 933120s2 z3 (1 + 2 z)),
C[16, z, s] =
z2 (3a15 h4 z4 +a24 b f5 1040 z3 s+a a24 f6 936 z3 s+ah2

4 24 z3 (3+15 s+8 s2)+f5 f6 h4 (29 60 z2 +
60 (3+s) s z (13+9 z+8 z2))+f2

6 g5 180 (8 (1+s z)+s2 (5+2 z+7 z2 +12 z3))+b g5 h4 40 z2 (9 z2 +
48 s+4 s2 (1+14 z))+a2 f5 h4 360 z2 (29 z3+s (52+52 z+21 z2)) +f5 g2

5 125 z (3+6 s+2 s2 (2+7 z+
12 z2))+a2 f6 g5 2160 z (8+3 s+s2 (2+7 z+12 z2))+a4 g5 6480 z2 (8 z+s (1+5 z)+12 s2 (1+z))+
a24 n3 (30 z4 +36 z4 (1+z) s)+f2

5 n3 75 z2 (6+18 s z2 +s2 (7+14 z+3 z2))+a g5 n3 90 z3 (1+s (3+
z) (1+3 s))+f5 h2

3 45 z3 (3+12 s z+2 s2 (5+4 z))+ah3 n3 54 z4 (1+5 s+7 s2)+b h3 h4 24 z3 (9 z+
48 s + 4 s2 (1 + 4 z)) + b f6 n3 144 z2 (6 + 18 s z2 + s2 (7 + 14 z + 3 z2)) + f2

6 h3 108 z (1 + z) (4 z4 +
13 s (1 + z2)) + f5 g5 h3 150 z2 (3 z3 + 9 s (1 + z) + 4 s2 (1 + z)2) + a2 b n3 864 z3 (1 + z) (3 z2 +
13 s) + a2 f6 h3 1296 z2 (8 z4 + s (13 + 13 z + 13 z2 + 4 z3)) + a4 h3 3888 z3 (1 + z) (4 z2 + 13 s)),
C[17, z, s] =
z3 (2100f6 g2

5 + 12600a2 g2
5 z + 2520f6 g5 h3 z + 15120a2 g5 h3 z2 + 756 f6 h2

3 z2 + 4536a2 h2
3 z3 +

a2 a24 b (3456 z3 + 4608 z3 s (1 + z)) + a24 b f6 (576 z2 + 768 z2 s (1 + z + z2)) + a a24 g5 (360 z3 +
480 z3 s (1 + z)) + a24 f2

5 (300 z2 + 400 z2 s (1 + z + z2)) + a a24 h3 (216 z4 + 288 z4 s) +
f5 h3 h4 (1680 z2 s (1 + z) + 960 z5) + b h2

4 128 z2 (z3 + 7 s + 7 s2 z) + f2
6 h4 (2016 s (1 + z + z2 +

z3) + 1152 z5) + f5 g5 h4 (2800 z s (1 + z + z2) + 1600 z5) + a2 f6 h4 (24192z s (1 + z + z2) +
13824 z5) + a4 h4 (72576z2 s (1 + z) + 41472 z5) + a3 a15 432 s z4 (7 + 6 z) + a15 b f5 (80 z3 s (1 +
z) + 480 z3 s (1 + z + z2)) + a a15 f6 (72 z3 s (1 + z) + 432 z3 s (1 + z + z2)) + a15 n3 z4 s2 +
b h3 n3 24 z3 (24 z3 + s (42 + 25 z + 17 z2)) + ah4 n3 24 z3 (6 z4 + s (7 + 3 z) (1 + 5 s + 2 z2)) +
b g5 n3 40 z2 (24 z4 + s (42 + 42 z + 25 z2 + 17 z3)) + f5 f6 n3 60 z (24 z5 + s (42 + 42 z + 42 z2 +
25 z3 + 17 z4)) + a2 f5 n3 360 z2 (24 z4 + s (42 + 42 z + 25 z2 + 17 z3))),
C[18, z, s] =
z4 (625 g3

5 + 3600f6 g5 h4 + 1125 g2
5 h3 z + 21600a2 g5 h4 z + 2160f6 h3 h4 z + 1200f5 h2

4 z +
675 g5 h2

3 z2 + 12960a2 h3 h4 z2 + 135h3
3 z3 + a2 a24 f5 (4680 z2 + 1080 z2 s (1 + z) + 5040 z2 s (1 +

z + z2))+a2 a15 b (2880 z3 s+1440 z3 s (1+ z))+a24 f5 f6 (780 z +180 z s (1+ z + z2)+840 z s (1+
z + z2 + z3)) + a24 b g5 (520 z2 + 120 z2 s (1 + z) + 560 z2 s (1 + z + z2)) + a24 b h3 (312 z3 +
72 z3 s + 336 z3 s (1 + z)) + a a24 h4 (312 z3 + 72 z3 s + 336 z3 s (1 + z)) + a15 b f6 (480 z2 s (1 + z) +
240 z2 s (1 + z + z2)) + a a15 g5 (300 z3 s + 150 z3 s (1 + z)) + a15 f2

5 (250 z2 s (1 + z) + 125 z2 s (1 +
z + z2)) + a a15 h3 90 z4 s + a15 a24 (27 z4 + 2 z5) + an2

3 27 z3 (1 + 2 s) (1 + 4 s) + f5 h3 n3 90 z2 (1 +
z) (15 s + 4 z2) + b h4 n3 96 z2 (1 + z) (15 s + 4 z2) + f2

6 n3 108 (1 + z) (15 s (1 + z2) + 4 z4) +
f5 g5 n3 150 z (8 z4 + s (15 + 15 z + 15 z2 + 4 z3)) + a2 f6 n3 1296 z (4 + 11 s (1 + z + z2) + 4 z4) +
a4 n3 3888 z2 (1 + z) (15 s + 4 z2) + a05 a15 5 z4 (2 + z) (2 + 3s)),
C[19, z, s] =
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z5 (1600g2
5 h4 + 1536f6 h2

4 + 2880f6 g5 n3 + 1920 g5 h3 h4 z + 9216a2 h2
4 z + 17280a2 g5 n3 z +

1728f6 h3 n3 z + 1920f5 h4 n3 z + 576h2
3 h4 z2 + 10368a2 h3 n3 z2 + 576 b n2

3 z2 + a4 a24 20736 (z2 +
z2 s (1 + z)) + a2 a24 f6 6912 (z + z s (1 + z + z2)) + a24 f5 g5 800 z (1 + s (1 + z + z2)) +
a24 f2

6 576 (1 + s (1 + z + z2 + z3)) + a24 b h4 512 z2 (1 + s (1 + z)) + a24 f5 h3 480 z2 (1 + s (1 + z)) +
a a24 n3 288 z3 (1+s)+a2 a15 f5 (2520 z2 +360 z2 s (1+z)+2880 z2 s(1+z+z2))+a15 f5 f6 (420 z+
60 z s (1 + z + z2) + 480 z s (1 + z + z2 + z3)) + a15 b g5 (280 z2 + 40 z2 s (1 + z) + 320 z2 s (1 + z +
z2)) + a15 b h3 (168 z3 + 24 z3 s + 192 z3 s (1 + z)) + a a15 h4 (168 z3 + 24 z3 s + 192 z3 s (1 + z))),
C[20, z, s] =
z6 (2040a24 f6 g5 + 1360 g5 h2

4 + 1275 g2
5 n3 + 2448f6 h4 n3 + 12240a2 a24 g5 z + 1224a24 f6 h3 z +

1360a24 f5 h4 z + 816h3 h2
4 z + 1530 g5 h3 n3 z + 14688a2 h4 n3 z + 765 f5 n2

3 z + 7344a2 a24 h3 z2 +
816a24 b n3 z2 + 459h2

3 n3 z2 + 204a a2
24 z3 + a4 a15 (10368z2 + 6480 z2 s (1 + z) + 5184 z2 s (1 +

z + z2)) + a2 a15 f6 (3456 z + 2160 z s (1 + z + z2) + 1728 z s (1 + z + z2 + z3)) + a15 f5 g5 (400 z +
250 z s (1 + z + z2) + 200 z s (1 + z + z2 + z3)) + a15 f2

6 (288 + 180 s (1 + z + z2 + z3) + 144 s (1 +
z + z2 + z3 + z4)) + a15 b h4 (256 z2 + 160 z2 s (1 + z) + 128 z2 s (1 + z + z2)) + a15 f5 h3 (240 z2 +
150 z2 s (1 + z) + 120 z2 s (1 + z + z2)) + a a15 n3 (144 z3 + 90 z3 s + 72 z3 s (1 + z))),
C[21, z, s] =
1080a15 f6 g5 z7 + 900a24 g2

5 z7 + 1728a24 f6 h4 z7 + 384h3
4 z7 + 2160 g5 h4 n3 z7 + 972 f6 n2

3 z7 +
6480a2 a15 g5 z8 + 648a15 f6 h3 z8 + 1080a24 g5 h3 z8 + 10368a2 a24 h4 z8 + 720a15 f5 h4 z8 +
1080a24 f5 n3 z8 + 1296h3 h4 n3 z8 + 5832a2 n2

3 z8 + 288a2
24 b z9 + 3888a2 a15 h3 z9 +

324a24 h2
3 z9 + 432a15 b n3 z9 + 216a a15 a24 z10,

C[22, z, s] =
475a15 g2

5 z8 + 912a15 f6 h4 z8 + 1520a24 g5 h4 z8 + 1368a24 f6 n3 z8 + 912h2
4 n3 z8 + 855 g5 n2

3 z8 +
380a2

24 f5 z9 + 570a15 g5 h3 z9 + 5472a2 a15 h4 z9 + 912a24 h3 h4 z9 + 8208a2 a24 n3 z9 +
570a15 f5 n3 z9 + 513h3 n2

3 z9 + 304a15 a24 b z10 + 171a15 h2
3 z10 + 57a a2

15 z11,
C[23, z, s] =
480a2

24 f6 z9 + 800a15 g5 h4 z9 + 640a24 h2
4 z9 + 720a15 f6 n3 z9 + 1200a24 g5 n3 z9 + 720h4 n2

3 z9 +
2880a2 a2

24 z10 + 400a15 a24 f5 z10 + 480a15 h3 h4 z10 + 4320a2 a15 n3 z10 + 720a24 h3 n3 z10 +
80a2

15 b z11,
C[24, z, s] =
504a15 a24 f6 z10 + 420a2

24 g5 z10 + 336a15 h2
4 z10 + 630a15 g5 n3 z10 + 1008a24 h4 n3 z10 +

189n3
3 z10 + 3024a2 a15 a24 z11 + 105a2

15 f5 z11 + 252a2
24 h3 z11 + 378a15 h3 n3 z11,

C[25, z, s] =
132a2

15 f6 z11 + 440a15 a24 g5 z11 + 352a2
24 h4 z11 + 528a15 h4 n3 z11 + 396a24 n2

3 z11 +
792a2 a2

15 z12 + 264a15 a24 h3 z12,
C[26, z, s] =
115a2

15 g5 z12 + 368a15 a24 h4 z12 + 276a2
24 n3 z12 + 207a15 n2

3 z12 + 69a2
15 h3 z13,

C[27, z, s] = 64a3
24 z13 + 96a2

15 h4 z13 + 288a15 a24 n3 z13,
C[28, z, s] = 100a15 a2

24 z14 + 75a2
15 n3 z14,

C[29, z, s] = 52a2
15 a24 z15,

C[30, z, s] = 9 a3
15 z16.
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Sierpiński gasket, Publications of RIMS 29 (1993) 455–509.

[6] T. Hattori, Random walk and renormalization group — An introduction to mathematical
physics, Kyoritsu Publishing, 2004 (in Japanese).

[7] T. Hattori, S. Kusuoka, The exponent for mean square displacement of self-avoiding
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