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１－１．Amazonランキングの謎を解く

Amazon.co.jp

（2010年頃）

本のページ中程やや下
Amazon.co.jpランキング

「Amazonの謎順位。」

‘Internet retailers are
extremely hesitant about
releasing specific sales
data’
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普通の本（ロングテール側）の順位変化
ビッグヒット vs. 普通の本

Jan’11 May’11 date

100

ranking

Jan’11 May’11 date

1,000

ranking

　　　　　　　　　 Jan’11 May’11 date

10,000

ranking

dateJan’11 May’11 date

100,000

ranking

ロングテール側（9割の本）の順位変化の普遍性　→　確率的順位付け
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先頭に跳ぶ規則
先頭に跳ぶ(Move-To-Front)規則： M.L.Tsetlin (1963)

N 自然数
N個の粒子を一列に並べた系の並び方についてのランダムな時間発展

3 2 4 1 5

1 3 2 4 5

2 1 3 4 5

1 2 3 4 5

3 1 2 4 5

どれかの粒子がランダムに先頭に跳び，追い
越された粒子は順位を1ずつ下げる

図は，粒子1,2,1,3の順に跳んだときの並
び方の時間発展

積ん読，超整理法，最後に跳んだ順，…

• 確率順位付け模型：先頭に跳ぶ規則＋各粒子固有の強度を持つポワッ
ソン過程という単純な原理でアマゾンランキングを解析
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アマゾンはロングテールに非ず
（服部－服部）
初期の簡単な（強度に位置依存性の無い）模型によるデータ解析

Jun’07 Sep’07 Dec’07 Mar’08 date

500,000

ranking

(N∗, a∗, b∗) = (8 × 105, 6 × 10−4, 0.81)

• b < 1「不平等」上位o(N)冊が売り上げの全てを占める

アマゾンはロングテールに非ず

ロングテール型ではなく，ビッグヒット依存型のビジネスモデル

�� 5(�)



時刻依存性
（針谷－服部－服部－永幡－竹島－小林，永幡）

0

250000

毎時のランキング
•昼夜差（夜間活動停滞）
　↓　
• 先頭への跳び：時刻依
存性がある強度w(s)を
持つポワッソン過程
• λ：関数w上の分布

• 初期の模型：各本の売上は強度ω（定数）のポワッソン過程
　　　　　　　λ：ω ∈ R+上の分布
⇔ 初期のデータは24時間毎の収集（昼夜差が近似的に消える）
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１－２．位置依存確率順位付け模型
強度が位置依存性を持つ確率順位付け模型（服部－楠岡）
• 問「良い順位は宣伝効果があるか？」に答えたいならば，
位置（順位）依存性のある強度w(y, t)を持つポワッソン過程
• 定義可能　－　強度が位置依存性を持つ確率順位付け模型
• だが，wを通した従属性

• 定式化
N粒子系（確率過程）の時刻T > 0までの時間発展 t ∈ [0, T ]：

ゼッケン番号 iの粒子の時刻tでの位置Y
(N)
i (t)

t � 0, i = 1,2, . . . , N, Y
(N)
i : Ω × R+ → { i

N | i = 0,1, . . . , N − 1}
Y (N) = (Y (N)

1 , · · · , Y
(N)
N )

初期値： Y
(N)
i (0) = y

(N)
i , i = 1,2, · · · , N; y

(N)
i �= y

(N)
j , i �= j
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先頭に跳ぶ規則＋ポワッソンのランダムな測度

(0) 先頭に跳ぶ規則：ある粒子が先頭(Y (N)
i (t) = 0)に跳び，追い越

された粒子は順位を1ずつ下げる(Y (N)
j (t) = Y

(N)
j (t−) + 1

N)

(1) 先頭に跳ぶ時刻は iについて独立
(2) 時刻 tに位置yにいる粒子 iは「wi(y, t)の頻度」で先頭に跳ぶ．
wi : [0,1]× [0, T ] → R+：C1級，固定（強度，または，ジャンプ率）

ν
(N)
i : R+

2上のポワッソンランダム測度；強度dξds （一様），独立

1
ξ∈[0,wj(Y

(N)
j (s−),s)]

をかけてν
(N)
i で確率積分（1Aは事象Aの定義関数）
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確率順位付け模型の定義
i = 1,2, . . . , N，t � 0

Y
(N)
i (t) = y

(N)
i

+
1

N

N∑

j=1

∫

s∈(0,t]

∫

ξ∈R+

1
Y

(N)
i (s−)<Y

(N)
j (s−)

1
ξ∈[0,wj(Y

(N)
j (s−),s)]

ν
(N)
j (dξds)

（↑下位の粒子の先頭へのジャンプに押される変化）
−

∫

s∈(0,t]

∫

ξ∈R+

Y
(N)
i (s−) 1

ξ∈[0,wi(Y
(N)
i (s−),s)]

ν
(N)
i (dξds)

（↑先頭へのランダムなジャンプ）

• 大数の法則→異なる iの間の従属性が問題（ν
(N)
i は独立）

• MTF規則由来の従属性1
Y

(N)
i (s−)<Y

(N)
j (s−)

は「分布関数」で書くと消せる

• 位置依存性由来の従属性wj(Y
(N)
j (s−), s)が解析難
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流体力学極限（大数の法則）

位置強度結合経験分布µ
(N)
t =

1

N

N∑

i=1

δ
(wi,Y

(N)
i (t))

• {wi} = W ⊂ C1は固定，位置は交換なので

λ(N)(dw) :=
1

N

N∑

i=1

δwi(dw) = µ
(N)
t (dw × [0,1])は t不変

• 流体力学極限：「t = 0でN → ∞収束を仮定すれば [0, T ]で決定論に収束」

仮定：

• CW := sup
w∈W

∥∥∥∥
∂ w

∂y

∥∥∥∥
T

< ∞; ‖f‖T = sup
(z,s)∈[0,1]×[0,T ]

|f(z, s)|

• µ0：W × [0,1]上のBorel確率測度，λ(dw) = µ0(dw × [0,1])

• λN → λ, weakly, N → ∞
• MW :=

∫

W
‖w‖T λ(dw) = lim

N→∞

∫

W
‖w‖T λ(N)(dw) < ∞
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主定理
仮定（続）：W × [0,1]上の任意の一様有界同程度連続実数値関数の族Hに

対して∃δ ∈ (0,
1

2
), ∃C > 0; (∀N ∈ N) (∀h̃ ∈ H) (∀y ∈ [0,1])

∣∣∣∣
∫

W×[y,1]
h̃(w, z) (µ(N)

0 − µ0) (dw × dy)

∣∣∣∣ � C

Nδ
.

主定理．∃µt; 確率1でN → ∞の時 t一様にµ
(N)
t → µt（弱収束）．

つまり， lim
N→∞

sup
t∈[0,T ]

∣∣∣∣
∫

W
h(w) (µ(N)

t − µt) (dw × [y,1])

∣∣∣∣ = 0, a.s.. y ∈ [0,1], h : W → R．

さらに，L ∈ Nとyi ∈ [0,1) (1 � i � L)に対してν
(N)
i = νi, N ∈

N, と lim
N→∞

y
(N)
i = yi (1 � i � L) とすると，確率1でY

(N)
i (t)は

N → ∞で t一様に収束．極限は，
Yi(t) = yi +

∫

s∈(0,t]

∫

(w,z)∈W×[Yi(s−).1]
w(z, s)µs(dw × dz) ds

−
∫

s∈(0,t]

∫

ξ∈R+

Yi(s−) 1ξ∈[0,wi(Yi(s−),s)) νi(dξds),で決まる． �
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極限結合分布µt

定理の極限結合分布µt：ある点過程の確率を用
いて書けることがわかった

どう書けるかのために，流れの集合Θ，強度が
直前の到着時刻で決まる点過程 ν̃θ,ω,z(t)，ある
流れyC ∈ Θ，µtの「分布関数」ϕyC
煩雑だが，ν̃以外は事実上初期の研究からあった道具

初期点境界点Γt = {(z,0)} ∪ {(0, s) | s � t},
時刻と整合する境界∆T = {(γ, t) | γ ∈ Γt}
• 流れΘT = {θ : ∆T → [0,1] | 連続全射,

θ((y0, t0), t0) = y0, γ, tについて単調}

　 t

Γt

γ

γ

       (  ,t)T∆  ∋  γ

mid min

max

γ =(z,0)

γ =(0,s)

θ γ(  ,t)
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強度が直前の到着時刻に依存する点過程
• 直前の到着時刻に依存する点過程 ν̃θ,ω,z(t)

到着時刻τk = inf{t � 0 | ν̃θ,w,z(t) � k}, k ∈ N, τ0 = 0 が，

t � τk−1でP[ t < τk | Fτk−1 ] = exp(−
∫ t

τk−1

ω(τk−1, u) du)

を満たす確率過程（ωが第1変数について定数でないと非独立増分）
ω : [0, T ]2 → R+（ν̃θ,w,zの強度），

w : [0,1] × [0, T ] → R+（ν
(N)
i の強度）

ωθ,w,z(s, t) =

{
w(θ((z,0), t), t), if s = 0,
w(θ((0, s), t), t), if s > 0.

• ϕθ(dw, γ, t) :=

∫

z∈[y0,1]
P[ ν̃θ,w,z(t) = ν̃θ,w,z(t0) ]µ0(dw×dz)

γ = (y0, t0) ∈ Γt, (γ, t) ∈ ∆T
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固定点yC

• 主定理のµtを記述するθは位置依存確率順位付け模型の従属性が定
める（整合性＝固定点定理）
定理．∃!yC ∈ ΘT ;

θ(γ, t) = 1 − ϕθ(W, γ, t), (γ, t) ∈ ∆T , holds for θ = yC.

主定理（続）．主定理の極限結合分布µtは
µt(dw × [yC(γ, t),1]) = ϕyC(dw, γ, t) で定まる分布 �

　－　分布関数（等間隔の極限はルベーグ絶対連続）
　－　区間の上流（左）端を粒子の流れに合わせる
　　　（先頭に跳ぶ規則の従属性を外す1階PDEの特性曲線）
　－　一般のθ ∈ Θ毎に対応する「中間模型」の極限分布は
　　　µt(dw × [θ(γ, t),1]) = ϕθ(dw, γ, t)

ここまで，模型の定義と主結果を書くための最小限．説明は§２以降
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服部－楠岡との関係
• 服部－楠岡：（技術的仮定を置いて難しい問題を素早く解いた）
　－　 sup

w∈W
‖w‖T < ∞

　－　W上の分布の位相を全変動ノルムとしてµ
(N)
t の収束を定義

• 強度が位置不依存（服部－服部，針谷etal.，永幡）と今回：

　－　
∫

W
‖w‖T λ(dw) < ∞ 　（特に，べき(Pareto)分布）

　－　W上の分布は弱収束位相　（異なるwiを持つ粒子間の揺らぎが
消える大数の強法則か，wi = wjなる範囲の大数の強法則かの違い）

• 固定点定理とyCは服部－楠岡でわかっていたが，ϕの具体形が「べき展開」（と今
となっては素朴過ぎる評価）でしか見えてなかったため，強度有界の技術的仮定
• 服部－楠岡では中間模型も異種粒子間の揺らぎの打ち消し（大数の強法則）も無し
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２－１．直前の到着時刻に依存する点過程
• 直前の到着時刻に依存する点過程N(t) = ν̃θ,ω,z(t) の構成
到着時刻τk = inf{t � 0 | ν̃θ,w,z(t) � k}, k ∈ N, τ0 = 0

t � τk−1でP[ t < τk | Fτk−1 ] = exp(−
∫ t

τk−1

ω(τk−1, u) du)

ν: 強度dξdsのR+
2上のポワッソンランダム測度

τk = inf{t | ν({(ξ, u) | ξ ∈ [0, ω(τk−1, u)], τk−1 < u � t}) > 0}

　　　　　　

ξ

u

ω (0,u)
ω(    ,u)τ1

ω(    ,u)τ2

τ1 τ2
N(t) = max{k ∈ Z+ | τk � t}, t � 0
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確率順位付け模型との関係（再掲）
ω : [0, T ]2 → R+（ν̃θ,w,zの強度），

w : [0,1] × [0, T ] → R+（ν
(N)
i の強度）

ωθ,w,z(s, t) =

{
w(θ((z,0), t), t), s = 0,
w(θ((0, s), t), t), s > 0.

γ = (y0, t0) ∈ Γt, (γ, t) ∈ ∆T

ϕθ(dw, γ, t) =

∫

z∈[y0,1]
P[ ν̃θ,w,z(t) = ν̃θ,w,z(t0) ]µ0(dw × dz)

ξ

u

ω
 (0,u)

ω
 (   ,u)
τ1

ω
 (   ,u)
τ2

τ1
τ2

• θをY
(N)
i (t)の軌道（の極限）に選ぶと，先頭に跳ぶ回数がN(t) = ν̃

θ,ω,y
(N)
i

(t)

• γを始点とする流れの下流から(t0, t]間に蒸発しない（流れに居残る）粒子の分布
整合性． 蒸発分＝1−居残り分＝粒子（流れ）の位置変化 = yC
1 − ϕyC(W, γ, t) = yC(γ, t), (γ, t) ∈ ∆T ,
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計算が複雑になる部分
命題．[Funkcialaj Ekvacioj (2016), 大シンポ2014，講究録1952(2015)]

P[ N(t) = N(s) ] =
∑

k�0

∫

0=:uk<uk−1<uk−2<···<u1<u0�s

× e−
∑k−1

i=0 Ω(ui+1,ui)−Ω(u0,t)
(k−1∏

i=0

ω(ui+1, ui) dui

)
;

Ω(t0, t) =

∫ t

t0

ω(t0, u) du �

ωが第1変数によらない（位置不依存）時

公式．
∫

0�u1�u2�···�uk�s

k∏

i=1

f(ui)du1 du2 . . . duk =
1

k!

(∫ s

0
f(v)dv

)k

によってP[ N(t) = N(s) ] = e−Ω(0,t)ėΩ(0,s) = e−Ω(s,t)を再現（ポワッソン）

位置依存模型では，これに相当する上からの評価（差を取る時などに
気をつけてやる必要）
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２－２．流れが定める確率順位付け模型
流れがθ ∈ Θ定める確率順位付け模型：

Y
(N,θ)
i (t) = y

(N)
i

+
1

N

N∑

j=1

∫

s∈(0,t]

∫

ξ∈R+

1
Y

(N,θ)
i (s−)<Y

(N,θ)
j (s−)

× 1
ξ∈[0,wj(θ(γ

(N,θ)
j (s−),s−),s)]

ν
(N)
j (dξ ds)

−
∫

s∈(0,t]

∫

ξ∈R+

Y
(N,θ)
i (s−) 1

ξ∈[0,wi(θ(γ
(N,θ)
i (s−),s−),s))

ν
(N)
i (dξ ds)

確率順位付け模型（再掲）：
Y

(N)
i (t) = y

(N)
i

+
1

N

N∑

j=1

∫

s∈(0,t]

∫

ξ∈R+

1
Y

(N)
i (s−)<Y

(N)
j (s−)

1
ξ∈[0,wj(Y

(N)
j (s−),s)]

ν
(N)
j (dξds)

−
∫

s∈(0,t]

∫

ξ∈R+

Y
(N)
i (s−) 1

ξ∈[0,wi(Y
(N)
i (s−),s)]

ν
(N)
i (dξds)
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流れが定める確率順位付け模型の先頭への跳び
γ
(N,θ)
i (t) = (y(N)

i ,0),0 � t < τ
(N,θ)
i,1 ,

= (0, τ
(N,θ)
i,k ), τ(N,θ)

i,k � t < τ
(N,θ)
i,k+1;

τ
(N,θ)
i,0 = 0,

τ
(N,θ)
i,k+1 = inf{t > τ

(N,θ)
i,k | ν

(N)
i ({(s, ξ) ∈ (τ (N,θ)

i,k , T ] × R+ |
0 � ξ � wi(Y

(N,θ)
i (s−), s)}) > 0}, k ∈ Z+.

• τ
(N,θ)
i,k は粒子 iがk回目に先頭に跳んだ時刻

• γ
(N,θ)
i (t)は粒子 iが時刻 t時点で，最後にいたΓt（初期位置か上流端）の位置

→　ν
(N)
i だけで決まりν

(N)
j と独立

• 流れ θが定める模型は，流れθ（の，粒子 iの初期位置とジャンプ時刻で決まる流
線）に沿って強度wを拾ったときの確率順位付け模型
• γはν

(N)
i 依存（ランダム）なので，位置不依存確率順位付け模型とは異なるが，wi

の中身を通じた従属性はない
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yCに対応する量
極限の量に対応する流れが定める確率順位付け模型の量
yC（流線・特性曲線）⇔ Y

(N,θ)
C

ν̃
(N,θ)
i (t) =

∫

s∈(0,t]

∫

ξ∈[0,∞)
1

ξ∈[0,wi(θ(γ
(N,θ)
i (s−),s−),s))

ν
(N)
i (dξ ds)

（粒子 iの先頭への跳びの回数）
J
(N,θ)
i (t0, t) = {ω ∈ Ω | ν̃

(N,θ)
i (t)(ω) > ν̃

(N,θ)
i (t0)(ω)};

（時間(t0, t]に粒子 iが先頭に跳ぶ事象）

Y
(N,θ)
C ((y0, t0), t) = y0 +

1

N

∑

j∈[1,N ]; Y
(N,θ)
j (t0)�y0

1
J
(N,θ)
j (t0,t)

（時刻 t0位置y0から粒子に「挟まって」動く仕切りの位置）
• 先頭に跳ぶ規則は下流に向かう時は粒子の追い越しが無い
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ϕyCに対応する量

ϕyC（不蒸発量・分布関数）⇔ ϕ(N,θ)

µ
(N,θ)
t =

1

N

N∑

i=1

δ
(wi,Y

(N,θ)
i (t))

ϕ(N,θ)(dw, γ, t) = µ
(N,θ)
t (dw × [Y (N,θ)

C (γ, t),1])

=
1

N

∑

j; Y
(N,θ)
j (t0)�y0

1
J
(N,θ)
j (t0,t)c

δwj(dw)

（流れが定める模型の位置強度結合経験分布と分布関数）

• Y
(N,θ)
C (γ, t) = y0 +

[N(1 − y0)]

N
− ϕ(N,θ)(W, γ, t)

• (y0, t0) ∈ Γtのとき，和の条件はy
(N)
j � y0か，1 � j � N全て

→独立確率変数の算術平均
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２－３．関数値独立変数列の二重一様大数の強法則

中間目標．ϕ(N,θ) → ϕyC (⇒ µ
(N,θ)
t → µt)

h : W → R有界連続，ϕ(N,θ)(h, γ, t) :=

∫

W
h(w)ϕ(N,θ)(dw, γ, t)

=
1

N

∑

j; Y
(N,θ)
j (t0)�y0

1
J
(N,θ)
j (t0,t)c

h(wj)

J
(N,θ)
i (t0, t) = {ω ∈ Ω | ν̃

(N,θ)
i (t)(ω) > ν̃

(N,θ)
i (t0)(ω)}

• Y
(N,θ)
C (γ, t) ⇔ h(w) = 1

• 単調関数値独立確率変数列の大数の強法則．ただし，
　－元の模型（従属確率変数列）との差のため二重の一様評価（後述）
　－RW型の概収束ではなく完全収束型(Hsu, Robbins, 1947)

大数の法則：YN =
1

N

N∑

i=1

Z
(N)
i の収束

概収束型：Z
(N)
i = Zi, N � i，　完全収束型：異なるNの間で仮定無し（＝独立）

現実はNは固定→異なるNは別系→関係を仮定しない定理が妥当
関数値完全収束型大数の強法則は案外手薄(?)な先行研究
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流れが定める確率順位付け模型の無限粒子極限

仮定．CW = sup
w∈W

∥∥∥∥
∂ w

∂y

∥∥∥∥
T

< ∞

MW = lim
N→∞

∫

W
‖w‖T λ(N)(dw) =

∫

W
‖w‖T λ(dw) < ∞

H一様有界同程度連続関数族の時　

sup
N,h̃∈H,y

Nδ
∣∣∣∣
∫

W×[y,1]
h̃(w, z) (µ(N)

0 − µ0(dw × dy))

∣∣∣∣ < ∞

中間目標の主定理．∀p > 0と有界連続hに対して∃C0; (∀N, θ)

E[ sup
(γ,t)∈∆T

∣∣∣∣ϕ
(N,θ)(h, γ, t) − ϕθ(h, γ, t)

∣∣∣∣
2p

] � C

N2pδ
, N ∈ N �

• 定理．E[ sup
(γ,t)∈∆T

∣∣∣∣ϕ
(N,θ)(h, γ, t) − E[ ϕ(N,θ)(h, γ, t) ]

∣∣∣∣
2p

] � C

N2pδ0

（大数の強法則）

• 定理． sup
(γ,t)∈∆T

∣∣∣∣E[ ϕ(N,θ)(h, γ, t) ] − ϕθ(h, γ, t)

∣∣∣∣ � C

Nδ

（期待値分布の収束）
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大数の強法則．
D↑：[0, T ]上の非減少右連続左有極限関数の集合

定理．各N毎に{Z(N)
i }N

i=1独立D↑値確率変数，

モーメント条件：E[ |Z(N)
i (T ) − Z

(N)
i (0)|q ]1/q � M , q > 1 +

√
5

期待値の連続性：|E[ Z
(N)
i (t) ] − E[ Z

(N)
i (s) ]| � M |t − s|

が成り立つとき，始終時刻について一様な大数の（完全収束の）強法則

lim
N→∞

sup
0�t1�t2�T

∣∣∣∣
1

N

N∑

i=1

(
(Z(N)

i (t2) − Z
(N)
i (t1))

−E[ Z
(N)
i (t2)−Z

(N)
i (t1) ]

)∣∣∣∣ = 0, a.e.が成立�

• Z
(N)
i (t2) − Z

(N)
i (t1)のように差の形で無くても（確率順位付け模型で現れる形

の）単調性があれば成り立つ
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期待値の収束

定理（再掲）． sup
(γ,t)∈∆T

∣∣∣∣E[ ϕ(N,θ)(h, γ, t) ] − ϕθ(h, γ, t)

∣∣∣∣ � C

Nδ

• 流れが定める確率順位付け模型の期待値も極限分布も，強度が直前
の到着時刻に依存する点過程の確率で書けている！
E[ ϕ(N,θ)(h, γ, t) ] − ϕθ(h, γ, t)

=

∫

W×[y0,1]
h(w)P[ ν̃θ,w,z(t) = ν̃θ,w,z(t0) ] (µ(N)

0 − µ0)(dw × dz)

h̃t0,t(w, z) = h(w)P[ ν̃θ,w,z(t) = ν̃θ,w,z(t0) ]

H = {h̃t0,t | 0 � t0 � t � T}
主定理の仮定から，Nのべきのオーダーで0に収束 �

• 主定理の仮定のうち， sup
N,h̃∈H,y

Nδ
∣∣∣∣
∫

W×[y,1]
h̃(w, z) (µ(N)

0 −µ0(dw×dy))

∣∣∣∣ < ∞

はこの部分だけに必要（従属模型との差のGronwall型評価のため，べきも一様に確
保したいのでAscoli-Arzelaでは不十分）
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２－４．多変数階層的Gronwall型評価
a, c, aq, bq, cq � 0, t ∈ [0, T ]

命題（Gronwall不等式）．x(t) � a + c

∫ t

0
x(s)ds ⇒ x(t) � aect �

定理（q変数）． �t = (t1, . . . , tq),

x(�t) � aec(t1+···+tq)1

q

q∑

i=1

e−cti +
c

q

q∑

i=1

∫ ti

0
(x(�t)|ti=u) du

ならばx(�t) � a ec (t1+···+tq) �
定理（q再帰＋非線型項0 � d � 1）．xq � 0, q = 1,2, . . . , がx0 = 1と

xq(�t) � aq

q∑

i=1

xq−1(t1, . . . , �ti, . . . , tq)
d

+bq

q∑

i=1

xq−1(t1, . . . , �ti, . . . , tq) + cq

q∑

i=1

∫ ti

0
(xq(�t)|ti=s) ds を満たせば，

xq(�t) � gq ec̃q (t1+···+tq)．　ここで，c̃q = max
1�k�q

kck, c̃q = max
1�k�q

kck �
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2模型間の先頭への跳び回数の差の評価
µ(N) → µの証明の完成（θ = yCの場合に戻る）
定理．主定理の仮定の下で，∃δ′ > 0, p > (2δ′)−1, C > 0; (∀N, h)

E[ sup
(γ,t)∈∆T

∣∣∣∣ϕ
(N)(h, γ, t) − ϕyC(h, γ, t)

∣∣∣∣
2p

] � C

N2pδ′ �

証明の方針．模型間で [t0, t]に粒子 iの先頭への跳びの乖離が無い事象 K̃(N)
i (t0, t)

→ sup
(γ,t)∈∆T

|ϕ(N)(h, γ, t) − ϕ(N,θ)(h, γ, t)| � Ch

N

N∑

i=1

1K(N)
i (0,T )c

2p乗を評価→X
(N)
q (t1, . . . , tq) = max

{i1,... ,iq}⊂{1,... ,N}
E[

q∏

α=1

1K(N)
iα

(0,tα)c
]
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主定理の証明の完成
乖離K(N)

i (t0, t)の確率はCW |Y (N)
i − yC ◦ γ

(N)
i |の積分とK(N)

i の積分で評価

（CW = sup
w∈W

∥∥∥∥
∂ w

∂y

∥∥∥∥
T

< ∞）

ヘルダーで剥がしてランダム測度を計算すると，δ′を δ（初期分布の収束Nべき仮
定）より少し損するが，（流れが定める模型の評価も合わせて，）Gronwall型再帰評
価に持ち込める
xq = Xq, aq = CWTCN−δ, bq = CWT (q−1)N−1, cq = CW , d = 1−(2p)−1

カオスの伝搬 lim
N→∞

sup
t

|Y (N)
i (t)− Yi(t)| = 0もyC = 1−ϕyC(W, ·)などから推

察されるとおり，K̃(N)
i の評価に帰着 �
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３－１．強度が直前の到着時刻に依存する点過程
強度ω : R+

2 → R+の点過程の構成
R+

2上の単位強度のPoisson random measure ν
（ ν(A)はAの面積が平均に等しいポワッソン分布）

τ0 = 0, k = 1,2, . . . についてτk = inf{t � 0 |
ν({(ξ, u) ∈ R+

2 | 0 � ξ � ω(τk−1, u), τk−1 < u � t}) > 0}

　　　　　　

ξ

u

ω (0,u)
ω(    ,u)τ1

ω(    ,u)τ2

τ1 τ2
0 = τ0 < τ1 < · · ·
N(t) = max{k ∈ Z+ | τk � t}, t � 0
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基本公式

P[ t < τk | Fτk−1 ] = exp(−
∫ t

τk−1

ω(τk−1, u) du) on t � τk−1 .

Ω(t0, t) =

∫ t

t0

ω(t0, u) du, (Aωf)(t) =

∫ ∞

t
f(u)ω(t, u) e−Ω(t,u) du

E[ f(τk) | Fτk−1 ] = (Aωf)(τk−1)，E[ f(τk) ] = (Ak
ω f)(0)

• 確率はAωで書けるが，結果は一般に多重積分（非独立増分）

（P[ N(t) = 0 ] = P[ τ1 > t ] = exp(−
∫ t

0
ω(0, u) du) のみポワッソンと同じ）

P[ N(t) = N(s) ] =
∞∑

k=0

(Ak
ωf)(0) ; f(u) = 1u�s e−Ω(u,t)

=
∑

k�0

∫

0=:uk<uk−1<uk−2<···<u1<u0�s

× e−
∑k−1

i=0 Ω(ui+1,ui)−Ω(u0,t)
(k−1∏

i=0

ω(ui+1, ui) dui

)

Funkcialaj Ekvacioj (2016)
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評価の例

|ω(s, t)−ω(0, t)| � C　（← |∂ w

∂y
(y, t)| � CW），　　　Ω̃(s, t) =

∫ t
s ω(0, u)du

ωとω′に対応するP[ N(t) = N(s) ]の差−Ωの差の寄与

�
∑

k�1

k−1∑

j=0

∫

0=uk<···<u0�s
e−

∑k−1
i=0 Ω̃(ui+1,ui)−Ω̃(u0,t)+Ct

×
j−1∏

i=0

(ω′(0, ui) + C)
∥∥ω′ − ω

∥∥
T

k−1∏

i=j+1

(ω(0, ui) + C)
k−1∏

i=0

dui

∂

∂ui
e−Ω̃(ui+1,ui) = −ω(0, ui)e

−Ω̃(ui+1,ui)を使うのはうまくない

∑

k�1

∫

0�uk−1<···�u0<s

k−1∏

i=0

(ω(0, ui) + C)du0 . . . duk−1 = eΩ̃(0,s))+Csと

k−1∑

i=0

Ω̃(ui+1, ui) + Ω̃(u0, t) = Ω̃(0, t)を用いる．
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３－２．二重に一様な完全収束型大数の強法則
D↑：[0, T ]上の非減少右連続左有極限関数の集合

∆ = {(t1, t2) ∈ R
2 | 0 � t1 � t2 � T}

定理．r > 0, q > 2, 各N毎に{Z(N)
i }N

i=1独立D↑値確率変数，
E[ |Z(N)

i (T ) − Z
(N)
i (0)|q ]1/q � M,

|E[ Z
(N)
i (t) ] − E[ Z

(N)
i (s) ]| � Mw|t − s|r

が成り立つとき，∃Cq, N0 > 0; (∀N � N0)

E[ sup
(t1,t2)∈∆

∣∣∣∣
1

N

N∑

i=1

(
(Z(N)

i (t2)− Z
(N)
i (t1))−E[ Z

(N)
i (t2)− Z

(N)
i (t1) ]

)∣∣∣∣
q

]

� Mq2q−1

Nq2r/(2qr+2r+2)
(Cq

q (2T w1/r + 1) + 22q) �

• 序論はr = 1，(q2 − 2q − 2)r > 2の場合

• アイデア．Z
(N)
i は単調だが期待値を引く→「仕切り」を入れれば期待値の変化 < ε

（証明の技巧上）仕切りの増加はモーメントの仮定に帰着
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始終2時刻を扱うための補題
• 二重に一様→等高線で網→個数制御はHölder連続性の仮定に帰着

t1

t2

(t     ,t    )1,1   1,2

(t     ,t    )k,1   k,2

(t     ,t    )a,1   a,2

An,im>i+1
n

Y (N)(t1, t2) =
1

N

N∑

i=1

Z
(N)
i (t1, t2)

の減る方向（右下）にE[ Y (N) ]の減少が2/n以
内の見張りを立てる．
m(t1, t2) = E[ Y (N)(t2) ] − E[ Y (N)(t1) ]

An,i = {(t1, t2) ∈ A | i
n < m(t1, t2) � i+1

n }
m(tk,1, tk,2) = i−1

n
(∀(t1, t2) ∈ An,i) ∃k;

m(t1, t2) � m(tk,1, tk,2) + 2
n

(t1, t2) ∈ An,0またはm(t1, t2) = 0だと見張り
が無いが，m(t1, t2) � 1

nが成立して有効

• mの単調性しか使わないので，差Z
(N)
i (t2)−Z

(N)
i (t1)と同様の単

調性が成り立てば定理の結論が成立
• 時間方向は単調性しか使わないので，独立増分性等は不要で，直前
の到着時刻に依存する強度を持つ点過程でも何も気にせず使える
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例：オフィスビルの照明

ビル新築時刻t0，Z
(N)
i ：照明設備iの照明の時刻tまでの交換回数（次

に切れるまでの時間分布が設置箇所iと（技術改良や原材料の法規制などで）
交換時刻に依存する強度wiの場合も，滑らかならば）
主定理から， sup

N,i,(t1,t2)∈∆
wi(t1, t2) < ∞ならば

lim
N→∞

sup
(t1,t2)∈∆

∣∣∣∣
1

N

N∑

i=1

(Z(N)
i (t1, t2) − E[ Z

(N)
i ](t1, t2))

∣∣∣∣ = 0 �

• ビル竣工時刻によってその後使用する照明の商品（バージョン）が
異なる組み合わせ→個数揺らぎはビル竣工時刻にもよる
• 他の例：交通量調査で，全通勤時間の増分取ると平日の揺らぎは小
→時間幅についてのsupが興味になり得る
• 一様でなければ時刻依存，かつ，マルコフ性が無ければ時刻依存を
初期値の問題に帰着できない
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完全収束

完全収束（異なるNの間でZ
(N)
i 間に関係を仮定しない）現実はNは

大きな固定数（アボガドロ数など）なので，異なるNは別世界　→　
関係を仮定しない定理が妥当と思う

cf. 通常の(RW)大数の強法則はYN =
1

N

N∑

i=1

Ziの概収束．

i.i.dのとき
概収束型大数の強法則　YN −E[ YN ] → 0, a.s. ⇔ E[ |Z1| ] < ∞
実確率変数完全収束型大数の強法則(Hsu–Robbins, 1947, Erdös 1949)

Y
(N)
N =

1

N

N∑

i=1

Z
(N)
i （{Z(N)

i }が (N, i)について独立なら他の場合も成り立つ）

i.i.dのときY
(N)
N − E[ Y

(N)
N ] → 0, a.s. ⇔ E[ Z

(N)
1

2 ] < ∞
（バナッハ（関数）空間値になると急に混沌とした文献歴史）
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Banach空間値確率変数列の完全収束

Y
(N)
N =

1

N

N∑

i=1

Z
(N)
i

命題．Banach空間(B, ‖·‖B)が，4次のMarcikiewicz–Zygmund型の上からの
評価

(MZ4) E[

∥∥∥∥∥∥

n∑

k=1

(Zk − E[ Zk ])

∥∥∥∥∥∥

4

B

] � CE[

( n∑

k=1

‖Zk − E[ Zk ]‖2B
)2

]

が任意のB値独立確率変数列に対して成り立つ空間のとき，
E[ ‖X‖2B ] < ∞なるZと同分布で独立な{X(N)

i }について∥∥∥∥∥∥
1

N

N∑

i=1

(X(N)
i − E[ X

(N)
i ])

∥∥∥∥∥∥
B

→ 0, a.s. �

MZ4が成り立てばX
(N)
i をtruncateする実数値の場合の初等証明(Erdös)が成立

（ほぼTaylor–Hu 1987）
命題． σ有限な測度(S, µ)上の関数空間Lp(S)について，2 � p < ∞ではMZ4が
成立（→2次モーメント有限下で独立同分布完全収束LLN成立）
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一般論アプローチの困まること
• Woyczynski 1975, . . . 曰く「Lp, 2 � p < ∞, はtype 2なのでMZqが成立」
type 2＝「分散の加法性」に相当する上からの評価
type p ∈ [1,2] ⇔ Bernoulli列を{ξk}と書くとき，∃C;任意のnとB列{xk}につ

いてE[

∥∥∥∥∥∥

n∑

k=1

ξkxk

∥∥∥∥∥∥

p

] � C
n∑

k=1

‖xk‖p (Hoffmann-Jorgensen, Pisier, 1976)

• （Woyczynskiの証明はよくわからない）
• Lp, 2 � p < ∞, でMZqが成り立つのは正しい．• きちんとやると，1 < p < ∞で type r, 1 < r � 2より微妙に強い条件が成り立
ち，その結果として得られるMZqの類似を使うと2次モーメント有限下で独立同分
布完全収束LLN成立（type 2が本質ではない）
• 実数値の時の証明のE[ |X|q ]→E[ ‖X‖r�

Lr ]．�を選ぶのが難しい（実際，q =

4 ⇒ � >
1

r − 1• （E||X||qのような記述がある文献はそれだけで致命的）
• L∞：typeについての結果すら見当たらない．一般論は成り立たない模様

• 今回の結果
　－tについて一様な完全収束　∼ L∞
　－始時刻についても一様（但し単調で期待値の連続性を仮定）
　－q > 1+

√
5 = 3.236 · · · (r = 1のとき) 実数値の2より悪いが，知る限り最

善（必要十分か否かは未解決）
　－ただし単調関数の場合
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３－３．多変数Gronwall型評価

命題（再掲）．x(t) � a + c

∫ t

0
x(s)ds ⇒ x(t) � aect

• 変数の数qについての階層化は帰納法，非線型項も丁寧に初等的ににやるだけ

• 非斉次項の選択（「a」の拡張）は明らかでもないが，指数関数
x0(t1, . . . , tq) = aec(t1+···+tq)

が等号をattainする選択がうまく行った．
定理（q変数）． �t = (t1, . . . , tq), a, c � 0

x(�t) � aec(t1+···+tq)1

q

q∑

i=1

e−cti +
c

q

q∑

i=1

∫ ti

0
(x(�t)|ti=u) du

ならばx(�t) � a ec (t1+···+tq) �

• xは可積分性のみ，連続性も非負性も不要（等号達成もありbest）
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多変数斉次Gronwall型不等式
• 斉次な場合のq変数拡張が恐らく一番の要点
定理． c � 0．x : [0, T ]q → R可積分

x(�t) � c

q∑

i=1

∫ ti

0
(x(�t)|ti=s)ds, �t ∈ [0, T ]q, ⇒ x(�t) � 0. �

証明．(Ai,ky)(�t) =
1

(k − 1)!

∫ ti

0
(ti − s)k−1 (y(�t))|ti=s ds

Ai,kAj,� = Aj,�Ai,k，　Ai,kAi,� = Ak+�
i,1 = Ai,k+� 　を経て

x(�t) � cN
∑

(k1,... ,kq)∈Z
q
+;

k1+···+kq=N

(Aq,kq Aq−1,kq−1
· · · A1,k1

x)(�t)．

他方，(Ai,ky)(�t) �
tki
k!

sup
�t∈[0,T ]q

y(�t) �
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３－４．流れが定める確率順位付け模型との差
• 本来の模型は粒子の現在位置の強度に従って先頭に跳ぶ
• 流れが定める模型はスクランブルのかかったGPSの教える（予め内
蔵していたずれた）位置の強度に従って先頭に跳ぶ
1) 流れが定める確率順位付け模型は強度が時刻だけの関数な（現在位
置によらない）ので，証明の鍵になる量ϕ(N)が独立確率過程
2) 独立確率過程の大数の強法則によって（緩い仮定の下で）
lim

N→∞
ϕ(N,θ) = lim

N→∞
E[ ϕ(N,θ) ]

3) θ = yCのとき右辺は蒸発分だけ流れる元の従属模型の流れ
4) 主定理の大数の強法則は始終時刻について一様評価なので，元の確
率順位付け模型との差を評価できる
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差の評価と多変数階層Gronwall
• 従属性によるHölder経由の収束べきの損をGronwallで制御
X

(N)
q (t1, . . . , tq) �

CWT (q − 1)

N

q∑

i0=1

X
(N)
q−1(t1, . . . , �ti0, . . . , tq) + CW

q∑

i0=1

∫ ti0

0
X

(N)
q (�t)|ti0=s ds+

CW max
{i1,... ,iq}
⊂{1,... ,N}

∫ ti0

0
E[

∏

iα �=i0

1Kiα(0,tα)c

∣∣∣∣Y
(N,yC)
ii0

(s) − yC((γ(N,yC)
ii0

(s), s)

∣∣∣∣ ]ds

Hölderの不等式E[ |X Y | ] � E[ |X|2p/(2p−1) ]1−(2p)−1
E[ |Y |2p ]1/(2p) でべき

を損しつつ剥がして，流れが定める確率順位付け模型の大数の強法則の評価を代入
X

(N)
q (t1, . . . , tq) �

CWT (q − 1)

N

q∑

i0=1

X
(N)
q−1(t1, . . . , �ti0, . . . , tq) + CW

q∑

i0=1

∫ ti0

0
X

(N)
q (t1, . . . , s, . . . , tq) ds+

CWTC

Nδ

q∑

i0=1

(X(N)
q−1(t1, . . . , �ti0, . . . , tq))

(2p−1)/(2p)
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収束べきの計算
多変数階層Gronwall型評価から
X

(N)
q (t1, . . . , tq) � gqe

q2CW T

� C

N2pδ(1−(1−(2p)−1)2p)
, q = 1,2, . . . , p

仮定（初期分布）と独立確率過程のLLNのべきδより小さいべきδ′ < (1 − 1
e)δ

lim
p→∞(1 − 1

2p
)2p = e−1 < 1で間に合って，

∃p0 >
1

2δ′
; δ′ < (1 − (1 − 1

2p
)2p)δ, p = p0, p0 + 1, . . . .

よって p = p0, p0 + 1, . . . に対して，

X
(N)
q (t1, . . . , tq) � C

N2pδ′ , q = 1,2, . . . ,2p, �
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＊．
• 強度が直前の到着時刻に依存する点過程
→独立増分で無いが公式や評価がある（可積分系的何か？）
• 単調関数値独立確率変数の二重に一様な大数の強法則
→普通のL∞大数の強法則，強い一様性への興味
• 多変数Gronwall型不等式
• 位置依存確率順位付け模型の流体力学極限の初等的証明
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End of slides. Click [END] to finish the presentation.
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