
確率連鎖のくりこみ群２題

1. 重複対数の法則とくりこみ群
2. 3次元ガスケット上の self-avoiding pathの凝縮転移の
存在

2004.11
東北大学・理学部物理教室セミナー

服部 哲弥 (東北大学・理)

・　くりこみ群の描像が数学的に正しい場合についてのささやかな考察

・　物理では前世紀にくりこみ群は終わっているのか？

講演 1. 重複対数の法則とくりこみ群
服部久美子（信大・理），服部哲弥



§1. 序．
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服部哲弥「ランダムウォークとくりこみ群」，共立出版 (2004)



○ 指数 ν：k歩目の位置Wk の期待値 E[ Wk ] ≈ kν

直線　→　 ν = 1，　Random Walk　→　 ν = 0.5
RWの場合，ν = 0.5 (!?)：たくさんのブラウン運動（RWの連
続極限）する独立な粒子の密度 u(x, t)は拡散方程式 u̇ = Du′′

に従う（例：水に落としたインキ）
解 u(x, t)

√
t ∝ exp(−x2/(4Dt))　→　 x ≈ t1/2

個々の pathWk はぎざぎざ　→　 lim
k→∞

Wk/
√

k は存在しない　→　 lim

重複対数の法則： lim
k→∞

Wk√
2k log log k

= 1 (単純 RW)

定性的：「ぎざぎざ」→「平均」から頻繁にずれる．歩数多いほど大きなずれを覚悟

○ 定量的：log log ?，
√· ?

Administrator
下線

Administrator
下線

Administrator
下線

Administrator
下線

Administrator
長方形

Administrator
下線

Administrator
下線

Administrator
下線



RW (BM): 連続，独立増分，時空一様，E[ W (t)2 ] = t，等か
ら．explicitに計算できる ので「気持ち」は分からないかも

ν = 1/2以外への拡張 (Self-Avoiding Pathなど) 　→　非マ
ルコフ（増分の従属性）．

○ 指数　→　自己相似性 (scaling, RG)による理解がほしい：
W (t) ∼ √

tW (1)→ ν = 1/2．では
√

log log nは？

○主張を２つに分ける（＋　 ν一般化の代わりに定数倍は諦める）
lim � 1：Wk が曲線W (t) = 0.999

√
t log log tから無限回はみ

出す（「ぎざぎざ」が多いという主張）　→　Borel–Cantelli 2）
lim � 1：有限回を除いてW (t) = 1.0001

√
t log log tの中にと

どまる（１歩で隣しか考えないので当然の期待）　→　 BC1
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§2. 遷移確率評価を仮定して重複対数の法則を導出します．
平均 E[ Wk ] のまわりの「ぎざぎざ」lim Wk/

�
k log log k」を定量的に表現したい

　→　簡単な数学を使う

BC2：An, n = 1, 2, · · ·, 独立，かつ
∑

n�1

P[ An ] = ∞ ならば

P[無限個の Anに含まれる ] = 1
証明：P[

�

n�1

�

m�n

Am ] = 1 − P[
�

n�1

�

m�n

A
c
m ] = 1 − lim

n→∞ P[
�

m�n

A
c
m ]

P[
�

m�n

Ac
m ] =

�

m�n

(1 − P[ Am ]) � exp(−
�

m�n

P[ Am ]) = 0 QED.

BC1：
∑

P[ An ] < ∞ → P[無限個の Anに含まれる ] = 0
・独立な事象ならば sharp！
・しかし，独立増分でもWn とWm は独立ではない
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仮定 1．P[ Wk � x ] ≈ exp(−C(x/kν)1/(1−ν)) (0 < ν < 1)
仮定 2．大きいギザギザと小さいギザギザは「ある意味で」独
立（くりこみ群！）
具体的には {Wkn � 2n}, n = 1, 2, · · ·,にBC2を使えることを仮定．
（正確には，マルコフ的．BC2 はそのような場合に拡張できる．）

注：いずれも正当化できる．文献参照．直感的なことは後で説明．

仮定 1,2から一般化された重複対数の法則が得られること：
P[ Wkn � 2n ] ∼ n−1 で kn を決めると
仮定 2 と BC2 から左辺括弧内の事象のうち必ず無限個が起きる
他方，仮定 1から kn の漸近形はあらわに求まる：
kn ∼ (C2−n/(1−ν) log n)−(1−ν)/ν

nについて解くと 2n ∼ C′kν
n(log log kn)1−ν

以上より Wk � C′kν(log log k)1−ν が無限回起きる．
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一般化した重複対数の法則（下からの評価）：

lim
k→∞

Wk

kν(log log k)1−ν
� C′, a.s.

・スケール間独立性と BC2がべき的なことで log logを稼いでいる
・上からの評価は BC2の代わりに BC1．

○ 次に説明すべきこと：仮定 2（{Wkn � 2n}, n = 1, 2, · · ·, が「独
立」に近い）を引き続き仮定して仮定 1：
P[ Wk � x ] ≈ exp(−C(x/kν)1/(1−ν)) を（x � kν で）証明
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§3. 遷移確率評価．
○ P[ Wk � x ] ≈ exp(−C(x/kν)1/(1−ν)) （仮定 1）
前世紀のゴム弾性の議論をまねして遷移確率の評価を説明：

k 歩目で x = 2n（平均 kν に比べて大＝早い）とする．
2n0 より小さいスケールは平均に従ってギザギザ動き，大きいスケー
ルはまっすぐ進むことでスピードを稼ぐとする．
2n0 ∼ kν

0：k0 歩で 2n0 スケールに達する
これが 2n−n0 ブロックで xになるから，
総歩数は k = k0 × 2n−n0 = 2n · 2n0(1−ν)/ν

よって 2n0 = (k/x)ν/(1−ν)

一方，2n−n0 回まっすぐ進ませて確率を損したので
P[ Wk � x ] ≈ exp(−C2n−n0)

よって P[ Wk � x ] ≈ exp(−Cx(k/x)−ν/(1−ν))
= exp(−C(x/kν)1/(1−ν)) QED.
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§4. くりこみ群から一般化された重複対数の法則へ．

○ スケール独立性（仮定 2）が成り
立つ確率連鎖の族をくりこみ群で for-
mulateできる．
（この節だけ厳密に書きます．）

○ 原点を出発点とする Z上の path：
w : {0, 1, · · · , L} → Z;
w(0) = 0, |w(i) − w(i − 1)| = 1 (∀i)
○ L: 歩数
○ W̃n： w(L) = 2n，−2n を通らな
い path の集合 　

-2n 0 2n
w(i)

i
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○ W̃1 における L の（重み b1 付き）母関数

Φ1(z) =
∑

w∈W̃1

b1(w)zL(w) =:
∞∑

k=0

ckzk

○ くりこみ群（Φ1 が定める力学系）：
Φn+1 = Φ1 ◦ Φn, n = 1, 2, 3, · · ·．
・ Φn(z) =

∑

w∈W̃n

bn(w)zL(w) の形に書ける

○ 仮定：重み b1 � 0，c2 > 0, ∃ck0 > 0, Φ1の収束半径 r > 0．
命題．0 < ∃!xc < r; Φ1(xc) = xc. λ := Φ′

1(xc) > 2
W̃n 上の確率測度 Pn[ {w} ] := bn(w)xL(w)−1

c
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定理 [くりこみ群に対応する確率連鎖]．(∀n ∈ N) (∀w ∈ W̃n)

P[ Wj = w(j), 0 � j � L(w) ] =
1
2
Pn[ {w} ]

を満たす Z上の確率連鎖 W0, W1, W2, · · ·, が存在する．
（「整合性：固定端 path→無限に延ばせる」）
定理 [一般化された重複対数の法則]．定数 C± > 0が存在して，

C− � lim
k→∞

|Wk|
kν(log log k)1−ν

� C+, a.s. ここで ν =
log 2
log λ

．

今日は直感的説明をしました．証明は文献を参照下さい：
・服部哲弥，ランダムウォークとくりこみ群，共立出版，2004年
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講演 2. 3次元ガスケット上の self-avoiding path
の凝縮転移の存在

出口哲生（お茶大・理），服部哲弥

§1. 序．
講演 1：マルコフ性とは異なる，確率過程（確率連鎖）の新し
い枠組みとしてのくりこみ群：「くりこみ群が確率過程を定め，
その大局的振る舞いを与える」
○ 1次元確率連鎖（確率過程）については具体的に実行できた
○ Self-Avoiding Path：非マルコフ性の典型，高分子への応用
1次元では自明．Z

d, d � 2 ではくりこみ群が無限次元（困
難）．そこで．．．
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O a 2a

2b
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4b

F

○ d次元ガスケット上の SAP：
くりこみ群が (2 以上の) 有限
次元！

　　

v1

v3

v2O

F0

v1,1

v1,3

v1,2O

F1
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・ 早くからやられてはいる (D. Dhar, d = 2, 3，他)
・厳密な解析 (Hattori–Hattori–Kusuoka, 1990–1993, d = 2, 3)
・ dについての一般論は難しい (Hattori–Tsuda, 2002,「後半
部分の一般論」)

有限次元でも離散力学系にカオスがない（軌道が収束する）こ
との証明は今のところ（線形に近いなどの場合を除き）個別
にやるしかない．「くりこみ群らしさ」を生かした一般論は存
在しない．

○ 今回は d = 3 （現実の 3次元空間の中で制限した，と強引
にみなす）　→　軌道の収束が（やってみたら）証明できた！
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○ 問題．
タンパク質などの高分子は（分子が重なることはできないの
に），引力があると凝縮転移が起きる
これを「SAP ＋ 引力」から導けるか？
・（たぶん）気にしているだろうこと．SAPは（重なれない
という意味で）強い斥力．それが凝縮遷移を妨げないか？
○ 主張． 3SG上の SAPのくりこみ群の軌道追跡の枠組み
で凝縮相転移の存在を証明できる

・備考：[HHK](1993) では歩数一定毎の単純平均（の漸近形）が目
的．小正準集合対正準集合の対応（数学的には指数型の Tauber 型
定理）によって，引力パラメータが 0（実際は，0または斥力）の場
合のくりこみ軌道の収束を証明した．

singular
order
param 
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§2. 3SG上の SAP．
3SG (3次元 pre-gasket)
pre-Sierpiński gasketの 3次元版
正三角錐 F0 = Ov1v2 · · · v3 ⊂ R

3

Fn = 4個の Fn−1 をつないで１辺
2n の�O 2nv1 · · · 2nv3

F0 ⊂ F1 ⊂ · · · ⊂ R
3,

Gn = {Fnの頂点}， Bn = {辺}
dSG: F = (G, B), G =

⋃

n

Gn,

B =
⋃

n

Bn（無限に延ばしたもの）　

v1

v3

v2O

F0

v1,1

v1,3

v1,2O

F1
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W0: SAP on 3SG
w : Z+ → G
長さ L(w) =
inf{i | w(j) = w(i), j � i}
W0 = {w : Z+ → G |
(path) w(i)w(i + 1) ∈ B,
i = 0, 1, · · · , L(w) − 1,
(self-avoiding) w(i1) �= w(i2),
i1 < i2 � L(w)} w∈W0 L(w)=13
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§3. くりこみ群．
くりこみ群の recursionが閉じるためにSAP を分類

(A) SAP が一つの単位単体を通る通り方

I =(1) I =(1,1) I =(2) I =(3)

I3 = {(1), (1, 1), (2), (3)}
・くりこみ群が閉じるために，１本の pathだけでなく，path
の組(自己かつ相互回避)も必要
I = (1, 1): O → vn,1 と vn,2 → vn,3 の組 (互いに交わらない)
(1, 1) は２度通り抜ける
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(B) Fn 上の SAPの分類　W
(n)
I , I ∈ I3

Fn の頂点 vn,i = 2nvi, i = 1, 2, 3
例．　 I = (1)： O → vn,1 　 (vn,2, vn,3 を通らない)
W(1)

(1)

S(1)=3
S(2)=0

W(2)
(1)

S(1)=1
S(2)=2

SAP wが I 型で通る単位三角錐の個数：sI(w)
○ L = s(1) + 2 s(1,1) + 2 s(2) + 3 s(3)
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(sJ , J ∈ I3) の (W (n)
I , I ∈ I3) に関する母関数

�Xn = (Xn,I , I ∈ I3)：Xn,I(�x) =
∑

w∈W
(n)
I

∏

J∈I3

x
sJ (w)
J

�x = (xJ , J ∈ I3), n = 0, 1, 2, · · ·
命題 (RG)． �Xn+1 = �Xn ◦ �X1, �X0(�x) = �x

証明．w ∈ W
(n)
I 　から　W

(n+1)
I の path　を得る手続き：

Fn の 4n 個の三角錐それぞれについて，w の通り方が J 型のとき
W

(1)
J の要素で置き換える．　 QED.

くりこみ群：�Φ = �X1 が定義する R+
I3 上の力学系

ΦI(�x) = X1,I(�x) =
∑

w∈W
(1)
I

∏

J∈I3

x
sJ (w)
J

くりこみ群が有限次元← 3SG が finitely ramified
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§4. くりこみ群の軌道解析．
○ [HHK 1990-1993, HT 2002] の成果：

Ξ

|w(k)|≒kγ γ=
log 2
log λ

�x = (e−β , e−2β , e−2β, e−3β), β ∈ R canonical surface
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Zn,I(β) := Xn,I(e−β , e−2β , e−2β, e−3β) =
∑

w∈W
(n)
I

e−βL(w)

長さに比例したエネルギー（紐）の分配関数．
くりこみ群の作用するパラメータ空間内の 1–parameter の初
期値集合 �x = (e−β , e−2β , e−2β , e−3β), β ∈ R, が，引力も斥力
もない SAPの「正準集合」に対応．
この初期値からのくりこみ群の軌道の収束が言えれば，タウ
バー型定理（正準集合と小正準集合の対応）などより L = k
なる SAPの上の一様分布に関する性質が分かる（pathの本
数，変位の指数など） [HT]
実際は途中点で止まる SAP の処理など複雑．鏡映原理なども必要．

d = 2, 3: �x ∈ Ξ（非引力領域）からの軌道の収束がOK [HHK]
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○ 今回：引力を持つ場合も必要→全パラメータ領域で片付けておく

主定理 (Deguchi–Hattori)．（引力パラメータ領域を含む全
ての）�x ∈ R

4
+に対して軌道 �xn = �Xn(�x), n = 0, 1, 2, · · ·,が無

限遠に発散する（「高温」相）か，原点に収束するか，3つの固定
点 Ca = (xc, yc, 0, 0), Cr = ( 1

3 , 1
3 , 0, 0), Co = (0, 22−1/3, 0, 0)

のいずれかに収束する．

変位の指数 ν = log 2/ log λ; R(k) ≈ kν

λ: 固定点での �Φの最大固有値
normal, Ca = (0.4294449 · · · , 0.0499839 · · · , 0, 0): ν = 0.674 · · ·
coalescence, Co: ν = 0.5 　 I = (1, 1)型が dominate
→ 巨視的な凝縮（１本なら折りたたまれている）＝凝縮相
critical, Cr: ν = 0.529　普通相と凝縮相の臨界点
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§5. 主結果の解釈　－　凝縮転移．
引力パラメータµ　（温度 βとの 2-parameter canonical surface:）
�Z ′

n(β, µ) = �Xn(e−β , e−2β+µ, e−2β , e−3β)

I =(1) I =(1,1) I =(2) I =(3)

くりこみ群の定式化における相転移の存在：µ の値によって
軌道が Caに収束する場合と Coに収束する場合があれば，引
力の強さによって巨視的に異なる相が実現する
実際，µ � 0　→　 Co への収束 [HHK1993]，
µ = ∞　→　 Ca = (0, yc, 0, 0)　凝縮相転移の存在
有限のパラメータで転移があるかどうかには不十分だが，数値計算ではそうなっている
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最後に，主定理の証明の概略
・その１．低温相，高温相，臨界面

�Φ = �X1 は 2次以上の正係数
多項式　→　小さい初期値は
0 に，大きい初期値は∞に行
く（境界面 ∂Dからは間にと
どまる）；
D = {�x ∈ R+

4 |
sup

n∈Z+

max
I∈I3

Xn,I(�x) � 1}

　
温度軸（相関距離を変える方向）
は不安定方向 
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・その２．irrelevant coordinates
(2)型は角をとると (1)型になる

R(�x) = max{x(2)

x(1)
,

2x(3)

x(2)
}

Rn(�x) = R( �Xn(�x))
○ Rn(�x)はnについて非増加．�x ∈ D
ならば R∞(�x) = 0
→ 本質的に x(1)–x(11) 面内を考えれ
ば十分
Φ(1)(x, y, 0, 0) = x2 + 2x3 + 2x4 +
4x3y + 6x2y2

Φ(11)(x, y, 0, 0) = x4 + 4x3y + 22y4

今のところ3SGまで
しか成り立たない 
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・その３．∂D ∩ {(x, y, 0, 0) | x, y ∈ R+
2} は 1次元

→ y = x(11)でパラメータ表示
�Φは連続関数
→ 固定点以外をくりぬいた連
結成分では変化は定方向
→ 収束が言える

x(2) , x(3)

x(11)
Ca Cr Co

n1
n0

n2
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結論に代えて．
・くりこみ群は終わっているか？（やれることは全部分かって
いるか？）
　－　特有のもののみかたである．
数学として確立したとは言えない，ということは，
まだ完全な理解に至ってはいないということであって，
物理として学ぶものが無くなったと考えるのは早計，
かもしれない．
服部哲弥，ランダムウォークとくりこみ群，共立出版，2004 年

講演１の厳密な解説と
講演２の前段階（normal phaseの詳細解析）を
含んでいます 

本の詳しいことは
http://www.math.tohoku.ac.jp/~hattori/kyoritu.htm 




