“ú–{Œêƒgƒbƒv> ŽG‹L’ >

“Œ‹žŠm—¦˜_ƒZƒ~ƒi[


Š²Ž–F
Œú’n ~ (Œcœä‹`m‘åŠw—HŠw•””—‰ÈŠw‰È)C
ˆ¢•” Œ\G (ç—t‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰@ ”ŠwEî•ñ”—ŠwŒ¤‹†•”–å)C
‰Í”õ _Ži (Œcœä‹`m‘åŠwŒoÏŠw•””Šw‹³Žº)C
‹v•Û“c ’¼Ž÷ (“ú–{‘åŠw—HŠw•”ˆê”Ê‹³ˆç”ŠwŒn—ñ)C
—é–Ø —R‹I (Œcœä‹`m‘åŠwˆãŠw•””Šw‹³Žº)C
Ží‘º G‹I (Œcœä‹`m‘åŠw—HŠw•””—‰ÈŠw‰È)
åM‰œ “NŽj Ž (ç—t‘åŠw‘åŠw‰@—Z‡—HŠw•{)
—Ñ W•½ Ž (“Œ‹ž‘åŠw‘åŠw‰@”—‰ÈŠwŒ¤‹†‰È)

—j“úFŒŽ—j“ú16:45-18:15
êŠF Œcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙ D202‹³Žº

š§e‰ïî•ñ“™‚ðŠÜ‚Þ ‹v•Û“c’¼Ž÷æ¶‚Ì
“Œ‹žŠm—¦˜_ƒZƒ~ƒi[‚̃y[ƒW
‚ª‚ ‚è‚Ü‚·D
šƒ[ƒ‹‚ɂ͒ljÁ‚̏î•ñ‚ªÚ‚éê‡‚ª‚ ‚è‚Ü‚·D ƒ[ƒŠƒ“ƒOƒŠƒXƒg‚Ö‚Ì“o˜^‚ð‚¨‘E‚ß‚µ‚Ü‚·D Š²Ž–‚Ü‚Å‚²˜A—‰º‚³‚¢D
š’Ê’m‚ðƒ[ƒ‹‚Ŏ󂯎æ‚Á‚Ä‚¢‚é‚©‚½‚Ö‚Ì‚¨Šè‚¢F
ƒ[ƒ‹ƒAƒhƒŒƒX‚ª•Ï‚í‚è‚Ü‚µ‚½‚çC Š²Ž–‚Ü‚Å‚²˜A—‰º‚³‚¢D “Á‚ɁCt‚ƏHCŠwŠú‚Ì•Ï‚í‚è–Ú ‚Ɉ¶æ•s–¾‚̃[ƒ‹‚ª‘‚¦‚é‚悤‚Å‚·D

2019”N“x

uŽtF’†–ì Žj•F Ž (ŠwK‰@‘åŠw—Šw•”)

‘è–ځFƒLƒƒƒŠ[ƒYƒvƒƒZƒX‚̐«Ž¿‚Ɖž—p

“úŽžF2020”N2ŒŽ03“ú (ŒŽ—j“ú)@16:45`18:15

êŠFŒcœä‹`m‘åŠw—HŠw•” (–îãƒLƒƒƒ“ƒpƒX) 14“631AEB iêŠ‚ª’ʏí‚ƈقȂè‚Ü‚·j

ŠT—vF–{Œ¤‹†‚Í’åœA‘ב¢Ži’Ócm‘åŠwj‚Æ‚Ì‹¤“¯Œ¤‹†‚Å‚ ‚éDnŒÂ‚̐”‚̉ÁŽZ‚É‚æ‚萶‚¶‚éŒJ‚èã‚ª‚è‚Ì‚È‚·ƒ}ƒ‹ƒRƒt˜A½‚ðƒLƒƒƒŠ[ƒYƒvƒƒZƒX‚ƌĂԁDˆê”ʉ»ƒLƒƒƒŠ[ƒYƒvƒƒZƒX‚ðl‚¦C‚»‚̐«Ž¿‚Ɖž—p‚ɂ‚¢‚āCŽŸ‚Ì“_‚Ȃǂɂ‚¢‚Ę_‚¶‚éD
(1) ’èí•ª•z‚͐F•t‚«’uŠ·ŒQ‚Ì descent statistics ‚ƈê’v‚·‚é‚ȂǁC‘g‚ݍ‡‚킹˜_“I‚Ȑ«Ž¿‚ðŽ‚ÂD
(2) ˆê”ʉ»ƒŠƒtƒ‹ƒVƒƒƒbƒtƒ‹‚̎ˉe‚Æ“¯•ª•z‚ɂȂ邱‚Æ‚©‚çC(1)‚̐«Ž¿‚𗝉ð‚Å‚«‚éD
(3) ’PˆÊ‹æŠÔã‚̈ê—l•ª•z‚̘a‚Ì•ª•z‚âCF•t‚«’uŠ·ŒQ‚̃fƒBƒZƒ“ƒg‚Ì•ª•z‚̍s—ñŽ®‚É‚æ‚é•\Œ»‚Ȃǂ̉ž—p‚ðŽ‚ÂD


uŽtF ‰z“c ^Žj Ž (’†‰›‘åŠw—HŠw•”)

‘è–ځF Coupling of multiple Schramm-Loewner evolution and Gaussian free field

“úŽžF2020”N1ŒŽ20“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vFIt is known that Schramm-Loewner evolution (SLE) is coupled with Gaussian free field (GFF) to give a solution to the flow line problem for an imaginary surface. I will overview our recent work where we extended this coupling to the case of multiple SLE. There, we found that the SLE partition function that defines a multiple SLE and the boundary perturbation for GFF are determined essentially uniquely so that the associated multiple SLE and GFF are coupled with each other.


uŽtF ²“¡ —»—º Ž (–¼ŒÃ‰®‘åŠw‘åŠw‰@‘½Œ³”—‰ÈŠwŒ¤‹†‰È)

‘è–ځF Ergodic theoretic classification of q-central probability measures

“úŽžF2019”N12ŒŽ9“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF Central probability measures due to Vershik and Kerov play an important role in asymptotic representation theory, and Gorin introduced those quantization, called q-central probability measures. In this talk, we investigate these from the viewpoint of ergodic theory. We particularly discuss a classification of ergodic q-central probability measures using certain invariants, called ratio sets.


uŽtF ‚‰ª _ˆê˜Y Ž (’†‰›‘åŠw¤Šw•”)

‘è–ځFStructure condition‚ð–ž‚½‚·ƒZƒ~ƒ}ƒ‹ƒ`ƒ“ƒQ[ƒ‹‚̐”—ƒtƒ@ƒCƒiƒ“ƒX“I«Ž¿‚Æ‚»‚ÌŽü•Ó

“úŽžF2019”N12ŒŽ2“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF ˜A‘±ƒZƒ~ƒ}ƒ‹ƒ`ƒ“ƒQ[ƒ‹ S=S0+M+A ‚Ì—LŒÀ•Ï“®•”•ª A ‚ªC‹ÇŠƒ}ƒ‹ƒ`ƒ“ƒQ[ƒ‹•”•ª M ‚Ì2ŽŸ•Ï•ª‚ɂ‚¢‚Đâ‘ΘA‘±‚Å‚ ‚èC‚»‚Ì Radon-Nikodym”÷•ª h ‚ª M ‚Ì2ŽŸ•Ï•ª‚ɂ‚¢‚ÄŠm—¦1‚ŋǏŠ2æ‰ÂÏ•ª‚ÌŽž‚ɁCS ‚Í structure condition ‚ð–ž‚½‚·‚Æ‚¢‚¤DS ‚ɂ‚¢‚Ä‚ÌŠm—¦Ï•ª‚ÉŠÖ‚·‚鐫Ž¿‚ŁCS ‚Ì structure condition ‚Æ“¯’l‚È‚à‚Ì‚ª‚¢‚­‚‚©’m‚ç‚ê‚Ä‚¢‚éD–{u‰‰‚ł́CChoulli and Stricker (1994) ‚ð‚Í‚¶‚߁C‚»‚ê‚瓯’l«‚ðŽ¦‚µ‚½Œ‹‰Ê‚ðÐ‰î‚µC‚³‚ç‚ɁC‚»‚Ì“¯’l‚Ȑ«Ž¿‚Ç‚¤‚µ‚ªCstructure condition ‚ð’è‹`‚Å‚«‚È‚¢•s˜A‘±ƒZƒ~ƒ}ƒ‹ƒ`ƒ“ƒQ[ƒ‹‚ɂ‚¢‚Ä‚à“¯’l‚É‚È‚é‚©“™‚ɂ‚¢‚Ä•ñ‚·‚éD


uŽtFX —²‘å Ž (‹ž“s‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)

‘è–ځFƒ}ƒ‹ƒRƒt‰ß’ö‚ÌŒð·‘ª“x‚ɑ΂·‚é‘å•Î·Œ´—

“úŽžF2019”N11ŒŽ25“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw—HŠw•” (–îãƒLƒƒƒ“ƒpƒX) 14“631AEB iêŠ‚ª’ʏí‚ƈقȂè‚Ü‚·j

ŠT—vF –{u‰‰‚ł́C•¡”‚Ì“Æ—§‚ȃ}ƒ‹ƒRƒt‰ß’ö‚ɑ΂·‚éŒð·‘ª“x‚ɂ‚¢‚Ä‹c˜_‚ðs‚¤D’Pˆê‚ÌŠm—¦‰ß’ö‚ɑ΂·‚é‘؍ݑª“x‚Ì—ÞŽ—‚Æ‚µ‚āC•¡”‚Ì“Æ—§‚ȃ}ƒ‹ƒRƒt‰ß’ö‚ɑ΂µ‚»‚ê‚ç‚Ì‹OÕ‚Ì‹¤’Ê•”•ª‚Ì‘å‚«‚³‚𑪂é‚à‚Ì‚Æ‚µ‚ÄŒð·‘ª“x‚ªl‚¦‚ç‚ê‚éDKönig and Mukherjee (2013)‚ªs‚Á‚½ƒuƒ‰ƒEƒ“‰^“®‚̏ꍇ‚Ì‹c˜_‚ðŠî‚É‚µ‚āCDirichletŒ`Ž®‚Ì—˜_‚É‚æ‚èX‚É‘½‚­‚ÌŠm—¦‰ß’ö‚ɑ΂µ‚ÄŒð·‘ª“x‚ðˆµ‚¢CŽžŠÔ–³ŒÀ‘å‚Å‚Ì‘å•Î·Œ´—‚ðŽ¦‚·‚±‚Æ‚ª‰Â”\‚É‚È‚Á‚½‚±‚Æ‚ðq‚ׂéDŽžŠÔ‚ª‹–‚¹‚΋ï‘Ì—á‚ɂ‚¢‚Ä‚àÐ‰î‚µ‚½‚¢D


uŽtF–ìê Œ[ Ž (‘åã‘åŠw‘åŠw‰@Šî‘bHŠwŒ¤‹†‰È)

‘è–ځFLevy‰ß’ö‚ɑ΂·‚é“ñ•ûŒü”½ŽËí—ª‚̍œK«‚ɂ‚¢‚Ä

“úŽžF2019”N11ŒŽ11“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF–{u‰‰‚Å‚ÍŽ‘–{’“ü‚ðŠÜ‚Þ de Finetti ‚̍œK”z“––â‘è‚ðˆµ‚¤D‹ï‘Ì“I‚ɂ́CŒ³‚̃‚ƒfƒ‹‚ªLévy‰ß’ö‚Ì‹““®‚ð‚·‚éê‡C”z“–‚ÆŽ‘–{’“ü‚ÌŽx•¥‚¢•û‚Æ‚µ‚Ä“ñ•ûŒü”½ŽËí—ª‚ªÅ“Kí—ª‚ƂȂ邱‚Æ‚ðŽ¦‚·D–{u‰‰‚̎匋‰Ê‚́CAvram et alD(2007)‚Ì Theorem 3 (•‰ƒXƒyƒNƒgƒ‰ƒ‹Lévy‰ß’ö‚̃P[ƒX)‚¨‚æ‚ÑBayraktar et alD(2013) ‚Ì Theorem 3D1 (³ƒXƒyƒNƒgƒ‹Lévy‰ß’ö‚̃P[ƒX)‚̈ê”ʉ»‚É“–‚½‚éD•‰‚¨‚æ‚ѐ³ƒXƒyƒNƒgƒ‰ƒ‹Lévy‰ß’ö‚̃P[ƒX‚ł́C“ñ•ûŒü”½ŽËí—ª‚Ì”z“–‚ÆŽ‘–{’“ü‚ÉŠÖ‚·‚éŠú‘Ґ³–¡Œ»Ý‰¿’l‚ðƒXƒP[ƒ‹ŠÖ”‚Å•\‚·‚±‚ƂōœK«‚̏ؖ¾‚ðs‚È‚Á‚½‚ªCˆê”ʂ̏ꍇ‚ł̓XƒP[ƒ‹ŠÖ”‚ð—p‚¢‚邱‚Æ‚Í‚Å‚«‚È‚¢D‚»‚Ì‚½‚߁C–{u‰‰‚ł͐V‚½‚È•W–{˜H‰ðÍ‚ÌŽè–@‚𓱓ü‚·‚邱‚Æ‚É‚æ‚èCŠú‘Ґ³–¡Œ»Ý‰¿’l‚̐«Ž¿‚ðŽ¦‚·D


uŽtF“퉪 ½ˆê˜Y Ž (‹ž“s‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)

‘è–ځFStochastic quantization associated with the $\exp(\Phi)_2$-quantum field model driven by space-time white noise on the torus

“úŽžF2019”N10ŒŽ28“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF Hoegh-Krohnƒ‚ƒfƒ‹‚ƌĂ΂ê‚éŽw”ŠÖ”‚É‚æ‚é‘ŠŒÝì—p‚ðŽ‚Â—ÊŽqêƒ‚ƒfƒ‹‚ð2ŽŸŒ³ƒg[ƒ‰ƒXã‚Å—^‚¦C‚»‚ÌŠm—¦—ÊŽq‰»‚ðl‚¦‚éD‚±‚̃‚ƒfƒ‹‚Í‚±‚ê‚܂ŃfƒBƒŠƒNƒŒŒ`Ž®‚ð—p‚¢‚½‹c˜_‚ª‚È‚³‚ê‚Ä‚«‚½‚à‚Ì‚Å‚ ‚邪C–{u‰‰‚ł͍ŋߐ·‚ñ‚ÉŒ¤‹†‚ª‚È‚³‚ê‚Ä‚¢‚é“ÁˆÙ‚ÈŠm—¦•Î”÷•ª•û’öŽ®‚ÌŽè–@‚ð—p‚¢‚Ä‹c˜_‚ðs‚¤D‚±‚ÌŽè–@‚É‚æ‚èŠm—¦—ÊŽq‰»•û’öŽ®‚ÌŽžŠÔ‘åˆæ‰ð‚Æ‚»‚Ì•s•Ï‘ª“x‚ð\¬‚µC‚³‚ç‚ɃfƒBƒŠƒNƒŒŒ`Ž®‚©‚瓾‚ç‚ê‚éŠgŽU‰ß’ö‚Æ‚ÌŠÖŒW‚ɂ‚¢‚čl‚¦‚éD‚±‚ÌŒ¤‹†‚͉͔õ _Ži Ž(Œcœä‹`m‘åŠw)‚Ɛ¯–ì ‘s“o Ž(‹ãB‘åŠw)‚Æ‚Ì‹¤“¯Œ¤‹†‚Å‚ ‚éD


uŽtF{“c éD Ž (“Œ‹ž‘åŠw‘åŠw‰@”—‰ÈŠwŒ¤‹†‰È)

‘è–ځF’·‹——£‘ŠŠÖ‚ðŽ‚ÂŠm—¦’²˜aU“®Žq½‚Ì‹Ž‹“I‹““®‚ɂ‚¢‚Ä

“úŽžF2019”N10ŒŽ21“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF U“®Žq½‚Í“Œv—ÍŠw‚É—R—ˆ‚·‚é”M“`“±Œ»Û‚Ì”÷Ž‹“Iƒ‚ƒfƒ‹‚Å‚ ‚èC”Šw“I‚É‚Í‘½”‚̐U“®Žq(—±Žq)‚©‚ç‚È‚éƒnƒ~ƒ‹ƒgƒ“Œn‚Æ‚µ‚Ä’è‹`‚³‚ê‚éD–{u‰‰‚ł́CxCy”Ԗڂ̐U“®Žq‚Ì‘ŠŒÝŠÔ—Í‚ª |x-y|^{-ƒÆ}CƒÆ„1 ‚Å‚ ‚é‚悤‚È’·‹——£‘ŠŠÖ‚ðŽ‚ÂŠm—¦’²˜aU“®Žq½‚Ì‹Ž‹“I‹““®C“Á‚ɁCŒn‚̉^“®—ʁC”MƒGƒlƒ‹ƒM[•ª•z‚Ì‹Ž‹“IŽžŠÔ”­“W–@‘¥‚ɂ‚¢‚Ä‚ÌŒ‹‰Ê‚ðÐ‰î‚·‚éD‘ŠŒÝŠÔ—Í‚ªŽw”“IŒ¸Š‚ð‚·‚éê‡‚ÌŒ‹‰Ê‚ÍŠù‚É’m‚ç‚ê‚Ä‚¨‚èCÅ‹ßÚƒ‚ƒfƒ‹‚Æ‹Ž‹“I‹““®‚Í–{Ž¿“I‚É•Ï‚í‚ç‚È‚¢Du‰‰ŽÒ‚Í ƒÆƒ3 ‚Å‚ ‚é‚Æ‚«C’·‹——£‘ŠŠÖƒ‚ƒfƒ‹‚Ì‹Ž‹“I‹““®‚͍ŋߐڃ‚ƒfƒ‹‚ƈقȂ邱‚Æ‚ðŽ¦‚µCã‹L•Ï”•ª•z‚ÌŽžŠÔ”­“W–@‘¥‚Æ‚µ‚Ä superballistic waveequationC‹y‚Ñ fractional diffusion equation ‚ð‚»‚ê‚¼‚ꓱo‚µ‚½D


uŽtFˆîà_ ÷ Ž (‹ãB‘åŠw‘åŠw‰@”—ŠwŒ¤‹†‰@)

‘è–ځFStochastic flows and rough differential equations on foliated spaces

“úŽžF2019”N10ŒŽ7“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF In this talk we construct stochastic flows associated with SDEs on compact foliated spaces via rough path theoryD

In 2015 Suzaki constructed gleafwise diffusion processeshon compact foliated spaces via SDE theoryDHoweverCit is not known whether the stochastic flows associated to them exist or notDThe main difficulty is in showing the existence of continuous modificationsDThe reason is that Kolmogorov-Centsov criterion is not available in this case since a foliated space is just a locally compact metric spaceD

From the viewpoint of rough path theoryChoweverCthere is in fact not much difficulty here and this problem is naturally and easily solvedD

Since stochastic flows play a very important role in stochastic analysis on manifoldsCwe hope our result would open the door for stochastic analysis on foliated spacesD

This is an ongoing joint work with Kiyotaka SUZAKI (Kumamoto UnivD)


uŽtF’|‹ ³“o Ž (‰¡•l‘—§‘åŠw‘åŠw‰@HŠwŒ¤‹†‰@)

‘è–ځF”¼’¼üã‚Ì‹­‰»ƒ‰ƒ“ƒ_ƒ€ƒEƒH[ƒN‚Ì‹ÉŒÀ‹““®‚ɂ‚¢‚Ä

“úŽžF2019”N9ŒŽ30“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF‹­‰»ƒ‰ƒ“ƒ_ƒ€ƒEƒH[ƒN(Reinforced Random Walks)‚́CƒEƒH[ƒJ[‚ªƒOƒ‰ƒt‚ÌŠe•Ó‚É—^‚¦‚ç‚ꂽd‚Ý‚É”ä—Ⴕ‚½Šm—¦‚Ő„ˆÚ‚µCƒEƒH[ƒJ[‚ª’Ê‚Á‚½•Ó‚̏d‚݂𑝉Á‚³‚¹‚é‚Æ‚¢‚¤ƒ‚ƒfƒ‹‚Å‚ ‚éDƒOƒ‰ƒt‚ª”¼’¼ü‚Å‚ ‚éê‡C•Ó‚ð‰¡’f‚·‚邽‚тɏd‚Ý‚ðc>0‚¾‚¯‘‰Á‚³‚¹‚éüŒ^‹­‰»ƒ‰ƒ“ƒ_ƒ€ƒEƒH[ƒN‚ɂ‚¢‚ẮCTakeshima (2000)‚É‚æ‚Á‚Ä‹ÉŒÀ‹““®‚Ì”»’èðŒ‚ª—^‚¦‚ç‚ê‚Ä‚¢‚éDˆê•ûCd‚Ý‚Ì‘‚₵•û‚ª‰¡’f‰ñ”‚ɑ΂µ‚Ä”ñüŒ^‚Ȋ֐”‚̏ꍇC‚ǂ̂悤‚È‹ÉŒÀ‹““®‚ðŽ¦‚·‚©”»‘R‚Æ‚µ‚È‚¢ê‡‚ªDavis (1989)ˆÈ—ˆŽc‚³‚ê‚Ä‚¢‚éD‚±‚Ì–â‘è‚ÉŠÖ‚µ‚āCÔ–xŽŸ˜YŽEAndrea CollevecchioŽ‚Æ‚Ì‹¤“¯Œ¤‹†‚Å“¾‚ç‚ꂽŒ‹‰Ê‚ðÐ‰î‚·‚éD


uŽtFFrank den Hollander Ž (Leiden University)

‘è–ځFLarge deviations for the Wiener sausage

“úŽžF2019”N7ŒŽ22“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF Let $\beta = (\beta_s)_{s \geq 0}$ be Brownian motion on $\mathbb{R}^d$DThe Wiener sausage at time $t$ is the set $W_t = \cup_{s \in [0Ct]} B_1(\beta_s)$Cwhere $B_1(x)$ is the closed ball of unit radius centred at $x$DThe asymptotic behaviour of $W_t$ as $t \to \infty$ has been the subject of intensive study in past yearsDOne of the reasons is that the Wiener sausage is one of the simplest non-Markovian functionals of Brownian motionDIn this talk we focus on the volume and the capacity of $W_t$DWe show that both satisfy a downward large deviation principle with a rate that depends on $d$DWe identify the rate functions in terms of variational formulas and analyse their scaling propertiesDThe main technique that is used to derive the large deviation principle is a `skeleton approach'DHere the path of the Brownian motion is coarse-grainedCand large deviations of the resulting skeleton of Brownian motion are transferred to large deviations of the volume and the capacity of the Wiener sausageD

Joint work with Michiel van den Berg (Bristol) and Erwin Bolthausen (Zurich)DNo prior knowledge of large deviation theory is requiredD


uŽtFˆêê ’m”V Ž (University of CaliforniaCSanta Barbara)

‘è–ځFDirected chain stochastic differential equations

“úŽžF2019”N7ŒŽ15“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vFWe propose a class of particle systems of diffusion processes in the infinite directed chain graphDWe describe the system by an infinite-dimensionalCnonlinear stochastic differential equation of McKean-Vlasov typeDIt has both (i) a local chain interaction and (ii) a mean-field interactionDThe system can be approximated by a limit of finitely many particle systemCas the number of particles go to infinityCwhere the propagation of chaos does not necessarily holdDIt can be seen as an extreme case of interacting diffusion with the first order Markov property in a large sparse graphDFurthermoreCwe exhibit a dichotomy of presence or absence of mean-field interactionCand we discuss the problem of detecting its presence from the observation of a single component process through the filtering equation of Kushner-Stratonovich typeDIf time permitsCwe also discuss some extension of interactions to the tree structure and connection to the local equation in the study of large sparse networks of interacting diffusion by LackerCRamanan and Wu (2019)Cand a stochastic game of mean-field type with infinitely many playersDThis is a part of research with NDDetering and JD-PDFouqueD


uŽtF“y“c Œ“Ž¡ Ž (–h‰q‘åŠwZ‘‡‹³ˆçŠwŒQ)

‘è–ځFGreen-tight measures of Kato class and compact embedding theorem for symmetric Markov processes

“úŽžF2019”N7ŒŽ08“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF’|“c‚É‚æ‚Á‚āCŠù–ñ“I‚©‚ƒŒƒ]ƒ‹ƒxƒ“ƒg‹­ƒtƒFƒ‰[‚őΏ̉»‘ª“x‚ªƒOƒŠ[ƒ“‹Ù–§‚ȉÁ“¡ƒNƒ‰ƒX‚É‘®‚·‚é‘Ώ̃}ƒ‹ƒRƒt‰ß’ö‚Ì”¼ŒQ‚ªƒRƒ“ƒpƒNƒg‚ɂȂ邱‚Æ‚ªŽ¦‚³‚êC‚»‚ê‚ð—p‚¢‚Ä‚ ‚éƒRƒ“ƒpƒNƒg–„‚ߍž‚ݒ藝‚ªØ–¾‚³‚ꂽD‚»‚̒藝‚͉Á–@“I”Ċ֐”‚Ì‘å•Î·Œ´—‚𓱂­ã‚Å”ñí‚ɏd—v‚È‚à‚Ì‚Å‚ ‚éD–{u‰‰‚ł́CƒŒƒ]ƒ‹ƒxƒ“ƒg‹­ƒtƒFƒ‰[«‚æ‚è‚àŽã‚¢„ˆÚŠÖ”‚ª‘Ώ̉»‘ª“x‚ÉŠÖ‚µ‚Đâ‘ΘA‘±‚Å‚ ‚é‚Æ‚¢‚¤ðŒ‚Ì‚à‚ƂŁC‚»‚̃Rƒ“ƒpƒNƒg–„‚ߍž‚ݒ藝‚ª“¾‚ç‚ê‚邱‚ƂƐV‚µ‚­‰Á‚í‚é—á‚ðq‚ׂéD‚³‚ç‚ɁC‚»‚̏ؖ¾‚É‚¨‚¢‚Ä•K—v‚Æ‚È‚é2‚ˆӖ¡‚ŃOƒŠ[ƒ“‹Ù–§‚ȉÁ“¡ƒNƒ‰ƒX‚Ì“¯’l«‚ɂ‚¢‚Ä‚àq‚ׂéD–{u‰‰‚ÍŒK]ˆê—mŽ(•Ÿ‰ª‘å)‚Æ‚Ì‹¤“¯Œ¤‹†‚ÉŠî‚­D


uŽtF“ï”g —²–í Ž (—§–½ŠÙ‘åŠw—HŠw•”)

‘è–ځFModerate deviation principles on covering graphs of polynomial volume growth and its applications

“úŽžF2019”N7ŒŽ1“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF‚ׂ«—ë”í•¢ƒOƒ‰ƒt‚Ƃׂ͂«—ëŒQ‚ð”í•¢•ÏŠ·ŒQ‚Æ‚·‚é‚悤‚Ȕ핢ƒOƒ‰ƒt‚Ì‚±‚Æ‚ð‚¢‚¢CŒ‹»ŠiŽq“™‚ÌŽüŠú«‚ð—L‚·‚é–³ŒÀƒOƒ‰ƒt‚̈ê”ʉ»‚É‘Š“–‚·‚é—£ŽUƒ‚ƒfƒ‹‚Å‚ ‚éD–{u‰‰‚łׂ͂«—ë”í•¢ƒOƒ‰ƒtã‚̃‰ƒ“ƒ_ƒ€ƒEƒH[ƒN‚ÉŠÖ‚µ‚Ä’†•Î·Œ´—‚ª¬‚è—§‚‚Ƃ¢‚¤Œ‹‰Ê‚ð•ñ‚·‚éD’†•Î·Œ´—‚Ƃ́C‘吔‚Ì–@‘¥‚Æ’†S‹ÉŒÀ’藝‚Ì”CˆÓ‚Ì’†ŠÔƒXƒP[ƒ‹‚̉º‚Å‚ÌŠm—¦Œ¸Š‚ð‹Lq‚·‚é‹ÉŒÀ’藝‚Å‚ ‚éD–{u‰‰‚Å‚Í‚»‚̏ؖ¾‚Í‚à‚¿‚ë‚ñ‚Ì‚±‚ƁC’†•Î·Œ´—‚̃Œ[ƒgŠÖ”‚Ƀ‰ƒ“ƒ_ƒ€ƒEƒH[ƒN‚̐„ˆÚŠm—¦‚©‚ç’è‚Ü‚éƒAƒ‹ƒoƒl[ƒ[Œv—Ê‚ª–¾Ž¦“I‚ÉŒ»‚ê‚é“™CŠô‰½Šw“I«Ž¿‚ª‚ǂ̂悤‚É‹ÉŒÀ’藝‚ɉe‹¿‚ð—^‚¦‚é‚©‚É’ˆÓ‚µ‚È‚ª‚ç˜b‚ð‚µ‚½‚¢DŽžŠÔ‚ª‹–‚¹‚΁C’†•Î·Œ´—‚̉ž—p‚Æ‚µ‚Ăׂ«—ë”í•¢ƒOƒ‰ƒtã‚Ì(”Ċ֐”)d•¡‘ΐ”‚Ì–@‘¥‚ª“¾‚ç‚ê‚邱‚Ƃɂ‚¢‚Ä‚àG‚ê‚é—\’è‚Å‚ ‚éD


uŽtFŠp“c Œª‹g Ž (‘åã‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)

‘è–ځF‘½—l‘̏ã‚̃‰ƒ“ƒ_ƒ€’P‘Ì•¡‘Ì‚ÌBetti”‚ɑ΂·‚é‘吔‚Ì–@‘¥‚ɂ‚¢‚Ä

“úŽžF2019”N6ŒŽ24“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF–{u‰‰‚Å‚Í‘½—l‘̏ã‚ÌPoisson“_‰ß’ö‚ðl‚¦CPoisson“_‰ß’ö‚ÌŠe“_‚𒆐S‚Æ‚µ‚½‹…’B‚̘aW‡‚̃gƒ|ƒƒW[‚ɂ‚¢‚Ä‹c˜_‚·‚éD‹ï‘Ì“I‚ɂ́C”M—ÍŠw“Ió‘Ô‚Æ‚æ‚΂ê‚éÝ’è‚̉º‚ŁC‚»‚Ì‹…’B‚̘aW‡‚ÌBetti”‚ɑ΂·‚é‘吔‚Ì–@‘¥‚ɂ‚¢‚Äà–¾‚ðs‚¤DŽžŠÔ‚ª‹–‚¹‚΃p[ƒVƒXƒeƒ“ƒgƒzƒ‚ƒƒW[‚ւ̉ž—p‚ɂ‚¢‚Ä‚àÐ‰î‚µ‚½‚¢D–{u‰‰‚ÍAkshay GoelŽ‚ÆKhanh Duy TrinhŽ‚Æ‚Ì‹¤“¯Œ¤‹†‚ÉŠî‚­D


uŽtFŠ–ì ’¼F Ž (_ŒË‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)

‘è–ځF—òGaussŒ^”MŠj•]‰¿‚̉º‚ł̃Gƒlƒ‹ƒM[‘ª“x‚Ì“ÁˆÙ«

“úŽžF2019”N6ŒŽ17“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF–{u‰‰‚Å‚ÍMathav MuruganŽ (University of British Columbia)‚ƍu‰‰ŽÒ‚̍ŋ߂̋¤“¯Œ¤‹†‚Å“¾‚ç‚ꂽCˆê”Ê‚ÌŠ®”õ‘ª’n‹——£‚ð”õ‚¦‚½‹­‹ÇŠ“I³‘¥‘ΏÌDirichlet‹óŠÔ‚ɑ΂µCã‰º‚©‚ç‚Ì—òGaussŒ^”MŠj•]‰¿‚̓Gƒlƒ‹ƒM[‘ª“x‚ÌŽQÆ‘ª“x‚ÉŠÖ‚·‚é“ÁˆÙ«‚𓱂­‚Æ‚¢‚¤Œ‹‰Ê‚ð•ñ‚·‚éDŽ©ŒÈ‘ŠŽ—ƒtƒ‰ƒNƒ^ƒ‹ã‚ÌŽ©‘R‚ÈŽ©ŒÈ‘ŠŽ—«iƒXƒP[ƒ‹•s•Ï«j‚ðŽ‚ÂDirichletŒ`Ž®‚ɑ΂µ‚ẮC“퉪(1989C1993)CBen-BassatCStrichartz and Teplyaev (1999)C“ú–ì(2005)C“ú–ì-’†Œ´(2006)‚ÌŒ‹‰Ê‚É‚æ‚葽‚­‚̏ꍇ‚ɃGƒlƒ‹ƒM[‘ª“x‚ÍŽ©ŒÈ‘ŠŽ—‘ª“x‚ÉŠÖ‚µ“ÁˆÙ‚Å‚ ‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚邪C‚±‚ê‚ç‚ÌŒ‹‰Ê‚Í‚¢‚¸‚ê‚à‹óŠÔ‚ÌŽ©ŒÈ‘ŠŽ—«‚É‘å‚«‚­ˆË‘¶‚µ‚Ä‚¢‚½DŽÀÛ‚É‚Í‹óŠÔ‚ÌŽ©ŒÈ‘ŠŽ—«‚ª‚È‚­‚Æ‚àC—òGaussŒ^”MŠj•]‰¿‚ƌĂ΂ê‚éƒtƒ‰ƒNƒ^ƒ‹ã‚ÌŠgŽU‰ß’ö‚ɑ΂µ‚Ä“TŒ^“I‚ɐ¬‚è—§‚‚̂Ɠ¯—l‚ÌŒ`‚Ì”MŠj•]‰¿‚³‚¦¬—§‚µ‚Ä‚¢‚ê‚΁Cˆê”Ê‚Ì‹­‹ÇŠ“I³‘¥‘ΏÌDirichlet‹óŠÔ‚É‚¨‚¢‚Ä‚àƒGƒlƒ‹ƒM[‘ª“x‚Ì“ÁˆÙ«‚͏]‚¤‚Æ—\‘z‚³‚ê‚Ä‚¢‚½‚ªC’·”N‚É“n‚Á‚Ä–¢‰ðŒˆ‚Å‚ ‚Á‚½D–{u‰‰‚̎匋‰Ê‚Í‚±‚Ì—\‘z‚ðm’è“I‚É‰ðŒˆ‚·‚é‚à‚Ì‚Å‚ ‚éD


uŽtF‰iÀ LŒ° Ž (‘åã‘åŠw‘åŠw‰@Šî‘bHŠwŒ¤‹†‰È)

‘è–ځFAsymptotic expansion of the density for hypoelliptic rough differential equation

“úŽžF2019”N6ŒŽ10“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF–{u‰‰‚ł́C”ñ®”Brown‰^“®‚É‚æ‚è‹ì“®‚³‚ê‚éŠm—¦”÷•ª•û’öŽ®‚ðl‚¦‚éDƒ‰ƒtƒpƒX‰ðÍ‚ð—p‚¢‚Ē莮‰»‚³‚ê‚é•û’öŽ®‚̉ð‚́CŽ©‘R‚ȉ¼’è‚̉º‚ŁC•ª•z–§“x‚ðŽ‚Â‚±‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚éD‚±‚Ì•ª•z–§“x‚Ì’ZŽžŠÔ‚É‚¨‚¯‚é‘Q‹ß‹““®‚ɂ‚¢‚Ä“¾‚ç‚ꂽŒ‹‰Ê‚ðÐ‰î‚·‚éD‚Ü‚½CŽžŠÔ‚ª‹–‚¹‚΁CŽå’藝‚ª“K—p‰Â”\‚È“TŒ^—á‚ɂ‚¢‚Ä‚àÐ‰î‚µ‚½‚¢D–{u‰‰‚́Cˆî•l ÷Ž (‹ãB‘åŠw)‚Æ‚Ì‹¤“¯Œ¤‹†‚ÉŠî‚­D


uŽtF“c’† —º‹g Ž (“Œ–k‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)

‘è–ځFCutoff for product replacement on finite groups

“úŽžF2019”N6ŒŽ03“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF—^‚¦‚ç‚ꂽ—LŒÀŒQ‚ÌŒ³‚ðŽÀŒø“I‚Ɉê—lƒTƒ“ƒvƒŠƒ“ƒO‚·‚é‚Æ‚¢‚¤–â‘è‚́C—LŒÀŒQ˜_‚Æ—˜_ƒRƒ“ƒsƒ…[ƒ^‰ÈŠw‚Æ‚ÌŠÖ˜A‚ÅŒ¤‹†‚³‚ê‚Ä‚«‚½DProduct replacement algorithm‚ƌĂ΂ê‚郉ƒ“ƒ_ƒ€algorithm‚Í‚»‚Ì1‚‚ł ‚èCƒTƒCƒYn‚̐¶¬Œn‘S‘̂̏W‡‚̏ã‚̃}ƒ‹ƒRƒt˜A½‚ŁC‚»‚̏ã‚̈ê—l•ª•z‚ÉŽû‘©‚·‚é‚à‚Ì‚Å‚ ‚éD‚±‚̃}ƒ‹ƒRƒt˜A½‚Í‚ ‚éƒNƒ‰ƒX‚̃}ƒ‹ƒRƒt˜A½‚Ì‘°‚Ì1‚Â‚Å‚à‚ ‚èCŠ®‘SƒOƒ‰ƒtã‚̐¶¬Á–Å‚Ì‚ ‚é‘ŠŒÝì—p—±ŽqŒn‚Æ‚à‚Ý‚È‚¹‚é(kinetically constrained model‚̈êŽí)D¡‰ñ‚Í‚±‚̃}ƒ‹ƒRƒt˜A½‚̍¬‡ŽžŠÔ‚ɂ‚¢‚Ä“¾‚ç‚ꂽŒ‹‰Ê(Peres-u‰‰ŽÒ-Zhai)‚ð‚¨˜b‚µ‚µ‚½‚¢D‚Ü‚½‚±‚Ì–â‘è‚Í‚¢‚­‚‚©‚̈قȂ鑤–Ê‚Å(—˜_)ƒRƒ“ƒsƒ…[ƒ^(‰ÈŠw)‚ÆŠÖ‚í‚Á‚Ä‚¢‚éD–{u‰‰‚Å‚Í‚»‚¤‚µ‚½•ûŒü‚ɂ‚¢‚Ä‚ào—ˆ‚邾‚¯Ú‚µ‚­˜b‚µ‚½‚¢D


uŽtF‰ª–{  Ž (“Œ‹ž‘åŠw‘åŠw‰@”—‰ÈŠwŒ¤‹†‰È)

‘è–ځFO'HaraƒGƒlƒ‹ƒM[‚̃‰ƒ“ƒ_ƒ€‚È—£ŽU‰»‚ƘA‘±‹ÉŒÀ

“úŽžF2019”N5ŒŽ27“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF–{u‰‰‚ł́CO'HaraƒGƒlƒ‹ƒM[‚ÌŠm—¦•Ï”‚ð—p‚¢‚½ƒ‰ƒ“ƒ_ƒ€‚È—£ŽUƒGƒlƒ‹ƒM[‚ð—^‚¦C‚»‚ÌŽû‘©«‚ƃRƒ“ƒpƒNƒg«‚ɂ‚¢‚Ä‹c˜_‚·‚éDO'HaraƒGƒlƒ‹ƒM[‚Ƃ́CŒ‹‚іڂɑ΂µ‚Ä’è‹`‚³‚ê‚é”Ċ֐”‚ŁCŠeŒ‹‚іڂ̃Nƒ‰ƒXiƒAƒ“ƒrƒGƒ“ƒgEƒCƒ\ƒgƒs[‚ɂ‚¢‚Ä‚Ì“¯’l—ށj‚ɑ΂·‚é•W€“I‚ÈŒ`ó‚ðC•Ï•ª“IŽè–@‚É‚æ‚è’è‹`‚·‚é–Ú“I‚Å’ñ¥‚³‚ꂽD“Á’è‚ÌŽw”‚̏ꍇCƒƒrƒEƒX•ÏŠ·‚É‚æ‚é•s•Ï«‚ªŽ¦‚³‚ꂽ‚±‚Æ‚©‚çCƒƒrƒEƒXƒGƒlƒ‹ƒM[‚ƌĂ΂ê‚éDÅ¬Œ³‚ÌŒ`ó‰ðÍ‚Ì‚½‚߂ɁC‚±‚ê‚Ü‚Å‚É—lX‚ȃƒrƒEƒXƒGƒlƒ‹ƒM[‚ɑ΂·‚é—£ŽU‰»‚ª’è‹`‚³‚ê‚Ä‚¢‚邪C]—ˆ‚Ì—£ŽU‰»‚ł͘A‘±ƒGƒlƒ‹ƒM[‚ւ̃¡Žû‘©«‚Ü‚Å‚Ì‚Ý‚µ‚©Ž¦‚³‚ê‚Ä‚¢‚È‚©‚Á‚½D–{u‰‰‚ł́CO'HaraƒGƒlƒ‹ƒM[‚ÌŠm—¦•Ï”‚ð—p‚¢‚½"ƒ‰ƒ“ƒ_ƒ€"‚È—£ŽU‹ßŽ—‚𓱓ü‚·‚邱‚Æ‚É‚æ‚èCÅ“K—A‘——˜_‚ÉŠî‚¢‚½‹óŠÔ‚É‚¨‚¯‚é—£ŽUƒGƒlƒ‹ƒM[‚Ì"‹ÇŠˆê—lŽû‘©«"C‚³‚ç‚É‚Í"ƒRƒ“ƒpƒNƒg«"‚ðŽ¦‚·‚±‚Ƃɐ¬Œ÷‚µ‚½‚±‚Æ‚ð•ñ‚·‚éD


uŽtFåM‰œ “NŽj Ž (ç—t‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰@)

‘è–ځFEigenvalue process of Ginibre ensemble and Overlaps of their eigenvectors

“úŽžF2019”N5ŒŽ20“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vFƒ‰ƒ“ƒ_ƒ€s—ñ‚̌ŗL’l‚ÌŽžŠÔ”­“Wƒ‚ƒfƒ‹‚ÌŒ¤‹†‚ÍDyson‚É‚æ‚Á‚ÄŽn‚Ü‚Á‚½Ds—ñ¬•ª‚ª“Æ—§‚ȃuƒ‰ƒEƒ“‰^“®‚Å‚ ‚éƒGƒ‹ƒ~[ƒgs—ñ‚ÌŽÀŒÅ—L’l‰ß’ö‚ÍDysonƒuƒ‰ƒEƒ“‰^“®‚ƌĂ΂êC‚±‚ê‚ÍGUEiƒKƒEƒVƒAƒ“Eƒ†ƒjƒ^ƒŠEƒAƒ“ƒTƒ“ƒuƒ‹j‚ÌŽžŠÔ”­“Wƒ‚ƒfƒ‹‚Å‚ ‚éD‚±‚ÌŽÀ”’lŠm—¦‰ß’ö‚͌ŗL’l‚̐«Ž¿‚©‚çŒÝ‚¢‚Ɂg”½”­h‚µC’·‹——£‘ŠŒÝì—p‚ð‚à‚Dˆê•û‚Å”ñ‘Ώ́i”ñ³‹Kjs—ñ‚̏ꍇCŒÅ—LƒxƒNƒgƒ‹‚©‚ç’è‚Ü‚éƒI[ƒo[ƒ‰ƒbƒvŠÖ”‚ƌĂ΂ê‚é—Ê‚ª’–Ú‚³‚ê‚Ä‚¨‚èCÃ“I‚ȐU‚é•‘‚¢‚ÉŠÖ‚·‚錤‹†‚ª·‚ñ‚ɍs‚í‚ê‚Ä‚¢‚éD”ñ‘Ώ̍s—ñ‚ÌŽžŠÔ”­“Wƒ‚ƒfƒ‹‚ł́C•¡‘f”’lŒÅ—L’l‰ß’ö‚̓I[ƒo[ƒ‰ƒbƒvŠÖ”‚̉e‹¿‚ðŽó‚¯‚邱‚Æ‚ªBourgadeCDubach‚âGrelaCWarchol‚É‚æ‚Á‚Ä•ñ‚³‚ê‚Ä‚¢‚éD–{u‰‰‚Å‚Í”ñ‘Ώ̃‰ƒ“ƒ_ƒ€s—ñ‚Å‚ ‚éGinibreƒAƒ“ƒTƒ“ƒuƒ‹‚ÌŽžŠÔ”­“Wƒ‚ƒfƒ‹‚ɂ‚¢‚Ä‹c˜_‚µC‚»‚Ì•¡‘f”’lŒÅ—L’l‰ß’ö‚̐U‚é•‘‚¢‚ƃI[ƒo[ƒ‰ƒbƒvŠÖ”‚Æ‚ÌŠÖŒW‚ɂ‚¢‚Ä“¾‚ç‚ꂽŒ‹‰Ê‚ðÐ‰î‚·‚éD


uŽtF‰ï“c –ÎŽ÷ Ž (“Œ‹ž‘åŠw‘åŠw‰@”—‰ÈŠwŒ¤‹†‰È)

‘è–ځFWeak Poincare inequalities on path spaces: non-explosion case

“úŽžF2019”N5ŒŽ13“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vFƒŠ[ƒ}ƒ“‘½—l‘̏ã‚ÌŽn“_‚ª—^‚¦‚ç‚ꂽ˜A‘±‚È“¹‚Ì‹óŠÔ(ƒpƒX‹óŠÔ)‚ɂ̓uƒ‰ƒEƒ“‰^“®‚ÌŽ©‘R‚ÈŠm—¦‘ª“x‚ª‘¶Ý‚·‚éD‚±‚̃pƒX‹óŠÔã‚Ì”÷•ª‚ð—p‚¢‚ăfƒBƒŠƒNƒŒŒ`Ž®‚ª’è‚Ü‚èC‘½—l‘̂̃Šƒbƒ`‹È—¦‚ª—LŠE‚È‚ç‚΁C‚±‚̃fƒBƒŠƒNƒŒŒ`Ž®‚ɑ΂µ‚đΐ”ƒ\ƒ{ƒŒƒt•s“™Ž®‚ª¬—§‚·‚é‚È‚Ç‚Æ‚¢‚¤Œ‹‰Ê‚à’m‚ç‚ê‚Ä‚¢‚éD—LŠE«‚ðŠO‚µ‚Ä‚µ‚Ü‚¤‚ƁC‘ΐ”ƒ\ƒ{ƒŒƒt•s“™Ž®‚̂悤‚È‚æ‚¢•s“™Ž®‚̐¬—§‚Í–]‚ß‚È‚¢‚ªCWeak Poincare inequality‚Æ‚æ‚΂ê‚éƒ|ƒAƒ“ƒJƒŒ•s“™Ž®‚ƃfƒBƒŠƒNƒŒŒ`Ž®‚ÌŠù–ñ«‚ð•âŠÔ‚·‚é‚悤‚È•s“™Ž®‚̐¬—§‚ÍŠú‘Ò‚³‚êCŽÀÛCRicci‹È—¦‚ɑ΂·‚é‚ ‚鉼’è‚̉ºCFeng-Yu Wang‚â‚»‚ÌŽü•Ó‚̐l‚½‚¿‚É‚æ‚èC•s“™Ž®‚̐¬—§‚ªŽ¦‚³‚ê‚Ä‚¢‚éD”Þ‚ç‚̏ؖ¾‚́CClark-Ocone formula‚ð—p‚¢‚é‚à‚Ì‚Å‚ ‚èC”Þ‚ç‚̉¼’è‚̉ºƒuƒ‰ƒEƒ“‰^“®‚Í•Û‘¶“I‚É‚È‚éDƒuƒ‰ƒEƒ“‰^“®‚Ì”ñ”š”­‚ÌðŒ‚Ì‚Ý‚ÅCWeak Poincare inequality‚̐¬—§‚ª—\‘z‚Å‚«‚邪CClark-Ocone formula‚ð—p‚¢‚½‹c˜_‚݂̂ł́C“‚¢‚悤‚ÉŽv‚¦‚éD‚±‚̍u‰‰‚ł́CŠm—¦”÷•ª•û’öŽ®‚̉ð‚̐«Ž¿(ƒ‰ƒtƒpƒX‚̔Ċ֐”‚Æ‚µ‚Ă̘A‘±«’藝)‚ð—p‚¢‚½‚±‚Ì–â‘è‚ւ̃Aƒvƒ[ƒ`‚ɂ‚¢‚Äà–¾‚µ‚½‚¢D


uŽtF“ì A« Ž (Œcœä‹`m‘åŠwˆãŠw•”)

‘è–ځFŠ´õÇ‚̐¢‘ãŠÔŠu‚ɑ΂·‚éŠm—¦ƒ‚ƒfƒ‹

“úŽžF2019”N4ŒŽ22“úiŒŽ—j“új 16:45`18:15

êŠFŒcœä‹`m‘åŠw“ú‹gƒLƒƒƒ“ƒpƒX‘æ4ZŽÉ“Æ—§ŠÙD202‹³Žº

ŠT—vF Š´õÇ‚̐¢‘ãŠÔŠu‚Ƃ́C‚ ‚éŒÂ‘Ì‚ªŠ´õ‚ðŽó‚¯‚Ä‚©‚瑼‚ÌŒÂ‘Ì‚ðŠ´õ‚³‚¹‚é‚Ü‚Å‚ÌŽžŠÔŠÔŠu‚Ì‚±‚Æ‚Å‚ ‚éD‚±‚ÌŠT”O‚𖾊m‚É‚·‚邽‚߂ɁCŠ´õ«‚ÌŽžŠÔ•Ï‰»‚ƏW’c‚É‚¨‚¯‚éŒÂ‘̊Ԃ̃‰ƒ“ƒ_ƒ€‚ȐڐG‚𓯎ž‚ɍl—¶‚µ‚½ŠÈ’P‚ÈŠm—¦ƒ‚ƒfƒ‹‚ð’莮‰»‚·‚éDŽŸ‚É‚±‚̃‚ƒfƒ‹‚ð—p‚¢‚āCŠ´õÇ‚ÌŠî–{Ä¶ŽY”‚ƁC—¬s‰Šú‚̐V‹KŠ´õŽÒ”‚ÌŽw”“I‘‘å“x‚Æ‚ÌŠÖŒW‚ðC‚ ‚éŠm—¦•ª•z‚̃‚[ƒƒ“ƒg•êŠÖ”‚ð’Ê‚¶‚Ä—^‚¦‚éŒöŽ®‚𓱂­D‚±‚ÌŠm—¦•ª•z‚́Cæ‚É’è‹`‚µ‚½¢‘ãŠÔŠu‚Ì•ª•z‚É‚¨‚¢‚ĐڐG•p“x‚ð•\‚·ƒpƒ‰ƒ[ƒ^‚ðƒ[ƒ‚ɋ߂¯‚Ä“¾‚ç‚ê‚é‹ÉŒÀ•ª•z‚Å‚ ‚éD


‰ß‹Ž‚Ì‹L˜^ 2018”N“x 2017”N“x 2016”N“x 2015”N“x 2014”N“x 2013”N“x 2012”N“x 2011”N“x 2010”N“x
“ú–{Œêƒgƒbƒv> ŽG‹L’ >