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概 要

Scalar 場, fermion 場, gauge 場の理論に即して, 場の量子論の数学的構成の論理を解説する. 技術的詳細
を省き, 構成の原理に重点をおく.
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0 はじめに

場の量子論 は, Rd 上の各点1 x に付随した random variable φ(x) の間の microscopic な相関 (近接相互
作用)が引き起こす現象を定式化し分析するための理論である.
図式的に言うと, 場の量子論は, 場の古典論を “量子化”したものであり, ある種の汎関数積分を計算する

問題として2 提示される.

古典論

δS(φ) = 0

(変分原理)

量子化=⇒
量子論

eiS(φ)dφ

(汎関数積分)

しかし, 場の量子論は場の無限自由度ゆえに, その定義自体に nontrivial な数学的問題を含み, 繰りこみ
(renormalization) と呼ばれる特徴的な処方が必要となる. 即ち

場の量子論は, 繰りこみを施された汎関数積分によって記述される.

具体的な場の量子論の model としては, 相対論的に不変な素粒子の相互作用に関する relativistic field
theory が代表的である. 現在に至るまで, その数学的存在を仮定した上で model の物理的内容が分析され
て来たが, model の数学的存在証明は, ３次元以下において成功をおさめたものの, ４次元の model に対し
ては, 自然法則として重要な意味を担うものであるにもかかわらず, いまだに確かなアプローチは見出され
ていない.
さて, 場の量子論の model の数学的存在証明を目指すとき, 今日ではEuclidean field theory からのア

プローチをとるのが普通である. Euclidean field theory とは, formal には, relativistic field theory におけ
る時間変数 t を ix0(x0 ∈ R) と置き, Minkowski 計量を Euclid 計量で置き換えたものである:

Minkowski

(t, x1, x2, x3)

eiSMin(φ)dφ

t=ix0

=⇒
Euclidean

(x0, x1, x2, x3)

e−SEuc(φ)dφ

Euclid 化すると量子的揺らぎが確率論的揺らぎに変わり, 関数空間上の measure として, 場の理論を数学
的に意味づけるという道が開ける. また, Euclid 化された場の理論は, 統計力学と共通の数学的基盤をもつ
ので, 統計力学的手法を援用し得るという利点もある.
この解説では, Euclidean field theory の構成論を, scalar 場, fermion 場, gauge 場の理論に即して紹介し

たい3 .
ところで, 場の量子論に至る理論物理の (大雑把な)歴史を解析学の (大雑把な)歴史と対比させてみると,

次のように空白が残る.

理論物理 Newton 力学 場の古典論 量子力学 場の量子論

解析学 微分積分学 偏微分方程式 関数解析 ??

いずれ, 場の量子論自体を研究対象とする数学が成立するものと考えられる.
1 一般には多様体上の各点
2 別の定式化もある [20].
3 素粒子論の標準的見解によれば, 実在する (はずの) 素粒子は, これら３つのカテゴリーに分類される.
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1 Euclidean field theory

Euclidean field theory は, Rd の各点 x に付随した random variable φ(x) に関するある種の確率論であ
り, その統計的 (量子的)期待値を与える表式

< F (φ) > =
1
Z

∫
F (φ)e−V (φ)dµ(φ) (1.1)

Z =
∫
e−V (φ)dµ(φ) (1.2)

によって formal に “定義” される. ここで, dµ(φ) は Gaussian probability measure, V (φ) は φ(·) の
functional で potential と呼ばれる. 特に V = 0 のとき, (1.1) は Gauss 積分となり, 物理的に相互作用の
ない理論 (自由場)を定義する. そして 0 でない (φ の高々 2 次式でない) potential によって, 物理的相互
作用が記述されると考える.
形式的な積分 (1.1)(1.2) に数学的意味を与える過程で問題となる点を列挙しよう.

Semi-boundedness

積分 (1.1)(1.2) が構成可能であるためには, potential の lower bound の存在

inf
φ
V (φ) > −∞ (1.3)

が基本的である.

Regularization

Gaussian measure µ の sample field φ の regularity が悪いために, φ を V に代入できないという問題が起

きる. そこで Gaussian measure の regularization

µ =⇒ µε (1.4)

を導入する. ただし

• ε→ 0 の極限で, µε は µ に収束し,

• ε > 0 に対して, measure µε の意味で確率 1 で, sample field φ の regularity が改善され, V (φ) が
well-defined になる

ようにしておく. また, Rd を何らかの意味で bounded region に制限する regularization も必要である.
つまり, 場の理論が内蔵する無限個の自由度を２つの方向

• 紫外 (UV) 方向 : φ(x) にいくらでも近い φ(y) が存在する

• 赤外 (IR) 方向 : φ(x) からいくらでも遠い φ(y) が存在する

に分けたとき, 各方向の cutoff が必要なのである.

Renormalization

上記の regularization を施した上で, ε→ 0 の極限が存在するかどうか調べるのだが, 多くの場合この単純な
極限は存在しない. この極限が存在するようにするためには, ε に依存するある種の項 (counterterm) δVε(φ)
を付加して,

Vε(φ) = V (φ) + δVε(φ) (1.5)
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とおき, V (φ) を Vε(φ) で置き換えることが必要になる. このような処方を renormalization という. Coun-
terterm の選び方が, 極限の存否とその性質を左右する.

極限の構成

一般に, regularization と renormalization を施された積分

< F (φ) >ε =
1
Zε

∫
F (φ)e−Vε(φ)dµε(φ) (1.6)

Zε =
∫
e−Vε(φ)dµε(φ) (1.7)

の極限

lim
ε→0

< F (φ) >ε (1.8)

について, 次の３つの可能性がある.

(1) limit は存在しない, またはつまらない limit をもつ (全ての期待値が 0 となる等)
(2) Gaussian measure に収束する (triviality)
(3) Non-Gaussian measure に収束する (nontriviality)

Counterterm を適切に選ばないと, (1)のような結果になる. そうでなくても, (2)のように極限が Gauss に
なってしまうことがある. 構成論は, もちろん (3)の結果を望んでいる.

Minkowski 化

Euclidean field theory を relativistic field theory に翻訳し得るためには, ある特定の条件を満たしていな
ければならない (Osterwalder-Schrader axioms, [Section 2.4]).

構成的場の理論の目標

Well-defined な積分 (1.6)(1.7)を出発点として,

• ε→ 0 の極限が存在するか

• その極限は trivial か non-trivial か

• relativistic field theory に翻訳できるか

を調べることが, 構成的場の理論の目標である. しかしながら, このプログラムが完成しているのは時空 2
次元と 3 次元のモデルに限られており,

• 4 次元時空で4 , nontrivial field theory 5 は存在するか

は, 現在に至るまで未解決である.

2 φ4 model

φ4 model の構成問題を定式化する. 実際の構成については次節以下でその概要を解説する.
4 即ち我々の時空で
5 即ち自然法則
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2.1 形式的な定義

λ > 0 に対し, 形式的な積分

< F (φ) > =
1
Z

∫
F (φ)e−V (φ)dµC(φ) (2.1)

Z =
∫
e−V (φ)dµC(φ) (2.2)

V (φ) = λ

∫
Rd

φ(x)4dx (2.3)

で “定義”される理論を d 次元 φ4 model と言う6 . φ(·) は実数値を取る random field, µC は,

mean :
∫
φ(x)dµC (φ) = 0 , x ∈ Rd (2.4)

covariance :
∫
φ(x)φ(y)dµC (φ) = (−� +m2)−1(x, y) = C(x, y),

x, y ∈ Rd,m ≥ 0 (2.5)

の Gaussian probability measure である (Theorem 2.1). Gaussian covariance C は,

C(x, y) ∼
⎧⎨
⎩ −const. log |x− y|, d = 2,

const.|x− y|−d+2, d > 2,
|x− y| → 0 (2.6)

C(x, y) ∼ e−const.m|x−y|, |x− y| → ∞ (2.7)

という漸近形を持ち, formal には

C(x, y) =
∫
Rd

eip(x−y)

p2 +m2
dp (2.8)

と書ける. m を mass と言う. また 古典論との対応を見るときには, action A(φ) を explicit に取り出して

< F (φ) > =
1
Z ′

∫
dφF (φ)e−A(φ) (2.9)

A(φ) = λ

∫
Rd

φ(x)4dx+
1
2

∫
Rd

(|∇φ(x)|2 +m2φ(x)2)dx (2.10)

と書くこともある7 . 特に F (φ) が field の積のとき,

Sn(x1, x2, · · · , xn) =< φ(x1)φ(x2) · · ·φ(xn) > (2.11)

を Schwinger function という. Model が内包する粒子の質量や束縛状態 (の有無) などの物理的内容は,
Schwinger function から引き出すことができる [2, 1].

Potential の semi-boundedness は λ > 0 のもとで成立する. 問題は, この仮定のもとで積分 (2.1)を厳密
に構成し得るかどうかである. そのために, まず積分を regularize して well-defined な足場を作る.

6 ここでは potential V を φ の 4 次式に限るが, 2 次元では, 適当な性質をもつ多項式に議論を一般化できる (P (φ)2 理論 [21]).
しかし Section 5.1 で述べるように, potential は繰りこみ可能でなければならないので, 例えば 4 次元では高々 4 次式でなければな
らない.

7 d = 1 のとき, 時空座標 x を時間座標 t で置き換え, field φ(x) を x(t) と書くと, (2.1)(2.9) は, 拡散方程式の解を与える
Feynman-Kac formula の形になる. さらに拡散方程式において t を it で置き換え “Minkowski 化”したのが量子力学である. ただ
し, d = 1 の場の理論, 即ち量子力学は, 繰りこみを必要としない.
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2.2 Gaussian measure の紫外性質

(2.4),(2.5) を満たす Gauss 測度の存在は, 次の Minlos の定理の帰結である.

Theorem 2.1. [9] S(Rd) 上の functional S(·) が以下の 3 条件を満たすとき, S′(Rd) 上の probability
measure dµ(φ) で

S(f) =
∫
eiφ(f)dµ(φ), f ∈ S(Rd) (2.12)

なるものが存在する:

(1) Continuity S(fn) → S(f), if fn → f in S(Rd)

(2) Positivity
N∑

n,m=1
c̄ncmS(fn − fm) ≥ 0, fn ∈ S(Rd), cn ∈ C

(3) Normalization S(0) = 1

特に, characteristic function

S(f) = exp(−1
2
(f, Cf)) = exp

(
−1

2

∫
Rd

dx

∫
Rd

dyf(x)C(x, y)f(y)
)

(2.13)

をもつ measure として, C を covariance とする mean 0 の Gausssian measure dµC が存在する. �

しかし次の定理によれば, Gaussian measure µC の sample field φ は関数ではない. 従って, 同一点での
field の積 φ4(x) は定義されず, φ を potential V に代入できない.

Theorem 2.2. [3] 集合

R = {φ ∈ S′(Rd) | ∃U open ⊂ Rd such that

φ|U is a signed measure} (2.14)

の測度 µC(R) は 0 である. �

2.3 Regularizations

Sample field の 紫外性質を改善するために, 様々な regularization が考案されている. 構成論においてよ
く使われるのは, momentum cutoff と lattice regularization である.

momentum cutoff

Gaussian covariance C を momentum space で cutoff し

CM (x, y) =
∫
Rd

eip(x−y)

p2 +m2
χM (p)dp (2.15)

χM (p) = e−(|p|/M)2 , M > 0 (2.16)

で置き換えると, その紫外性質は次のように改善される.

|CM (x, y)| <
⎧⎨
⎩ const. logM, d = 2,

const.Md−2, d > 2,
(2.17)
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Theorem 2.3. [19, P.28] Gaussian measure µCM の sample field は, 確率 1 で C∞ ∩ S′ に属する. �

この UV cutoff の結果として, sample field の積 φ(x)4 が well-defined となるが, その積分である V (φ)
は発散する可能性がある. そこで, 赤外 (IR)側の cutoff (volume cutoff) を導入する. Λ ⊂ Rd を有界領域

として, potential V (φ) を

VΛ(φ) = λ

∫
Λ

φ(x)4dx (2.18)

のように IR cutoff すると, (2.1) は次のような well-defined な積分となる.

< F (φ) >Λ,M =
1

ZΛ,M

∫
F (φ)e−VΛ(φ)dµCM (φ) (2.19)

ZΛ,M =
∫
e−VΛ(φ)dµCM (φ) (2.20)

ここで ∫
VΛ(φ)dµCM (φ) <∞ (2.21)

であるから, Jensen の不等式により∫
e−VΛ(φ)dµCM (φ) ≥ exp

(
−
∫
VΛ(φ)dµCM (φ)

)
> 0 (2.22)

が成立することに注意する.

lattice regularization

Euclidean space Rd を格子化し, 格子間隔 ε の正方格子 εZd の各点 x に random variable φ(x) を配置す
ることにより, (2.9),(2.10) を差分化する. さらに格子点を有界領域 Λ の中に限定し, I R cutoff を同時に行
うと

< F (φ) >Λ,ε =
1

ZΛ,ε

∫
dφF (φ)e−AΛ,ε(φ) (2.23)

ZΛ,ε =
∫
dφe−AΛ,ε(φ) (2.24)

AΛ,ε(φ) =
∑

x∈εZd∩Λ

εd
(
λφ(x)4 +m2φ(x)2

)
+

∑
|y−x|=ε

εd−2

2
(φ(x) − φ(y))2 (2.25)

∫
dφ =

∏
x∈εZd∩Λ

∫
dφ(x) (2.26)

という有限次元積分となる.

Renormalization

Momentum cutoff または lattice 化によって regularize した後で, 繰りこみのための counterterm を導入
する. Counterterm の形は, 次元 d に依存する [Section 4.1,Section 5.1]. その regularization をはずして極
限を構成する原理は, regularization の方法により異なる. Momentum cutoff と lattice regularization には
それぞれ得失があり, 両者は相補的な関係にある.
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2.4 Osterwalder-Schrader Axioms

Euclidean field theory から relativistic field theory を得るには, Schwinger function Sn(x1, · · · , xn) を
Wightman function [21] に翻訳しなければならない. そのために, Schwinger function の各引数 xk の “虚
時間”座標 x1

k に関して, 正の実軸を複素右半平面に “解析接続”し, その境界値として Wightman function
を作る. この手続きが実行可能であるためには, 以下に述べる Osterwalder-Schrader axioms を満たす必要
がある.

Notation

x = (x1, x2, · · · , xd) ∈ Rd に対し

θx = (−x1, x2, · · · , xd) (2.27)

Ttx = (x1 + t, x2, · · · , xd) (2.28)

x1, x2, · · · , xn ∈ Rd に対し

θf(x1, x2, · · · , xn) = f(θx1, θx2, · · · , θxn) (2.29)

Ttf(x1, x2, · · · , xn) = f(Ttx1, Ttx2, · · · , Ttxn), (2.30)

Rd
+ = {x = (x1, x2, · · · , xd) ∈ Rd | x1 > 0} (2.31)

f ∈ S�=(Rnd) ⇔
⎧⎨
⎩ f ∈ S(Rnd)

∂αf(x1, x2, · · · , xn) = 0, if xi = xj for some i 
= j
(2.32)

f ∈ S+(Rnd) ⇔ f ∈ S�=(Rnd), Suppf ⊂ (Rd
+)n (2.33)

Osterwalder-Schrader Axioms

(OS1) Temperedness: Sn ∈ S′
�=(Rnd)

(OS2) Euclidean invariance: Sn は Rd の並進と回転に関して不変である.

(OS3) Reflection positivity:
N∑

n,m=0
Sn+m(θfn ⊗ fm) ≥ 0, fk ∈ S+(Rkd), k = 0, 1, 2, · · · , N

(OS4) Symmetry: Sn(f) = Sn(fπ), f ∈ S+(Rnd) (π は任意の変数交換)

(OS5) Cluster property: lim
t→∞Sn+m(f ⊗ Ttg) = Sn(f)Sm(g), f ∈ S+(Rnd), g ∈ S+(Rmd) with com-

pact support.

(Z) Technical condition: Laplace 逆変換の可能性に関する条件8 .

特に OS3 を field の言葉で書くと,

< FθF > ≥ 0 (2.34)

F =
∑
m

∫
dx1 · · · dxmfm(x1, · · · , xm)φ(x1) · · ·φ(xm) (2.35)

となる.
8 この条件が整理されたのは, つい最近のことである [11].
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Theorem 2.4. [5, 6, 11] Schwinger function が Wightman function に翻訳されるための必要十分条件
は, (OS1)-(OS5)(Z)である. �

ところで, OS axioms の導出に関して, Section 2.3の regularization にはそれぞれ次のような特徴がある.

• momentum cutoff では, reflection positivity を導出し難い.

• lattice regularization では, 回転不変性の導出が難しく, また計算の負担が大きい.

しかし, 異なる regularization により構成された Schwinger function が一致することを確かめれば, 結果的
に全公理の成立が保証されるという道がある.

2.5 摂動展開

異なる regularizationを用いて構成された Schwinger functionが一致することを確かめるために, Schwinger
function を λ に関してベキ展開し, その係数を比較する. しかし, 一般に Schwinger function の λ 展開の

収束半径は 0 である.
例えば, 1 次元積分の形式的な展開

I(λ) =
∫
R

exp(−λx4 − 1
2
x2)dx (2.36)

=
∞∑
n=0

(−λ)n

n!

∫
R
x4n exp(−1

2
x2)dx (2.37)

=
∞∑
n=0

λnan (2.38)

において,

an = (−1)n
√

2π(4n− 1)!!/n! (2.39)

であり, (2.38) の収束半径は 0 である. しかし複素 λ 平面の負の実軸に cut を入れると, 次のような I(λ)
の漸近展開が得られる.

|I(λ) −
N∑
n=0

λnan| <
Γ(2N + 3/2)

(N + 1)!

√
2(4|λ|)N+1

cos2N+3/2(1
2 arg λ)

| argλ| < π (2.40)

Borel summability

一般に漸近級数はもとの関数を一意に定めないが, 次の定理は

• Borel summable な漸近級数は, もとの関数を一意的に定める

ことを保証する.

Theorem 2.5. [22] R, r > 0 に対し

DR = {λ = x+ y
√−1 | (x−R/2)2 + y2 < (R/2)2} (2.41)

Sr = {z ∈ C | dist(z,R+) < r} (2.42)
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とおく. このとき DR 上で

f(λ) : 正則 (2.43)

f(λ) =
N∑
n=0

anλ
n +RN (λ) (2.44)

|RN (λ)| ≤ A(N + 1)!
( |λ|
r

)N+1

, N > 0 (2.45)

ならば, Borel sum

B(z) =
∞∑
n=0

an
n!
zn (2.46)

は次を満たす.

|z| < r で収束 (2.47)

Sr に解析接続される. (2.48)

|B(z)| ≤ Ke|z|/R, z ∈ Sr′ (r′ < r) (2.49)

f(λ) =
1
λ

∫ ∞

0

B(z)e−z/λdz, λ ∈ DR (2.50)

�

従って, Schwinger functionの Borel summabilityを示しておけば, 漸近展開の係数比較から, regularization
independence が従うことになる.

Renormalon

Schwinger function の Borel summability は, 別の context でも調べられてきた [20, P.463]. 伝統的な場の
理論の解析は, 乱暴に言えば (2.38) のような形式的展開の無限次元化であり, 各項ごとの有限性 (摂動的繰
りこみ可能性 [Section 5.1]) がその目標であった. しかし形式的展開を越えて, その総和可能性を問題にし
てみると, 4 次元の model に対して, Borel plane の正の実軸上に B(z) の singularity が存在する可能性が
指摘された. この singularity を renormalon という. Renormalon の存在は Schwinger function の (従っ
て,理論の)存在を脅かす. 構成論における triviality の問題は, 4 次元の model に対するこのような疑念を
背景にもっている.

3 無限体積極限

Section 2.3 で, 紫外 (UV)方向と赤外 (IR)方向の, ２つの regularization を導入した. この section では
IR regularization をはずすことを考える9 . IR limit の論法は, 次元や model の詳細によらない. 具体的
には,

• Momentum cutoff の場合

– cluster/Mayer expansion による方法 [19]

• lattice cutoff の場合

– reflection positivity/correlation inequality による非展開的方法 [21]

が知られている.
9 本当は counterterm を導入した後で, 以下の論法を使うのだが, 話の筋を見やすくするために, counterterm のない model に即

して解説する.
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3.1 Polymer 表現

Momentum space での UV cutoff M を固定し, Gaussian covariance CM を C, partition function ZΛ,M

を ZΛ と書く.

Gaussian variables の漸近的独立性

Gaussian covarinace は, (UV cutoff した場合もしない場合も) IR 側では (2.7) のように massive decay す
る. 即ち, Gaussian field φ(x) は, 漸近的に独立である. もしも本当に独立ならば, IR limit の問題は次のよ
うに自明になる. Rd の各格子点を中心とする１辺の長さが１の立方体 (cell)でRd 全体を pave する. cell
を � と書き, � の定義関数を �(·) とする. そして Λ は � の和集合と仮定する. さて CM = C を

C0 =
∑
�

C� (3.1)

C�(x, y) = �(x)C(x, y)�(y) (3.2)

で定義される C0 で置き換えると, (2.20) の右辺の積分は decouple して∫
e−VΛ(φ)dµC0(φ) =

∏
�⊂Λ

Z� (3.3)

Z� =
∫
e−V�(φ)dµC�(φ) (3.4)

となる. (2.19) の右辺も同様に decouple する. そこで, F (φ) の定義に参加する φ(x) が属する cell の全体
を SuppF とすると, SuppF ⊂ Λ である限り, (2.19) の右辺 は Λ に依存しないことが分かる. 即ち, IR
limit は自明である.
さて, 実際の Gaussian covariance は, IR 側で弱い従属性を残しているので,

• 遠い field 同士の相関が小さいときに有効な展開

を考える. そのために, cell 毎に decouple した covariance C0 と, もとの covariance C を interpolate する
10 .
まず Gaussian measure の変形に関する定理を用意する.

Theorem 3.1. [2, P.208][4] 変数 s に依存する Gaussian covariance Cs に対し,

d

ds

∫
dµCs(φ)F (φ) =

∫
dµCs(φ)

∫
Λ

dx

∫
Λ

dy
∂

∂φ(x)
dCs(x, y)

ds

∂

∂φ(y)
F (φ) (3.5)

が成り立つ11 . �

Partition function の polymer 表現

上記の観察に基づいて, cluster 展開の概念的基礎として polymer 表現を導入する12 . Cell の pair(非順序
対) {�,�′} の全体を P とする. P の元を index にもつ変数 s = (sb)b∈P を用いて, Gaussian covariance
C と C0 を次のように interpolate する.

Cs(x, y) = C0(x, y) +
∑

{�,�′}∈P

s��′ [�(x)C(x, y)�′(y) + �′(x)C(x, y)�(y)] (3.6)

Cs(x, y) = C0(x, y) , if sb = 0 for ∀b ∈ P (3.7)

Cs(x, y) = C(x, y) , if sb = 1 for ∀b ∈ P (3.8)
10 C が有する coupling の一部分を捨てる.
11 定理中で F に関する仮定を明記しなければ意味がないのだが, [2, 4] による証明は, 以下の議論のために十分である.
12 以下の議論に用いられる Gaussian covariance の interpolation は positive definite でないので, この小節の polymer 表現を
そのままの形で使うことはできない.
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そして

Z(s) =
∫
e−VΛ(φ)dµCs(φ) (3.9)

とおく. ここで

b ⊂/ Λ ⇒ Z(s) は sb によらない (3.10)

そこで,はじめから Λの中の cellの pairだけを集めてP(Λ)とし, interpolating parameterを s = (sb)b∈P(Λ)

とする. [その他の sb は 0 とする.]
各 b ∈ P(Λ) に対し,

ObZ(s) = Z(s)|sb=0 (3.11)

DbZ(s) = Z(s)|sb=1 − Z(s)|sb=0 (3.12)

=
∫ 1

0

∂sb
Z(s)dsb (3.13)

とおくと,

ZΛ =
∏

b∈P(Λ)

(Ob +Db)Z(s) (3.14)

=
∑
Y⊂P

(∏
b∈Y

Db

)( ∏
b∈Yc

Ob

)
Z(s) (3.15)

と表せる.
b = {�,�′} とする. sb に関する微分に Theorem 3.1 を使って

∂sb

∫
dµCs(φ)F (φ)e−VΛ(φ) (3.16)

=
∫
dµCs(φ)

∫
Λ

dx

∫
Λ

dy
∂

∂φ(x)
∂sb

Cs(x, y)
∂

∂φ(y)
F (φ)e−VΛ(φ) (3.17)

=
∫
dµCs(φ)

∫
�

dx

∫
�′
dy

∂

∂φ(x)
C(x, y)

∂

∂φ(y)
F (φ)e−VΛ(φ) (3.18)

=
∫
dµCs(φ)

∂

∂φ�

C
∂

∂φ�′
F (φ)e−VΛ(φ) (3.19)

ただし

∂

∂φ�

C
∂

∂φ�′
=

∫
�

dx

∫
�′
dy

∂

∂φ(x)
C(x, y)

∂

∂φ(y)
(3.20)

である. このように, cell �,�′ が covariance C によってつながれるので, (3.15)の Y に含まれる元が cell
を pairwise につなぐと見て, Y の元全体によってつながった cell 集団の connected component を取り出
す. Y ⊂ Λ を cell の集合として

A(Y ) =
∑

B connects Y

∫
[0,1]B

ds

∫
dµCs(φ)XBe−VY (φ) (3.21)

XB =
∏

{�,�′}∈B

∂

∂φ�

C
∂

∂φ�′
(3.22)

とおくと,

ZΛ =
∞∑
q=1

∑
Y1,Y2,···,Yq

1
q!

q∏
k=1

A(Yk), (3.23)

となる. ただし, Y1, Y2, · · · , Yq に関する和は, 条件
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• k 
= k′ ならば, Yk, Yk′ は内点を共有しない

• Polymer は Λ を埋め尽くす: ∪qk=1Yk = Λ

を満たす範囲にわたる. |Λ| <∞ だから, この和は有限和である.
(3.23)を, “polymer” Yk が hard core interaction のもとで領域 Λ 内に共存している系についての統計和

と見て, polymer 表現 という13 .

3.2 Cluster 展開

Section 3.1で導入された interpolation Cs は positive definite でないので, 上記の polymer 表現を構成
論において直ちに使うことはできない. また Section 3.1の手続きでは, polymer を形成する cell を結び付
ける bond が loop を作ることがあるので, 展開に無駄があると言える. 以下において, これらの点を改良し
た polymer 表現を導入する.
前小節同様, momentum space での UV cutoff M を固定し, Gaussian covariance CM を C, partition

function ZΛ,M を ZΛ と書く.

Partition function の cluster 展開

� Step 1 � 便宜のために,

Z̃Λ =
ZΛ∏

�⊂Λ

Z�

=
ZΛ

Z
|Λ|
�

(3.24)

とおく. Λ の中の � を整列させ番号をつける.

�1,�2, · · · ,�|Λ| (3.25)

そして �1 = �1 として

Cs1 = s1C + (1 − s1) (�1C�1 + �′
1C�′

1) (3.26)

= �1C�1 + �′
1C�′

1 + s1 (�1C�′
1 + �′

1C�1) (3.27)

とおく. ただし

�′
1 = 1 − �1 (3.28)

である. すると

ZΛ =
∫
dµCs1

(φ)e−VΛ(φ)

∣∣∣∣
s1=1

(3.29)

=
∫
dµCs1

(φ)e−VΛ(φ)

∣∣∣∣
s1=0

+
∫ 1

0

ds1
d

ds1

∫
dµCs1

(φ)e−VΛ(φ) (3.30)

よって

Z̃Λ = Z̃�′
1
+
∑

�2 �=�1

Z̃�1�2
Λ (3.31)

13 さらに, (3.24) で定義される Z̃Λ を考えると, polymer が Λ を埋め尽くす条件 ∪q
k=1

Yk = Λ が除外される. (3.43) の polymer

表現は, この形である.
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と書ける. ここに

Z̃�1�2
Λ =

1

Z
|Λ|
�

∫ 1

0

ds1

∫
dµCs1

(φ)
∂

∂φ�1

C
∂

∂φ�2

e−VΛ(φ) (3.32)

∂

∂φ�1

C
∂

∂φ�2

=
∫

�1

dx

∫
�2

dy
∂

∂φ(x)
C(x, y)

∂

∂φ(y)
(3.33)

である [Theorem 3.1参照].

� Step 2 � (3.31)の第１項において, Λ \�1 から �2 を decouple する parameter を導入することによ
り, Step 1 と同様に進むことができる. 一方, (3.31)の第２項においては, �12 = �1 ∪ �2 と �′

12 = Λ \ �12

を decouple する parameter s2 を用いて

Cs1s2 = s2Cs1 + (1 − s2)(�12Cs1�12 + �′
12Cs1�

′
12) (3.34)

とおくと

Z̃�1�2
Λ = Z̃�1�2

�12
Z̃�′

12
+

∑
�3 �=�1,�2

(Z̃(�1�2)(�1�3)
Λ + Z̃

(�1�2)(�2�3)
Λ ) (3.35)

と書ける. ここに

Z̃
(�1�2)(�1�3)
Λ =

1

Z
|Λ|
�

∫
ds

∫
dµCs1s2

(φ)
∂

∂φ�1

C
∂

∂φ�2

∂

∂φ�1

Cs1
∂

∂φ�3

e−VΛ(φ) (3.36)

Z̃
(�1�2)(�2�3)
Λ =

1

Z
|Λ|
�

∫
ds

∫
dµCs1s2

(φ)
∂

∂φ�1

C
∂

∂φ�2

∂

∂φ�2

Cs1
∂

∂φ�3

e−VΛ(φ) (3.37)

∫
ds =

∫ 1

0

ds1

∫ 1

0

ds2 (3.38)

である.

� Step 3 � 上記の手続きを繰り返すことにより,

Z̃τY , Y ⊂ Λ, τ : rooted ordered tree on Y (3.39)

が定義される. ただし

• Y は Λ の中の cell の (空でない)和集合

• rooted ordered tree on Y とは
(1) Y の中の cell を頂点とする tree であり
(2) root と呼ばれる特別の頂点をもち
(3) bond 全体が番号づけられており
(4)その番号は, root からの距離と consistent であるもの

• Z̃τY は次式で定義される.

Z̃τY =
1

Z
|Y |
�

∫
dsMτ (s)

∫
dµCs(φ)Xτ e−VY (φ) (3.40)

ここに, Mτ (s) は s1, s2, · · · の単項式, Cs は tree τ が定める順序に従って decoupling parameters s
を導入した covariance, そして

Xτ =
∏

(�a,�b)∈τ

∂

∂φ�a

C
∂

∂φ�b

(3.41)

である.
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そこで

A(Y ) =
∑

τ :rooted ordered tree on Y

Z̃τY (3.42)

とおくと,

Z̃Λ = 1 +
∞∑
q=1

∑
Y1,Y2,···,Yq

1
q!

q∏
k=1

A(Yk), (3.43)

が成り立つ. ただし, Y1, Y2, · · · , Yq に関する和は

• Yk ⊂ Λ, k = 1, 2, · · · , q

• |Yk| ≥ 2, k = 1, 2, · · · , q

• k 
= k′ ならば, Yk, Yk′ は内点を共有しない

の範囲にわたる. |Λ| <∞ だから, この和は有限和である. これを cluster expansion という.

Unnormalized Schwinger function の cluster 展開

Unnormalized Schwinger function

S̃Λ,N (z1, z2, · · · , zN ) =
1

Z
|Λ|
�

∫ N∏
i=1

φ(zi)e−VΛ(φ)dµC(φ) (3.44)

に対しても上記と同様の展開

S̃Λ,N (z1, z2, · · · , zN) =
∞∑
q=1

∑
Y1,Y2,···,Yq

1
q!

q∏
k=1

A′(Yk) (3.45)

を得る. ただし,和は

• 各 zi はどれかの Yk に含まれる.

• Yk ⊂ Λ

• |Yk| ≥ 2 if z1, · · · , zN ∈/Yk
• k 
= k′ ならば, Yk, Yk′ は内点を共有しない

の範囲にわたる.

• (3.40) を評価するとき, Z� の lower bound を必要とするが, 明かに

v :=
∫
V�(φ)dµC�(φ) <∞ (3.46)

であるから,

Z� =
∫
e−V�(φ)dµC� (3.47)

≥ exp
(
−
∫
V�(φ)dµC�

)
= e−v (3.48)

が成り立つ.
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3.3 Mayer 展開

重なりを許さない (hard core 条件)和 (3.43) で表された量 Z̃Λ を, 重なりを許す和で表されたある量 W

で書き直すと, Z̃Λ = eW となることを示す [(3.55)参照]. また unnormalized Schwinger function (3.45) に
同様の処理をすると, Z̃Λ が分離され [(3.61)参照], normalized Schwinger function の展開表現が得られる
[(3.62)参照].

Partition function の場合

有限個の polymer の ordered sequence

M = (Y1, · · · , Yq) (3.49)

を configuration と呼び,

A(M) =
1
q!

q∏
k=1

A(Yk) (3.50)

P(M) = {(i, j) | 1 ≤ i < j ≤ q} (3.51)

< Yi, Yj > =

⎧⎨
⎩ 1, 内点を共有する

0, otherwise
(3.52)

とおくと,

Z̃Λ =
∑
M

A(M)
∏

(i,j)∈P(M)

(1− < Yi, Yj >) (3.53)

=
∑
M

A(M)
∑

J⊂P(M)

∏
(i,j)∈J

(− < Yi, Yj >) (3.54)

となる. そして, formal に和を取り直すと [12],

Z̃Λ =
∞∑
n=0

1
n!

(∑
M

T (M)A(M)

)n
(3.55)

T (M) =
∑

J∈C(M)

∏
(i,j)∈J

(− < Yi, Yj >) (3.56)

C(M) = {J ⊂ P(M) | J connects M into a single component} (3.57)

従って

1
|Λ| log Z̃Λ =

1
|Λ|
∑
M

T (M)A(M) (3.58)

を得る. これを Mayer expansion という.

Theorem 3.2. [12][19, P.180] 条件 ∑
Y �0,Y⊂Rd

|A(Y )|e|Y | < 1 (3.59)

のもとで, (3.58) は Λ に関して一様に絶対収束し, Λ → Rd の極限を持つ. また, (3.59) は λ が十分小さ

いとき成立する. �

(3.59) が成立する根拠は, 大まかには次のとおりである.
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• (3.41) において, covariance C が massive decay する

• (3.40) において, Xτ のなかの φ 微分が potential VY (φ) を hit するごとに, small constant λ が出る

• (3.40) において, 0 < e−VY ≤ 1 が成り立つ

Schwinger function の場合

Unnormalized Schwinger function (3.45) に対しても, 同様の展開が可能である. この場合, polymer Y に
(activity A′(Y ) に) “external variable” φ(zj) が含まれるので, 若干の修正が必要である. configuration
M = (Y1, · · · , Yq) に対し, Y1, · · · , Yq に含まれる external variable 全体を ζ = {z1, · · · , zN} とするとき, M

を ζ-configuration と呼ぶことにする. このとき

STΛ,N (ζ) =
∑

M:ζ−configuration
T (M)A′(M) (3.60)

とおくと, formal には S̃Λ,N は factorize して

S̃Λ,N (ζ) = Z̃Λ

∑
ζ=∪ζj

∏
j

STΛ,N (ζj) (3.61)

即ち

SΛ,N (ζ) =
∑
ζ=∪ζj

∏
j

STΛ,N (ζj) (3.62)

を得る [12].

Theorem 3.3. [19, P.194] λ が十分小さいとき, (3.60),(3.62)は, Λ に関して一様に絶対収束する. 従って

SN (z1, · · · , zN) = lim
Λ→Rd

SΛ,N (z1, · · · , zN) (3.63)

が存在する. �

3.4 Reflection positivity

lattice regularization (2.23)-(2.25) を次のように書く.

< F (φ) >Λ,ε =
1

ZΛ,ε

∫
dν(φ)F (φ) exp(φJφ) (3.64)

ZΛ,ε =
∫
dν(φ) exp(φJφ) (3.65)

φJφ =
∑
x,y

Jxyφ(x)φ(y) (3.66)

Jxy =

⎧⎨
⎩ ε−2 |x− y| = ε, x, y ∈ Λ

0 otherwise
(3.67)

dνΛ(φ) =
∏
x∈Λ

dν(φ(x)) (3.68)

dν(φ(x)) = exp
(−λεdφ(x)4 − εd(2dε−2 +m2)φ(x)2

)
dφ(x) (3.69)
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Theorem 3.4. 領域 Λ が

(1)平面 x1 = 0 に関して対称であるとき,
(2)平面 x1 = ε/2 に関して対称であるとき,

それぞれ, lattice φ4 model (2.23)-(2.25)は, これらの平面に関する反転 θ について reflection positive で
ある. �

Proof. (1) Λ 上の積分変数を３グループに分けて∫
dν0(φ) =

∏
x1=0

dν(φ(x)) (3.70)

∫
dν+(φ) =

∏
x1>0

dν(φ(x)) (3.71)

∫
dν−(φ) =

∏
x1<0

dν(φ(x)) (3.72)

φJ0φ =
∑

x1=y1=0

φ(x)Jxyφ(y) (3.73)

φJ+φ =
∑

x1>0 or y1>0

φ(x)Jxyφ(y) (3.74)

φJ−φ =
∑

x1<0 or y1<0

φ(x)Jxyφ(y) (3.75)

とおく. F (φ) は φ(x), x1 ≥ 0 のみに依存するとすると, (3.64) より

< F (φ)θF (φ) >Λ,ε =
1

ZΛ,ε

∫
dν0(φ)

∫
dν+(φ)

∫
dν−(φ) exp(φJφ)F (φ)θF (φ) (3.76)

=
1

ZΛ,ε

∫
dν0(φ) exp(φJ0φ)

(∫
dν+(φ) exp(φJ+φ)F (φ)

)2

(3.77)

≥ 0 (3.78)

が成り立つ. (2) も同様. �

平面 x1 = ε/2 について Λ が対称であるとして, Λ+ = Λ ∩ {x1 > ε/2} とおく. Λ+ 上の変数にのみ依存

する関数 F (φ),G(φ) に対し, Schwarz の不等式

| < FθG >Λ,ε | ≤< FθF >
1/2
Λ,ε< GθG >

1/2
Λ,ε (3.79)

が成り立つ. そこで x ∈ Λ+ に対し y = θx とおくと,

| < f(φ(x))g(φ(y)) >Λ,ε | ≤ < f(φ(x))f(φ(y)) >1/2
Λ,ε< g(φ(x))g(φ(y)) >1/2

Λ,ε (3.80)

を得る.
さて, 領域 Λ が座標平面に平行な面をもつ直方体であるとする. このとき, 周期境界条件を課して, Λ を

torusと見なすと14 ,座標平面に平行な平面が格子点の中点を通るとき,その平面について reflection positive
となる. そこで (3.80) を繰り返し用いると, 次の chessboard bound を得る.

Theorem 3.5. [21] 直方体 Λ に周期境界条件を課す. 各 x ∈ Λ に対し Fx(t) を t の多項式とするとき,

| <
∏
x

Fx(φ(x)) >Λ,ε | ≤
∏
x

| <
∏
y

Fx(φ(y)) >Λ,ε |1/|Λ| (3.81)

が成り立つ. �

14 Λ の端同士をつなぐことに対応して, J の修正を要する.
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α = (αx) に対し,

φα =
∏
x

φ(x)αx (3.82)

と書く. Schwinger function < φα >Λ,ε に (3.81) を用いると,

| < φα >Λ,ε | ≤
∏
x

| <
∏
y

φ(y)αx >Λ,ε |1/|Λ| (3.83)

となるが, 右辺の x に関する積因子は, 有限個の x を除いて 1 である. 従って <
∏
y φ(y)a >Λ,ε を評価す

ればよいが,

−φ(x)2 − φ(y)2 ≤ 2φ(x)φ(y) ≤ φ(x)2 + φ(y)2 (3.84)

を用いると, 積分が decouple して

| <
∏
y

φ(y)a >Λ,ε | ≤ const.|Λ| (3.85)

を得る. 以上により

Theorem 3.6. 直方体 Λ に周期境界条件を課すと, Schwinger function < φα >Λ,ε は, Λ に関して一様
に有界である15 . �

3.5 Correlation inequality

強磁性相互作用に関する相関不等式 [Griffiths の不等式] を準備する.

Theorem 3.7. φ↔ −φ に関して対称な R 上の measure dν の有限直積に関する積分

< F (φ) >J =
1
ZJ

∫ ∏
x

dν(φ(x))F(φ) exp(
∑
α

Jαφ
α) (3.86)

ZJ =
∫ ∏

x

dν(φ(x)) exp(
∑
α

Jαφ
α) (3.87)

を考える. ただし,

∀α Jα ≥ 0 (3.88)

∀β
∫ ∏

x

dν(φ(x))|φβ | exp(
∑
α

|Jαφα|) <∞ (3.89)

とする. このとき

< φα >J ≥ 0 (3.90)

< φαφβ >J − < φα >J< φβ >J ≥ 0 (3.91)
∂

∂Jα
< φβ >J ≥ 0 (3.92)

が成り立つ. �

15 従って, Λ → Zd で収束する部分列が存在する. この部分列は全ての Schwinger function に対して共通に取れる. 一意的な極限
を得るには, 次節の correlation inequality が必要である.
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Proof. (3.90) は exp の展開による.
(3.91) は, φ の 独立な copy を φ′ として,

< φαφβ >J − < φα >J< φβ >J=< φα(φβ − φ′β) >J (3.93)

と書き, さらに φ = ξ + η, φ′ = ξ − η と置いて, ξ, η に対して, (3.90)を用いる.
(3.92)は (3.91)による. �

不等式 (3.92)を (3.64)に適用する.

Theorem 3.8. Schwinger function < φα >Λ,ε は, free boundary condition のもとで Λ に関して単調増
加であり, infinite volume limit が存在する. �

Proof. 領域 Λ を広げることは, (3.67)の Jxy を増加させることを意味するので, 前半が成立する. また, free
boundary condition を periodic boundary condition に換えると Jxy が増加するので, Schwinger function
も増加する. しかるに, Schwinger function は, Λ に関して一様な bound を持つから, 後半が成立する. �

4 φ4
2 の構成

Momentum cutoff された 2 次元 φ4 model の UV limit は, 比較的容易にとることができる. その後
で, cluster/Mayer 展開して IR limit (infinite volume limit) をとれば, Schwinger function が構成できる.
Lattice cutoff に基づく construction については, [7]を参照されたい.

4.1 Renormalization

Feynman graph

CM を UV cutoff された Gaussian covariance (2.15)とし, Gauss 積分を

< F (φ) >CM =
∫
dµCMF (φ) (4.1)

と書く.
一般に field の積の Gauss 積分は,

<

2N∏
k=1

φ(xk) >CM =
∑

pairing

CM (xk1 , xk2) · · ·CM (xk2N−1 , xk2N ) (4.2)

のように, pairwise contraction の和となる. 従って, unnormalized Schwinger function

S̃M,Λ,n(x1, · · · , xn) =
∫
dµCM

n∏
k=1

φ(xk)e−VΛ(φ) (4.3)

= <

n∏
k=1

φ(xk)e−VΛ(φ) >CM (4.4)

を次のように形式的に項別積分すると,

<

n∏
k=1

φ(xk)e−VΛ(φ) >CM ⇒
∞∑
j=0

(−1)j

j!
< V jΛ

n∏
k=1

φ(xk) >CM (4.5)

j 次の項は, 次のような graph G (Feynman graph) に関する和となる.
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(1) n 個の 外線 をもつ
(2) j 個の 内点 をもつ
(3)各内点は, 4 本の 線 をもつ

Graph G に対応する積分値を G の amplitude と呼ぶ.
例えば n = 2 とすると, 次のような項が出る:

j = 0から = CM (x1, x2) (4.6)

j = 1から λ ��
��

� = λ

∫
R2

dyCM (x1, y)CM (y, y)CM (y, x2) (4.7)

j = 2から λ2

��
��� � = λ2

∫
R2

dy

∫
Rd

dzCM (x1, y)CM (y, z)3CM (z, x2) (4.8)

n = 4 とすると, j = 2 から

λ2

��
��� ���

��
��
��

= λ2

∫
R2

dy

∫
R2

CM (x1, y)CM (x2, y)CM (y, z)2CM (z, x3)CM (z, x4) (4.9)

などが出る.

紫外発散

上記の graph のうち, (4.7)において UV cutoff をはずし M → ∞ とすると, 紫外発散

lim
M→∞

CM (y, y) = ∞ (4.10)

が生ずる [(2.6)参照]. 従って, (4.3) の単純な UV limit M → ∞ は存在しないだろう. そこで counterterm
を導入してこの種の紫外発散を打ち消す. そのための countertermは,以下に述べるWick productによっ
て作られる. また, 2次元の Gauss covarianceの singularityは, (2.6)のように対数的であるから, (4.8)(4.9)
は収束し,

• 紫外発散する graph は, (4.7) のように CM (y, y) を含むものに限る.

Wick product

Jointly Gaussian variables φj , j = 1, 2, · · · , k が生成する多項式全体をその中に移す線形写像 F (φ) �→
: F (φ) : で,

: 1 : = 1 (4.11)
∂

∂φj
: φα : = :

∂

∂φj
φα : (4.12)

<: φα :> = 0, |α| > 0 (4.13)

を満たすものを Wick product という. ここに, < > は Gaussian expectation であり,

φα =
∏
j

φj
αj (4.14)

|α| =
∑
j

αj (4.15)

である.
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特に (4.1) の Gaussian の場合

: φ(x) : = φ(x) (4.16)

: φ2(x) : = φ2(x) − CM (0) (4.17)

: φ4(x) : = φ4(x) − 6CM (0)φ2(x) + 3CM (0)2 (4.18)

: φn(x) : = φ(x) : φn−1(x) : −(n− 1)CM (0) : φn−2(x) :, n ≥ 2 (4.19)

Wick product の Gauss 積分

Wick product を含む Gauss 積分では, 特別の打ち消しが起きる.

Theorem 4.1. R を field φ の多項式とすると

<: φ(x)n : R >CM =
∫
R2

dyCM (x, y) <: φ(x)n−1 :
∂

∂φ(y)
R >CM (4.20)

�

Proof. (4.19) により

<: φ(x)n : R >CM = < φ(x) : φ(x)n−1 : R >CM −(n− 1)CM (0) <: φ(x)n−2 : R >CM (4.21)

右辺に, “部分積分” [2, P.208]

< φ(x)F (φ) >CM =
∫
R2

dyCM (x, y) <
∂

∂φ(y)
F (φ) >CM (4.22)

を用いると,

<: φ(x)n : R >CM (4.23)

=
∫
R2

dyCM (x, y) <
∂

∂φ(y)
(
: φ(x)n−1 : R

)
>CM −(n− 1)CM (0) <: φ(x)n−2 : R >CM (4.24)

=
∫
R2

dyCM (x, y) <: φ(x)n−1 :
∂

∂φ(y)
R >CM (4.25)

を得る. �

これは Wick product 内の field 同士が contract されないことを意味する. 例えば:

<: φ4(y1) :: φ4(y2) :>CM = 4!CM (y1 − y2)4 (4.26)

一般に, Wick product の積の Gauss 積分は

• Wick product 内の field 同士を contract しないという制限のもとで

• pairwise contraction 全体にわたる和で表される.

従って, Wick product の積の 2 次元 Gauss 積分 (renormalized Feynman graph) は紫外発散しない.
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Renormalization

Renormalized potential を

VΛ(φ) = λ

∫
Λ

dx : φ(x)4 : (4.27)

で定義する. そして,

< F (φ) >Λ,M =
1

ZΛ,M
< e−VΛF (φ) >CM (4.28)

ZΛ,M = < e−VΛ >CM (4.29)

の UV limit M → ∞, IR limit Λ → R2 を調べる.
Renormalization の結果, (2.18)の VΛ は (4.27)の VΛ に変わるので, 異なるモデルを考えることにした

ように見える. しかし, (4.18)によれば, 両者の違いは φ の２次項と定数項であり,

• 定数は (2.19)の分子分母で cancel し,

• ２次項を付加しても, (2.10), (2.15)において, パラメータ m2 が m2 − 6λCM (0) に変わるだけである.

即ち, 素朴な action (2.10) に含まれる parameter を cutoff M の適当な関数に置き換えることにより, 紫外
発散を吸収しようとしているのである16 .
さらに, λ → 0 で φ4 model は Gaussian measure に漸近すべきであるという見地から, ２点 Schwinger

function S2(x, y) は, λ が小さいとき, (2.7) のように massive decay すると予想される. このときの decay
の速さを表す m は, Gaussian covariance の中の m に近いはずであり, counterterm によって再定義された
parameter そのもの (M に依存して発散する) ではない.
一般に, counterterm を導入して 繰りこみを施した action に含まれる (cutoff dependent な) parameter

を bare 17 , Schwinger functionの振舞いを特徴づける定数を physical (renormalized) 18 と形容するが,

• bare な量 (m2 − 6λCM (0) など)と physical な量 (m2 など)を概念的に区別せよ

という教訓が, 場の理論における自然とその model の間の新たな関係を象徴している19 .
以下便宜のため, φ を Gauss measure µC に従う variable として,

φM (x) = e
�

2M2 φ(x) (4.30)

とおく. このとき, φM は Gauss 分布 µCM に従う. そこで,

VΛ,M (φ) = λ

∫
Λ

dx : φM (x)4 : (4.31)

< F (φM ) >Λ,M =
1

ZΛ,M
< e−VΛ,M (φ)F (φM ) >C (4.32)

ZΛ,M = < e−VΛ,M (φ) >C (4.33)

と置き直す.
16 4 次元では, (5.15) のように, : (∂φ)2 : 型の counterterm を入れる必要があると言われている. 定数 Z を適当に選んで

field φ を Zφ で置き換えると, この counterterm は Gausssian measure に吸収される. これを φ を規格化し直したと見たのが,
renormalization という命名の由来である.
17 人工的 model を書くための parameter
18 実際に観測される物理量に関係する
19 紫外発散を内在的にもつ場の理論は, 自然の基本法則としてふさわしくないとする物理学者が多い. 自然が現象する過程を, 自然
というコンピュータが遂行する計算と見たとき, いかな自然と言えども, regularization なしに計算することはできないはずだという
意味であろうか. 自然に内蔵された regularization としては, 素粒子の弦構造や時空の泡の描像が考えられているが, このような UV
cutoff が極めて大きいことを理由に, それを無限大で近似する理論が, 繰りこみ理論であると言える.
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4.2 紫外極限

議論の要点は

• Renormalized Feynman graph (Wick product の積の Gauss 積分) の UV limit

• Partition function の M -independent bound

ZΛ,M < econst.|Λ| (4.34)

である. これを, 関数空間 Lν(S′, µC) 上の functional analysis として考える.

Renormalized Feynman graph

関数 w(x) = w(x1, x2, · · · , xr) が

w ∈ Lq(R2r), ∃q > 1 (4.35)

Suppw ⊂ �j1 × �j2 × · · ·�jr (4.36)

を満たすとして,

RM (φ) =
∫
R2r

dx

r∏
i=1

: φM (xi)ni : w(x) (4.37)

とおく.

Theorem 4.2. [4] ∀ν ≥ 1 に対し

R = lim
M→∞

RM in Lν(S′, µC) (4.38)

なる R が存在し

‖ R ‖Lν(S′,µC) ≤ KN
∏
�

N�! ‖ w ‖Lq (4.39)

が成り立つ. ただし N� は, R を構成する field φ(xi) のうち cell � に属するものの数であり, N =
∑
N�,

また K は w によらない定数である. �

Momentum space では CM (p) > 0 であるから, 被積分関数は w の Fourier 変換を除いて正値である. よっ
て L1 norm 評価は, 実質的に Feynman graph の計算 [20]と変わる所はない. ν が偶数なら, RνM は RM

と同じ形をしているので, Lν bound は L1 bound に帰着する. ν が偶数でないときは, Hölder の不等式に
より

ν < ν′ =⇒ ‖ R ‖Lν≤‖ R ‖Lν′ (4.40)

が成立することを用いる. また, 一般に φ の N 次式を Gauss 積分すると (N/2)! 個の項が作られるから, R
を単純に評価すると

(
N

2

)
! =

⎛
⎝
∑
�

N�

2

⎞
⎠! (4.41)

が出てしまう. これが, “local factorial”
∏

� N�! に分解するのは, 次の理由による.
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• field が多くの cell に分かれると, 異なる cell に属する field φ(xi), φ(xj) の間の空間的距離 |xi − xj |
が大きくなり, Gaussian covariance の massive decay が効く.

Partition function

Wick product をとる前は, 自明な bound

0 < e
−λ
∫
Λ
φ4 ≤ 1 (4.42)

があったが, Wick product によって導入された counterterm のために, 上記のような uniform bound は壊
れる [M-dependent bound となる]. しかし, Wick product の定義により

< VΛ,M >C = 0 (4.43)

また (4.26) により

< V 2
Λ,M >C < const.λ2|Λ|2 (4.44)

が成立するので [const. は M -independent], effective には, VΛ,M の大きさは λ|Λ| 程度であると考えられ
る. 実際, 次の定理が成り立つ.

Theorem 4.3. [4] Re λ ≥ 0, 1 ≤ ν のとき, 定数 Kν が存在して,

‖ e−VΛ,M ‖Lν(S′,µC)≤ eKν |Λ| (4.45)

が成り立つ. �

Theorem 4.2,Theorem 4.3 から, 次の定理が得られる.

Theorem 4.4. [4] Re λ ≥ 0, ν ≥ 1 のとき, 極限

Re−VΛ = lim
M→∞

RMe
−VΛ,M in Lν(S′, µC) (4.46)

が存在し,

‖ Re−VΛ ‖Lν(S′,µC) ≤ KN
∏
�

N�! ‖ w ‖Lq eK|Λ| (4.47)

が成り立つ. �

4.3 無限体積極限

上記の UV limit の論法と, Section 3.2,Section 3.3の cluster/Mayer 展開を組み合せて, φ4
2 model を構

成する.

(1) Wick product によって renormalization を施した積分 (4.28) に, Section 3.2,Section 3.3 の clus-
ter/Mayer 展開を行う.
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(2) Polymer activity の UV limit を Theorem 4.4 によって評価する. ただし Section 4.2 の C,CM を,
cluster 展開の際に導入される Cs, CM,s で置き換えなければならない.

(3)上記の評価が領域の体積によらないことに注意して, IR limit をとる.

結局, 次の定理が得られる.

Theorem 4.5. φ4
2 model の Schwinger function

Sn(x1, · · · , xn) = lim
Λ→R2

lim
M→∞

< φ(x1) · · ·φ(xn) >Λ,M (4.48)

が, S′(R2n
�= ) の元として存在する. �

5 φ4
3, φ

4
4 の繰りこみ群解析

紫外発散は次元が大きくなると一般に強くなる. 強い紫外発散を含む model の分析には, 繰りこみ群解
析 が適している. 繰りこみ群解析は scale 分解 に基づく解析法の総称であり, multiscale analysis とも呼
ばれている.

5.1 Renormalization

Feynman graph の 紫外発散

d 次元 φ4 model の紫外発散について整理する. n 本の外線と j > 0 個の内点をもつ connected Feynman
graph G に対し

ω(G) = (4 − d)j +
d− 2

2
n− d (5.1)

とおく.

Theorem 5.1. ω(G) ≤ 0 ならば, G の amplitude は発散する. �

Proof. 内線の数 =
4j − n

2
に注意する. Feynman graph の amplitude A(x1, · · · , xn) の Fourier 変換

∫
dx1 · · ·

∫
dxn exp

(
n∑
k=1

ipkxk

)
A(x1, · · · , xn) = δ(

n∑
k=1

pk)Â(p1, · · · , pn) (5.2)

(右辺の δ 関数は, amplitude の平行移動不変性による) の “kernel” Â(p1, · · · , pn) は, 次の Feynman rule

によって計算される.

• 外線に (p2
k +m2)−1 を置く (k = 1, 2, · · · , n).

• 内線に (q2k +m2)−1 を置く (k = 1, 2, · · · , 4j−n
2 ).

• 内点に momentum 保存則を表す δ 関数を置く.

• 内線の momentum qk について Rd で積分する (k = 1, 2, · · · , 4j−n
2 ).
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すると,

• 内線に対応して分母に現れる momentum の次数は 4j − n.

• 保存則の数は j だが, そのうち一つは, 外線 momentum の和に関するもの ((5.2) の右辺の δ) である

から, 独立な積分変数は
4j − n

2
− j + 1 個.

よって, 発散条件は

4j − n ≤ (
4j − n

2
− j + 1)d (5.3)

即ち ω(G) ≤ 0 である. �

定理の逆は成立しない. しかし, G の subgraph の情報を用いると, G の amplitude の収束条件が得られ
る. そこで, G の subgraph (G の線の集合)で connected なもの F に対して, ω(F ) を ω(G) と同様に定義
する. ただし, F を定義する線の端点を F の内点, F の内点から出る G の線のうち F に属さないものを

F の外線とする.

Theorem 5.2. [19, P.65] Graph G の subgraph F で, connected かつ内点をもつものが, すべて

ω(F ) > 0 (5.4)

を満たすならば, G の amplitude は有限である. �

条件 (5.4)を破る危険な subgraph は, 次元ごとに変わる.

２次元の場合

危険な subgraph の条件は

j ≤ 1 (5.5)

である. よって発散する graph は

��
��

� (5.6)

だけであるが, これは Wick product により renormalize できた.

３次元の場合

危険な subgraph の条件は

j +
1
2
n ≤ 3 (5.7)

である. よって発散する graph は

(j, n) = (1, 2) : ��
��

� (5.8)

(j, n) = (2, 2) : ��
��� � (5.9)



5. φ4
3, φ

4
4 の繰りこみ群解析 29

だけである. 前者の発散を除去するための counterterm は, Wick product から来る

κ0

∫
Λ

dxφ(x)2 , κ0 = −6λCM (0) (5.10)

であり, 後者の発散を除去するための counterterm は,

κ

∫
Λ

dxφ(x)2 , κ = 48λ2

∫
Λ

dyCM (x, y)3 (5.11)

である. 結局 φ4
3 の counterterm は

(κ0 + κ)
∫

Λ

dxφ(x)2 (5.12)

potential は (定数差を除いて)

VΛ,M (φ) = λ

∫
Λ

dx : φ(x)4 : +κ
∫

Λ

dx : φ(x)2 : (5.13)

となる.

４次元の場合

n ≤ 4 なる subgraph は全て危険であり, 実際 n = 2, 4 のとき発散する. 従って, 無限個の発散 subgraph に
対応する counterterm が必要になる. それらは

δλ

∫
Λ

dxφ(x)4 + (κ0 + κ)
∫

Λ

dxφ(x)2 + ζ

∫
Λ

dx(∂φ)2(x) (5.14)

のように 2 次と 4 次の項にまとめられるが, 係数を explicit に書くことはできない. これらの係数は,
Section 5.2 の繰りこみ群解析によって定められる. 結局 φ4

4 の potential は, λ′ = λ+ δλ とおいて

VΛ,M (φ) = λ′
∫

Λ

dx : φ(x)4 : +κ′
∫

Λ

dx : φ(x)2 : +ζ
∫

Λ

dx : (∂φ)2(x) : (5.15)

となる.

摂動的繰りこみ可能性 [20]

d > 4 では, 各 n に対して十分大きな j をとると, ω(G) ≤ 0 となる. このように紫外発散が多様化する理
論では, 有限個の counterterm を用いて紫外発散を除去することが不可能になる.
一方, 4 次元以下では, counterterm によって紫外発散が消えるという主張も, 決して自明ではない. λ に

関する形式的展開の各ベキごとに紫外発散が消えるという主張を摂動的繰りこみ可能性 という20 .

次元 摂動的繰りこみ可能性

2, 3, 4 可能

≥ 5 不可能

5 次元以上では, non-trivial な φ4 を構成することはできないことが知られている.
20 摂動的繰りこみ可能性の証明は, 最近に至るまで様々の改良が続けられてきたが, その難しさの一つは, subgraph の複雑さに起
因する. Salam によれば

The difficulty, as in all this work, is to find a notation which is both concise and intelligible to at least two
persons, of whom one may be an author.

とのことである.
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5.2 繰りこみ群

φ4
3 の UV limit は, 繰りこみ群解析によって調べることができる. φ4

4 の UV limit への応用は未解決の難
題であるが, IR 方向の分析においては繰りこみ群解析が成功している. まず, 繰りこみ群の概念を幾分一般
的に提示する.

繰りこみ群の概念

与えられた Gaussian covarinace ((2.15) など)を D とし, それを Gaussian covariance の和

D =
N∑
k=0

Dk (5.16)

に分解する. Dk を covariance とする (互いに独立な) Gaussian variable を φk(x) と書き,

φk,0 =
k∑
j=0

φj , k = 0, 1, 2, · · · , N (5.17)

Dk,0 =
k∑
j=0

Dj , k = 0, 1, 2, · · · , N (5.18)

とおくと, φk,0 は Dk,0 を covariance とする Gaussian variable となる.
すると, 汎関数 H(φ) の µD に関する積分は∫

dµD(φ)H(φ) =
∫
dµDN,0(φN,0)H(φN,0) (5.19)

=
∫
dµDN−1,0(φN−1,0)

∫
dµDN (φN )H(φN + φN−1,0) (5.20)

のように書ける. そこで

Hk−1(φk−1,0) =
∫
dµDk

(φk)Hk(φk + φk−1,0), k = N,N − 1, · · · , 1 (5.21)

HN = H (5.22)

とおく.
Covariance の分解 (5.16) が, 次に述べるような scale 分解に基づいており, φk が各 scale の “ゆらぎ”を

表すとき, recursion (5.21) によって定義される変換を繰りこみ群変換 という.

Gaussian measure の scale 分解の例

Covariance Dk,0 として

Dk,0(x, y) =
∫
Rd

eip(x−y)

p2 +m2
χ(L−kp)dp (5.23)

χ(p) = e−p
2

(5.24)

をとる. そして

Dk(x, y) = Dk,0(x, y) −Dk−1,0(x, y) (5.25)

=
∫
Rd

eip(x−y)

p2 +m2
(χ(L−kp) − χ(L−(k−1)p))dp, k = 1, 2, · · · , N (5.26)

D0(x, y) = D0,0(x, y) (5.27)

=
∫
Rd

eip(x−y)

p2 +m2
χ(p)dp (5.28)
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とおき, 各 φk は, momentum scale Lk 程度 (波長 L−k 程度) のゆらぎを表す Gaussian variable であると
見る.
上記の例は, heat kernel χ(p) による scale 分解であるが, cutoff function χ(p) としては, C∞

0 関数を使う

こともある. また, lattice regularization に即した scale 分解は, Block spin 変換として実現される [14].

Scaling

変換 (5.21)に scale 変換を組み合せると, 繰りこみ群変換の iterationが見やすくなる. L > 1に対し, φk(x)
を scaling して,

ϕk(x) = L−k(d−2)/2φk(L−kx) (5.29)

とおく. このとき, ϕk(x) の covariance は

Ck(x, y) = L−k(d−2)Dk(L−kx,L−ky) (5.30)

となる. 例えば (5.26) の場合なら,

Ck(x, y) =
∫
Rd

eip(x−y)

p2 + (m/Lk)2
(χ(p) − χ(Lp))dp (5.31)

となり, Ck は殆ど k に依存せず, ゆらぎ ϕk の特徴的な長さは k によらず O(1) である.
さらに,

ϕk,0(x) = L−k(d−2)/2φk,0(L−kx) (5.32)

Ck,0(x, y) = L−k(d−2)Dk,0(L−kx,L−ky) (5.33)

とおくと,

ϕk,0(x) = ϕk(x) + L−(d−2)/2ϕk−1,0(L−1x) (5.34)

Ck,0(x, y) = Ck(x, y) + L−(d−2)Ck−1,0(L−1x,L−1y) (5.35)

が成り立つ. よって,

Hk(φk,0) = Hk(ϕk,0) (5.36)

で定義される Hk は,∫
dµD(φ)H(φ) =

∫
dµDk,0(φk,0)Hk(φk,0) (5.37)

=
∫
dµCk,0(ϕk,0)Hk(ϕk,0) (5.38)

Hk−1(ϕk−1,0) =
∫
dµCk

(ϕk)Hk(ϕk(·) + L−(d−2)/2ϕk−1,0(L−1·)) (5.39)

を満たす. 即ち, Hk−1 は, Hk を fluctuation ϕk に関して積分し, その結果を scaling したものである.
また初期値 HN を

HN(ϕ) = exp(−VN (ϕ)) (5.40)

と書くとき, φ4
3 の場合

VN (ϕ) =
∫
LNΛ

dx
(
L−Nλ : ϕ(x)4 : +L−2Nκ : ϕ(x)2 :

)
(5.41)
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φ4
4 の場合

VN (ϕ) =
∫
LNΛ

dx
(
λ′ : ϕ(x)4 : +L−2Nκ′ : ϕ(x)2 : +ζ : ∂ϕ(x)2 :

)
(5.42)

となる21 .

繰りこみ群の描像

UV cutoff や scale 分解の具体的な形によらず, 繰りこみ群変換 (5.21)は,

high momentum または短波長のゆらぎを “繰りこむ”ことにより, low momentum または長波
長のゆらぎに関するmarginal distribution を得る手続きである

と言える. さらに, scale 変換を組み合せた繰りこみ群変換 (5.39)は

系 Hk を縮小することによって生じた細かい構造を繰りこんで, もとの系と同程度に細かい構
造をもつ系 Hk−1 を得る, 一種の縮小変換である

と考えられる.

5.3 繰りこみ群の実現

一般に, 繰りこみ群の flow の厳密な解析は, 極めて複雑である. 繰りこみ群解析には, いくつかの for-
mulation が知られているが, 最近, Brydges group による大変読み易い定式化が発表されたので, 彼等の
formulation に即して, 繰りこみ群解析の概略を解説する [13].

Polymer 表現

まず IR cutoff を導入し, 領域を有界領域 Λ に限っておく. φ = φN,0 を Λ 上の field とすれば, φk,0 の
scaling ϕk,0 は LkΛ 上の field となる.
繰りこみ群の k step 目 Hk(ϕ) を, “polymer 展開”

Hk(ϕ) =
∑

{Xi}:
∑

i
Xi=LkΛ

∏
i

A(Xi, ϕ) (5.43)

の形に表したい. ただし,

• “polymer” Xi は LkΛ 中の cell の和集合

• {Xi} に関する和は, LkΛ を disjoint polymer に分解する方法の全体にわたる.

• “polymer activity” A(X,ϕ) は, ϕ|X に依存する.

そして,

• Hk(ϕ) が (5.43)のように表せることを inductive に示しながら,

• A(X,ϕ) に対する評価を導いて行く

という方法をとる. ここで A(X,ϕ) に対する評価は,

21 上記の Wick product は, (φ ではなく) ϕ の covariance を用いて定義されることに注意. 結果的に, : φ4 := L2N(d−2) : ϕ4 :
が成り立つ.
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(1) X の shortest spanning tree 22 の長さ L(X) に関する decay
(2) ϕ に関する増大度

を測る適当な norm によって表現する.

Local potential

実際には, polymer activity を次のように表す.

A(X,ϕ) = �(X)e−V (X,ϕ) +K(X,ϕ) (5.44)

ただし,

�(X) =

⎧⎨
⎩ 1 X = cell

0 otherwise
(5.45)

V は “local potential”, 即ち

V (X,ϕ) =
∫
X

Q(ϕ(x))dx, Q :多項式 (5.46)

なる形を持つ functional で, K は local potential からのずれを与える. このとき

∑
{Xi}:

∑
i
Xi=LkΛ

∏
i

(�(Xi)e−V (Xi,ϕ) +K(Xi, ϕ))

=
∑

{Xi}:
∑

i
Xi⊂LkΛ

exp (−V (LkΛ \
∑
i

Xi, ϕ))
∏
i

K(Xi, ϕ) (5.47)

となる. ただし右辺の {Xi} に関する和は, 領域 LkΛ 内の (空でない) disjoint polymer の 集合全体 (空集
合を許す)にわたる. 特に (5.47) において K = 0 とすれば,

∑
{Xi}:

∑
i
Xi=LkΛ

∏
i

�(Xi)e−V (Xi,ϕ) = exp (−V (LkΛ, ϕ)) (5.48)

となるので, 初期値 HN は, (5.41), (5.42) で与えられる local potential を用いて, (5.43), (5.44) の形に書
ける.

繰りこみ群変換の構成

繰りこみ群変換は, polymer activity A ≡ (V,K) を, 新しい A′ ≡ (V ′,K ′) に対応させる規則であり, 次の
３段階を経て定義される23 .

(1) Fluctuation: (5.43) を (5.39) のように µCk
で積分し, その結果を再び (5.43) の右辺の形に書く.

(2) Extraction: 新しい K の中に含まれる有害な成分を抜き出して V に移す. V の中の countertermが,
この有害な成分を逐次打ち消すはずである. φ4

4 では, 有害成分を打ち消すという原理で, counterterm
を決定する.

(3) Scaling: Scale 変換することにより, iteration に備える.

22 X を構成する cell の中心を頂点とする connected tree graph のうち, 最も短いもの
23 厳密に評価するには根性がいる.
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5.4 繰りこみ群の flow

初期値 AN = (VN ,KN) に繰りこみ群変換を繰り返し施し, その flow (Vk,Kk), k = N,N − 1, N − 2, · · ·
を追跡する. そのために, Vk を具体的に求め, Kk に対する評価を導く. Flow の本質的な情報は Vk 部分に

含まれ, 残りの情報が Kk にまとめられる.
現在の繰りこみ群解析には, 次の２つの技術的な (あるいは本質的な?)制約がある.

(1) Vk 部分は有限自由度であること (polynomial interaction)
(2) Coupling constant (Vk を定義する多項式の係数 λ) が小さいこと (asymptotically free)

Asymptotically free であるかどうかは, 次元と flow の方向 (UV / IR) に依存する (以下の解説を参照).
φ4 model の繰りこみ群解析適応性の現状をまとめておく.

次元 繰りこみ群解析適応性

2 不適

3 UV 方向に適

4 IR 方向に適

≥ 5 IR 方向に適

2次元では, 全ての次数の項に注意を払わなければならないので, Vk が多項式にならない. 従って (1)に
反しており, 現在の繰りこみ群解析は適さない. しかし, 各項の係数は UV 方向において極めて小さいから,
(2) の制約に違反してはいない24 .

3 次元 (UV 方向)

繰りこみ群変換の初期値 AN = (VN ,KN) は,

VN (X,ϕ) =
∫
X

dx
(
L−Nλ : ϕ(x)4 : +L−2Nκ : ϕ(x)2 :

)
(5.49)

KN = 0 (5.50)

である. これに繰りこみ群変換を繰り返し施し, その flow (Vk,Kk) を追跡する. このとき Vk を具体的に求

め, Kk に対する評価を導く. L−kλ が小さい間は iterate できて,

Vk(X,ϕ) =
∫
X

dx
(
λk : ϕ(x)4 : +κk : ϕ(x)2 :

)
(5.51)

λk = L−kλ (5.52)

κk = L−2kλ2 + O(λ3) (5.53)

となる.
従って, λ を十分小さく固定しておけば, k = 0 まで flow を追跡できる. さて, k = 0 に固定して, 出発点

N を ∞ に持って行くのが UV limit であるが, λ を十分小さく選べば, UV limit が存在することになる.

3 次元 (IR 方向)—未解決

Massive model(m > 0) の IR limit は cluster 展開で調べられるが, massless model(m = 0) に cluster 展
開は使えない. このような model に繰りこみ群解析を応用して, 臨界現象の統計力学を作るというのが,
Wilson, Kadanoff の本来の発想であった.
24 (1) の制約は技術的に克服できる可能性もある. しかし (2) の制約は, より深刻である (Section 5.5 参照).
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Massless m = 0 の場合, k = 0 を越えて k < 0 の方向 (IR 方向) に進むと, λk = L−kλ が大きくなる
ので, 上記の繰りこみ群解析は間もなく続けられなくなる. しかし繰りこみ群の flow は, 次第に nontrivial
fixed point に漸近するだろうと予想されている.

4 次元 (UV 方向)—未解決

φ4
4 の場合, λ を小さく選ぶと, coupling constant λk は, 次の recursion に従う.

λN = λ (5.54)

λk−1 = λk − cλ2
k + O(λ3

k) (5.55)

ただし, c > 0 である. よって,

λk ∼ λ

N − k
, k � N (5.56)

となる. k を固定して N → ∞ とすると, coupling constant λk は 0 に収束する. 即ち, λ を小さい値に選
んだときの UV limit は, Gaussian である. これを weak triviality という.
λ が小さくない場合については, lattice regularization を用いて, triviality を示唆する幾つかの結果が得

られているが, 完全な解決には至っていない [8, P.389].

4 次元 (IR 方向)

Massless m = 0 の場合, N = 0 を出発点として k → −∞ の方向に繰りこみ群解析を進めることができる.
この場合の coupling constant の flow は

λ−j ∼ λ

j
, j � 1 (5.57)

となり, IR 方向に asymptotically free である. この model (IRφ4
4) は, 繰りこみ群解析の代表的な応用例と

して, よく知られている.

5.5 繰りこみ群の歴史

繰りこみ群の歴史は, 概ね次の４期に分けることができる.

• 発見の時代 1940 ∼

– 摂動的繰りこみ可能性

• 定式化の時代 1960 ∼

– 縮小変換の描像

– 臨界現象の統計力学

• 厳密化の時代 1980 ∼

– 近 Gauss 測度 (asymptotically free theory) の厳密構成

• 成熟期 2000 ∼ ??

– 遠 Gauss 測度 (large coupling problem)
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– QED の (非)存在

– quark 閉じ込めの証明

現在は、“厳密化の時代”の後期に当ると思われる. これに関連して, 服部哲弥氏の予想を引用する [23].

私は，今の解析学および理論物理学は 1900年を中心にした革命期の後の洗練期に入ったと思っ
ています．次の革命期は今から 50年後，仮に 2041年としましょう，を中心にした時期だと思
います．· · · 私の思う 2041年の解析学および理論物理学の革命とは，20世紀の言葉で近似的に
言えば無限自由度系の解析であり，さらに 20世紀で言うくりこみ群の 21世紀における姿が今
の微積分学のような基礎技術になるということです．

6 Fermion

Section 2.4 の OS4 は, Schwinger function の対称性を要求している. 即ち, φ4 model が記述する粒子は
boson である. これから扱う fermion の量子論は, 反対称 Schwinger function をもち, 同一点に２つ以上の
粒子が存在できないとする Pauli 原理を満たす. 前節までの bosonic integral に対する fermionic integral
は, Grassmann variable を用いて定義される25 . また, この section で導入する gauge 場は外場として fix
されるが, 次の section で量子化されて functional integral の対象となる. 以後すべて torus Td = (R/Z)d

上で考える.

6.1 Grassmann 積分

Grassmann variable [20, P.439]

反交換関係

ψiψj + ψjψi = 0 (6.1)

ψ̄iψ̄j + ψ̄jψ̄i = 0 (6.2)

ψiψ̄j + ψ̄jψi = 0 (6.3)

を満たす有限個の variable ψi, ψ̄i, i = 1, 2, · · · , N が生成する C 上の Grassmann algebra G を考える.
Grassmann variable の formal power series は, 有限で切れる. 例えば

exp(ψ̄1ψ1) = 1 + ψ̄1ψ1 (6.4)

である.
G 上の線形写像 I : G → C で

I(F ) = 0 , F : polynomial of order < 2N (6.5)

I(ψ̄1ψ1ψ̄2ψ2 · · · ψ̄NψN ) = 1 (6.6)

なるものを, Grassmann integral と言い,

I(F ) =
∫
dψdψ̄F =

∫
dψ1dψ̄1dψ2dψ̄2 · · · dψNdψ̄NF , F ∈ G (6.7)

と書く.
25 Fermion の量子論を Euclidean framework から relativistic framework に翻訳する手続きは, [5] が与えている.
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Grassmann Gaussian integral

N ×N 正則行列 A = (Aij) に対し,

(ψ̄, Aψ) =
∑
ij

ψ̄iAijψj (6.8)

とおくと, ∫
dψdψ̄ e−(ψ̄,Aψ) = (−1)NdetA (6.9)∫

dψdψ̄ ψiψ̄je
−(ψ̄,Aψ) = (−1)NA−1

ij detA (6.10)∫
dψdψ̄ ψiψ̄jψkψ̄�e

−(ψ̄,Aψ) = (−1)N(A−1
ij A

−1
k� −A−1

i� A
−1
jk ) (6.11)

などが成り立つ.

6.2 Fermion の量子化

Euclidean Dirac operator [17]

簡単のため gauge group は U(1) とし, L2(Td) に act する26 Euclidean free Dirac operator を ∂/ と書く:

∂/ =
d∑

µ=1

γµ∂µ (6.12)

ただし, γµ は Euclidean Dirac matrix

γµγν + γνγµ = −2δµν (6.13)

γ∗µ = −γµ (6.14)

であり, 2[d/2] × 2[d/2] matrix として表現される. 表現空間 C2[d/2]
の要素を spinor という.

Gauge 化

Gauge potential Aµ(·), µ = 1, 2, · · · , d, をもつ covariant Dirac operator を

∂/A =
d∑

µ=1

γµ(∂µ − igAµ) (6.15)

= ∂/− igA/ (6.16)

と書く. ただし, g は実数の定数で, fermion の “電荷” を表す. また Aµ を掛け算作用素と見なしている. こ
の section では, これ以降

Aµ ∈ C∞(Td) (6.17)

を仮定する. よく知られているように, ∂/A は gauge 不変である. 即ち, U(θ)u(x) = eiθ(x)u(x) で U(θ) を
定めるとき,

U(−θ)∂/A+∂θU(θ) = ∂/A (6.18)
26 簡単のため, trivial bundle の section を考える.
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が成り立つ.

Quantization

Bosonic path integral (1.1) に対する fermionic path integral を, まず formal な Grassmann 積分として,
次のように書く.

� F �A =
1

det(i∂/+mI)

∫
dψdψ̄e−(ψ̄,(i∂/A+mI)ψ)F (ψ̄, ψ) (6.19)

ただし, m > 0 は fermion の mass で,

dψdψ̄ =
∏
x∈Td

2[d/2]∏
a=1

dψa(x)dψ̄a(x), (a は spinor の subscript) (6.20)

(ψ̄, (i∂/A +mI)ψ) =
∫
Td

dx

2[d/2]∑
a,b=1

ψ̄a(x)(i(∂/A)ab +mδab)ψb(x) (6.21)

である.
ここで

S = (i∂/+mI)−1 (6.22)

SA = (i∂/A +mI)−1 (6.23)

とおくと,

� F �A = detS
∫
dψdψ̄e−(ψ̄,(S−1+gA/)ψ)F (ψ̄, ψ) (6.24)

特に F = 1 とすると,

� 1 �A = detS
∫
dψdψ̄e−(ψ̄,(S−1+gA/)ψ) (6.25)

= detSdet(S−1 + gA/) (6.26)

= det(I + gSA/) (6.27)

F = ψ(x)ψ̄(y) とすると,

� ψa(x)ψ̄b(y) �A = det(I + gSA/)SA(x, y)ab (6.28)

F = ψa(x)ψ̄b(y)ψc(x′)ψ̄d(y′) とすると,

� ψa(x)ψ̄b(y)ψc(x′)ψ̄d(y′) �A = det(I + gSA/)

∣∣∣∣∣∣
SA(x, y)ab SA(x, y′)ad

SA(x′, y)cb SA(x′, y′)cd

∣∣∣∣∣∣ (6.29)

となる. この種の公式を, Matthews-Salam formula という.
この section では,

• Matthews-Salam formula によって fermion の量子論を定義する

という立場をとる. より基本的なレベルから Matthews-Salam formula を導くという問題は, Section 7 で
扱う.
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6.3 Fermion determinant

Matthews-Salam formula (6.27)(6.28)(6.29) に現れる関数行列式 (fermion determinant) det(1 + gSA/)
には, 紫外発散が含まれている. まず, fermion determinant の紫外発散の構造を, Fredholm determinant の
formalism [10, 17, 18] を用いて理解する.

Fredholm determinant

L2(Td) 上の compact operator K と q = 1, 2, 3, · · · に対し,

K ∈ Bq ⇐⇒ Tr (K∗K)q/2 <∞ (6.30)

‖ K ‖q :=
(
Tr (K∗K)q/2

)1/q

(6.31)

と定める. このとき,

Bp ⊂ Bq, p < q (6.32)

K ∈ Bp, K
′ ∈ Bq,=⇒ KK ′ ∈ Br, p

−1 + q−1 = r−1 (6.33)

が成り立つ.
K ∈ B1 とする. Exterior product ∧nL2(Td) に

u1 ∧ ... ∧ un �→ Ku1 ∧ ... ∧Kun , uj ∈ L2(Td) (6.34)

のように作用する operator を ∧nK と書き, Fredholm determinant を

det(I + gK) :=
∞∑
n=0

gnTr (∧nK) (6.35)

で定義する. ここで

|Tr (∧nK)| ≤ 1
n!

‖ K ‖n1 (6.36)

であるから

|det(I + gK)| ≤ e|g|‖K‖1 (6.37)

が成り立つ. また {λj} を K の 0 以外の固有値とすれば,

det(I + gK) =
∏
j

(1 + gλj) (6.38)

である.
さらに, q = 2, 3, · · · に対し,

K ∈ Bq =⇒ I − (I + gK) exp

(
q−1∑
k=1

(−g)k
k

Kk

)
∈ B1 (6.39)

が成立することに注意して, modified Fredholm determinant detq を

detq(I + gK) := det

[
(I + gK) exp

(
q−1∑
k=1

(−g)k
k

Kk

)]
(6.40)

で定義する.
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Theorem 6.1. K ∈ Bq に対し,

|detq(I + gK)| ≤ e|g|
qc(q)‖K‖q

q (6.41)

detq(I + gK) =
∏
j

[
(1 + gλj) exp

(
q−1∑
k=1

(−g)k
k

λkj

)]
(6.42)

が成り立つ. ただし c(q) は q だけで定まる正の定数, {λj} は K の 0 以外の固有値である. また K ∈ B1

ならば

det(I + gK) = exp

(
−
q−1∑
k=1

(−g)k
k

TrKk

)
detq(I + gK), 2 ≤ q (6.43)

さらに |g| ‖ K ‖1< 1 ならば

det(I + gK) = exp

(
−

∞∑
k=0

(−g)k
k

TrKk

)
(6.44)

が成り立つ. �

Fermion determinant

Fredholm determinant の formalism を fermion determinant det(I + gSA/) に適用する.
まず |g| ‖ SA/ ‖1< 1 であったとすると, (6.44) によって gauge 場の effective potential が

V (A) =
∞∑
k=0

(−g)k
k

Tr (SA/)k (6.45)

で定義される. そして右辺の

Tr (SA/)k =
∫
dx1 · · ·

∫
dxktr (S(xk − x1)A/(x1)S(x1 − x2)A/(x2)

S(x2 − x3)A/(x3) · · ·S(xk−1 − xk)A/(xk)) (6.46)

は graph 的に解釈できる. しかし一般に |g| ‖ SA/ ‖1< 1 は成立しないので, effective potential V (A) は定
義されない.

Theorem 6.2. 仮定 Aµ ∈ C∞(Td) のもとで

SA/ ∈ Bd+1 (6.47)

従って, detd+1(I + gSA/) は well-defined である. �

Proof. 一般に f, g ∈ Lq(Td) に対して,

‖ f(x)g(i∂) ‖q≤ const. ‖ f ‖Lq‖ g ‖Lq (6.48)

が成立する. f(x) = A(x), g(p) = S̃(p) = (p/+m)−1 とすると (6.47) を得る. �

上記の定理によると, (6.43) における det(I + gSA/) の未定義部分は

exp

(
−

d∑
k=1

(−g)k
k

Tr (SA/)k
)

(6.49)
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となる. もちろん, この未定義部分全体を打ち消す counterterm

d∑
k=1

(−g)k
k

Tr (SA/)k (6.50)

を導入すれば,紫外発散はすべて消える. しかし,このような nonlocalな countertermを入れると, reflection
positivity が壊れるなど, 物理的に期待されない理論を与える結果となる (gauge field A について積分でき
なくなる恐れもある). そこで,∫

Q0(A(x))dx ,
∫
Q1(∂A(x))dx , Q0, Q1 : polynomial (6.51)

という形の local counterterm を用いて紫外発散を除去することを考える.

6.4 Renormalized determinant

UV cutoff function

χM (p) =

⎧⎨
⎩ 1, |p| < M,

0, |p| ≥M,
M > 0 (6.52)

を用いて,

S̃M (p) = S̃(p)χM (p) = (p/+m)−1χM (p) (6.53)

とおく. このとき, SMA/ ∈ Bk, k = 1, 2, · · · となり, 次の Furry の定理が成立する.

Theorem 6.3. [20, P.276] k = 1, 3, 5, · · · に対し,

Tr (SMA/)k = 0 (6.54)

が成り立つ. �

2 次元の場合

Theorem 6.3 により, 紫外発散の心配があるのは, Tr (SMA/)2 のみである. Momentum space T2∗ = 2πZ2

で計算すると,

Tr (SMA/)2 =
1

(2π)2
∑
q∈T2∗

∑
µν

T µνM (q)Aµ(q)Āν(q) (6.55)

T µνM (q) =
1

(2π)2
∑

p∈T2∗
χM (p)χM (p− q)tr

(
(p/ +m)−1γµ(p/ − q/+m)−1γν

)
(6.56)

見かけ上, T µνM (q) は M → ∞ で対数発散するので,

T µνren(q) = lim
M→∞

(T µνM (q) − T µνM (0)) (6.57)

とおき, renormalized trace と renormalized determinant を

Tr ren(SA/)2 =
1

(2π)2
∑

q∈T2∗

∑
µν

T µνren(q)Aµ(q)Āν(q) (6.58)

detren(I + gSA/) = exp
(
−g

2

2
Tr ren(SA/)2

)
det3(I + gSA/) (6.59)

= exp
(
−g

2

2
Tr ren(SA/)2

)
det4(I + gSA/) (6.60)
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で定義する. 即ち, 導入された counterterm は

g2
∑
µν

T µνM (0)
∫
T2

dxAµ(x)Aν (x) = g2κM

∫
T2

dx
∑
µ

Aµ(x)2 (6.61)

κM = T µµM (0) =
1

(2π)2
∑

p∈T2∗
χM (p)

−2m2

(p2 +m2)2
(6.62)

であるが, κM は M → ∞ で収束するので, 2 次元の場合, det(I + gSA/) に紫外発散はなかったことになる.
しかし上記の counterterm は, gauge 不変性

detren(I + gSA/) = detren(I + gS(A/+ ∂/ξ)) (6.63)

(ξは適当な regularity をもつ関数)

を成立させるために導入しなければならない [Section 7]. 即ち, gauge不変な量子論における countertermは,

• 紫外発散の除去 (and/or)

• momentum cutoff によって壊された gauge 不変性の回復

という目的を持っているのである.

4 次元の場合

紫外発散の心配があるのは, k = 2, 4 のみである. Momentum space T4∗ = 2πZ4 で計算すると,

Tr (SMA/)2 =
1

(2π)4
∑
q∈T4∗

∑
µν

T µνM (q)Aµ(q)Āν(q) (6.64)

T µνM (q) =
1

(2π)4
∑

p∈T4∗
χM (p)χM (p− q)tr

(
(p/ +m)−1γµ(p/ − q/+m)−1γν

)
(6.65)

T µνM (q) は M → ∞ で (本当に) 2 次発散するので,

T µνren(q) = lim
M→∞

(T µνM (q) − T µνM (0) −
∑
τ

qτ∂τT
µν
M (0) − 1

2

∑
τσ

qτ qσ∂τ∂σT
µν
M (0)) (6.66)

= lim
M→∞

(T µνM (q) − T µνM (0) − 1
2

∑
τσ

qτ qσ∂τ∂σT
µν
M (0)) (6.67)

Tr ren(SA/)2 =
1

(2π)4
∑

q∈T4∗

∑
µν

T µνren(q)Aµ(q)Āν(q) (6.68)

と定義する.
一方, 4 次の trace

Tr (SMA/)4 =
1

(2π)16
∑

q1,q2,q3,q4∈T4∗

∑
µντσ

δq1+q2+q3+q4,0

QµντσM (q1, q2, q3, q4)Aµ(q1)Āν(q2)Aτ (q3)Āσ(q4) (6.69)

は, M → ∞ で見かけ上対数発散するが, 実は収束する. それでも, gauge 不変性を成立させるために, つぎ
のように counterterm を導入する.

Tr ren(SMA/)4 =
1

(2π)16
∑

q1,q2,q3,q4∈T4∗

∑
µντσ

δq1+q2+q3+q4,0

(QµντσM (q1, q2, q3, q4) −QµντσM (0, 0, 0, 0))Aµ(q1)Āν(q2)Aτ (q3)Āσ(q4) (6.70)
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上記の renormalized trace を用いて, renormalized determinant を

detren(I + gSA/) = exp
(
−g

2

2
Tr ren(SA/)2 − g4

4
Tr ren(SA/)4

)
det5(I + gSA/) (6.71)

= exp
(
−g

2

2
Tr ren(SA/)2 − g4

4
Tr ren(SA/)4

)
det6(I + gSA/) (6.72)

で定義する.

7 Gauge 場

最後に, fermion と gauge 場の相互作用の量子論を考える. 現実的な場の理論はすべてこの範疇に入るに
もかかわらず, この分野は甚だ未発達な状態にあり, 2 次元理論の構成も完全ではない.
この節では, fermion と U(1) gauge field の相互作用 (QED) を, 2 次元 torus T2 = (R/Z)2 上で考察

する. 即ち, Section 6 で定義した renormalized determinant detren(I + gSA/) を, gauge field A の適当な

measure に関して積分する.

7.1 Gauge field measure

Classical action

Td 上の U(1) Gauge field A = (Aµ) の classical action は,

S(A) =
1
4

∫
Td

dx Fµν(x)Fµν(x) (7.1)

Fµν(x) = ∂νAµ(x) − ∂µAν(x) (7.2)

である. よく知られているように, S は gauge 不変である [20, P.12]. Momentum space では,

S(A) =
1
2

1
(2π)d

∑
p∈Td∗

(p2δµν − pµpν)Aµ(p)Āν(p) (7.3)

ただし, A(p) は A(x) の Fourier 変換で

A(−p) = Ā(p) (7.4)

を満たす.

Gauge fixing

Gauge field A が従う probability measure は, formal には

1
N

exp(−S(A))dA (7.5)

と書けるものにしたい. 即ち, S(A) = 1
2 (A,JA) と見て, J−1 を covariance とする measure を考えたいの

だが, Jµν = p2δµν − pµpν で定義される matrix J は正則でない27 . そこで action を修正し,

S(A) =
1
4

∫
Td

dx Fµν(x)Fµν(x) +
1
2α

∫
Td

dx (∂µAµ(x))2 (7.6)

=
1
2

1
(2π)d

∑
p∈Td∗

(
p2δµν + (

1
α
− 1)pµpν

)
Aµ(p)Āν(p) (7.7)

27 Jp = 0. これは曲率 F , 従って action S が gauge 不変だからである.
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とすると28 ,

Jµν = p2δµν + (
1
α
− 1)pµpν (7.8)

で定義される matrix J は p 
= 0 で正則となり,

Cµν(p) = J−1
µν =

1
p2

(
δµν + (α− 1)

pµpν
p2

)
, p 
= 0 (7.9)

が存在する. 条件 α > 0 のもとで, matrix C(p) は正定値の bilinear form を定義する.

Gauge field measure

そこで, ∫
dµC(A)Āν (q)Aµ(p) = δpq

1
p2

(
δµν + (α− 1)

pµpν
p2

)
, p, q ∈ Td∗ \ {0} (7.10)

を満たす (mean 0 の) Gauss measure dµC を考え, gauge field

A(p), p ∈ Td∗ \ {0} (7.11)

は, measure dµC に従って分布するものとする.
また

A(x) =
1

(2π)d
∑

p∈Td∗\{0}
eipxA(p) (7.12)

の部分和 (UV cutoff)を

AN (x) =
1

(2π)d
∑

p∈Td∗\{0}
eipxA(p)χN (p) (7.13)

χN (p) =

⎧⎨
⎩ 1, |p| < N

0, |p| ≥ N
(7.14)

で定める. AN は, eipx の有限線形結合だから smooth である.

7.2 QED2

2 次元 torus T2 上で, QED の構成を概観する. 即ち, Section 6 で定義した renormalized determinant
detren(I + gSA/) を, Section 7.1 で定義した measure dµC で積分する. このとき, 次の２つの問題が生じる.

• Measure dµC の sample field A に対して, renormalized determinant が定義できるか.

[Section 6では, A の smoothness を仮定した.]

• Renormalized determinant は, dµC に関して可積分か.

[effective potential の semi-boundedness が目に見えない.]

28 付加項は, gauge fixing term と呼ばれる. (7.10) で定義される measure による積分値は, 一般に α に依存するが, gauge
invariant な物理量の積分値は α によらない.
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Renormalized determinant の定義の修正

Section 6 により, detren(1 + gSA/N) が確率１で定義される. しかし技術的な理由で, Section 6 の議論を修
正する.

(1) fermion field ψ, ψ̄ が属する空間 L2(Td) に, anti-periodic boundary condition を課す [Theorem 7.4参
照] 29 .

(2)次に,

Q = (−� +m2)−1/4 = (S∗S)1/4 (7.15)

V = Q2(−i∂/+mI) (7.16)

とおいて, S を polar 分解する.

S = Q2V (7.17)

V ∗ = V −1 (7.18)

[Q, V ] = 0 (7.19)

さらに

KN (A) = QV A/NQ (7.20)

とおくと

QKN(A)Q−1 = SA/N (7.21)

が成り立ち, (7.21)により (少なくとも formal には),

Tr (SA/N )k = TrKN (A)k (7.22)

det(1 + gSA/N) = det(1 + gKN(A)) (7.23)

となることに注意する. そこで Section 6 における SA/N をKN (A) について読み換えて

exp
(
−g

2

2
Tr renKN(A)2

)
det4(I + gKN(A)) (7.24)

を構成する [Theorem 7.1参照].
(3)さらに, renormalized determinant を

detren(1 + gKN(A)) = exp
(
−g

2

2
Tr ren : KN(A)2 :

)
det4(I + gKN(A)) (7.25)

のように定義し直す. (7.24)と (7.25) の違いは, Wick product による constant factor (N に依存す
る)だけであるから, Schwinger function においては, この factor は分子分母で cancel する. しかし,
(7.25) の N → ∞ の極限をとるときには, この factor(発散する)が効く.

Renormalized determinant の定義の拡張

µC の sample field A を J(A) ∈ Bp に移す mapping J で,

(f, J(A)g)
L2(R2

)
is a.s. measurable, ∀f, g ∈ L2(R2) (7.26)

‖ J ‖p;q:=
(∫

dµC(A) ‖ J(A) ‖qp
)1/q

<∞ (7.27)

を満たすもの全体を Bq
p と書く. この空間は complete である.

29 Gauge field A は periodic とする.
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Theorem 7.1. [15]

(1) KN (·),N > 0 は B8
4 に属し, Cauchy 列をなす. よって

K = lim
N→∞

KN ∈ B8
4 (7.28)

が存在する.
(2)確率１で, 次式が成り立つ.

K(A) = lim
N→∞

KN(A) in B4 (7.29)

det4(1 + gK(A)) = lim
N→∞

det4(1 + gKN (A)) (7.30)

(3)確率１で, 次式が成り立つ.

det4(1 + gK(A)) > 0 (7.31)

�

Proof. (1)

‖ KN(A) −KM (A) ‖8
4;8 =

∫
dµC(A)

(
Tr [Q2(A/N −A/M )]4

)2
(7.32)

を, Feynman graph を用いて評価すればよい30 .
(1)から (7.29)を得るには, Gauss measure に関する hypercontractivity [21] を用いる. (7.30) は, B4 上で

J �→ det4(1 + J) が連続であることによる.
(3) gKN (A) の固有値は −1 でなく, 実数 または complex conjugate pair からなる31 . よって,

det4(1 + gKN(A)) > 0 (7.33)

さらに, gK(A) の固有値は −1 でないので, (7.31) が成り立つ. �

同様の論法で, 次の定理が得られる.

Theorem 7.2. [15]

(1) Tr : KN (·)2 : , N > 0 は L2(dµC) に属し, Cauchy 列をなす.
(2)確率１で, 極限 limN→∞ Tr : KN(A)2 : が存在する.

�

Theorem 7.1, Theorem 7.2 により

Tr : K(A)2 : = lim
N→∞

Tr : KN(A)2 : (7.34)

detren(1 +K(A)) = exp
(
−g

2

2
Tr : K(A)2 :

)
det4(1 +K(A)) (7.35)

が定義される.

Renormalized determinant の可積分性

Gauge 場の量子論を構成する際の基本的な問題点は,
30 KN (A) でなく SA/N だと, 評価できない.
31 KN (A) でなく SA/N だと, こうは言えない.
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• effective potential (6.45) の semi-boundedness に相当する性質が目に見えないこと

である. この問題は, 理論の gauge 不変性と密接に結び付いており, その解決には, gauge 不変性が明らか
である lattice regularization を必要とする.

Lattice からの結論は次のとおり.

• 殆ど全ての A に対して, K(A) の lattice approximation K(ε)(A) が定義される32 . ただし格子点の
間隔を ε とする.

• 殆ど全ての A に対して, detren(1 + gK(A)) の lattice approximation

detren(1 + gK(ε)(A)) = exp
(
−g

2

2
Tr : K(ε)(A)2 :

)
det4(1 + gK(ε)(A)) (7.36)

が定義され, 正の値をとる. 右辺の trace は Tr ren ではなく, 繰り込まれていない Tr である. これは,
lattice では gauge 不変性が厳密に成り立つので, gauge 不変性を回復するための counterterm が必
要ないからである.

• ε, A によらない正定数 β, δ, θ が存在して, 次の評価が成り立つ.

det(1 + gK(ε)(A)) ≤ 1 a.s. (7.37)

µC

[∣∣∣∣log
detren(1 + gK(A))

detren(1 + gK(ε)(A))

∣∣∣∣ > 1
]

< β exp(−δ/εθ) (7.38)

不等式 (7.37) は diamagnetic bound と呼ばれ, gauge field の effective potential の semi-boundedness
に相当する33 . Diamagnetic bound は, gauge 不変性を用いて示される [Section 7.5]. (7.38) は, lattice
approximation の誤差の評価である. これらの結果を用いると, φ4

2 の (4.45) (|Λ| = 1) に相当する次の定理
が得られる.

Theorem 7.3. [15] 0 < p <∞ に対し,

detren(1 + gK(·)) ∈ Lp(dµC) (7.39)

�

Proof. (7.37)から

detren(1 + gK(ε)(A)) ≤ δ′/εθ
′

(7.40)

が従う (Wick product による付加項を評価した). よって

∆ε = log
detren(1 + gK(A))

detren(1 + gK(ε)(A))
(7.41)

とおくと,

log detren(1 + gK(A)) ≤ log(δ′/εθ
′
) + |∆ε| (7.42)

が成り立つ. すると, 任意の x ≥ 0 に対し

log detren(1 + gK(A)) ≥ x =⇒ log(δ′/εθ
′
) + |∆ε| > x (7.43)

32 K(ε)(A) は (有限次元) 行列で表される.
33 A = 0 のとき等号が成立する.
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そこで

log(δ′/εθ
′
) + 1 = x (7.44)

なる ε をとると34 ,

log detren(1 + gK(A)) ≥ x =⇒ |∆ε| > 1 (7.45)

従って (7.38) より

µC [detren(1 + gK(A)) ≥ x] ≤ β′ exp(−δ′′xθ′′), x > 0 (7.46)

また (7.31) により

µC [detren(1 + gK(A)) ≤ 0] = 0 (7.47)

これらから定理を得る. �

7.3 Dirac 作用素の格子化

(7.37) を示すために, gauge 不変な lattice regularization を導入する. また lattice regularization は,
Matthews-Salam formula を, より基本的なレベルから導くための framework でもある.

格子化

ε = 1/N,N = 1, 2, · · ·を格子間隔とする discrete torus Td
ε = (εZ/Z)d を考える. これに伴って, L2(Td) は,

(u, v) = εd
∑
x∈Td

ε

ūxvx (7.48)

を内積とする有限次元 vector space L2(Td
ε ) となる. ただし anti-periodic boundary condition を課す.

L2(Td
ε ) 上の linear mapping は, (有限次元の)行列で表される35 .

Free Dirac operator を

D/ =
1
2ε

d∑
µ=1

γµ(Tµ − T ∗
µ) (7.49)

のように差分化する. Tµ は −µ 軸方向の free translation

(Tµw)(x) = w(x+ εeµ) (7.50)

である. Td
ε の bond に沿う covariant translation を定義するために, bond (x, x + εeµ) に U(1) の元を

assign する:

Ux,x+εeµ ∈ U(1) (7.51)

Ux+εeµ,x = U∗
x,x+εeµ

(7.52)

34 1/ε が整数でなければならないが, ここでは忘れる.
35 Linear mapping の積の表現行列は, それぞれの表現行列の (行列としての) 積と normalizaiton が異なるので注意を要する. 以
下, 表現行列は使わない.
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そして, covariant translation Tµ(U) を

Tµ(U)w(x) = Ux,x+εeµw(x+ εeµ) (7.53)

で定め, covariant Dirac operator を

D/(U) =
1
2ε

d∑
µ=1

γµ(Tµ(U) − T ∗
µ(U)) (7.54)

のように差分化する.
Continuum gauge field A と Ux,x+εeµ を関係づける方法は色々あるが, 最も自然なのは

Ux,x+εeµ = exp(−ig
∫ ε

0

Aµ(x+ seµ)ds) (7.55)

であろう. しかしここでは, µC に関して確率 1 で well-defined である

Ux,x+εeµ = exp(−igεA(ε)
µ (x+

1
2
εeµ)) (7.56)

を採用する. ただし, A(ε) = (A(ε)
µ ) は, A の UV cutoff (7.13) である. しかし以下の議論は, U と A の関係

の詳細に依存しない.

Spectrum

Lattice 上の momentum space を

Td
ε

∗
= {p ∈ π(2Z + 1)d | − π/ε ≤ pj < π/ε, j = 1, 2, · · · , d} (7.57)

と書く. w ∈ C2[d/2]
に対し,

wp(x) = eipxw, p ∈ Td
ε

∗
(7.58)

とおく. これに free Dirac operator D/, ∂/ を作用させると,

D/wp =
∑
µ

iγµ
1
ε

sin(pµε)wp (7.59)

∂/wp =
∑
µ

iγµpµwp (7.60)

よって ε ∼ 0 のとき,

• p = O(1) なる wp に対しては, D/ と ∂/ は殆ど同様に働く

• p ≡ O(1) (mod
π

ε
) かつ p 
= O(1) なる wp に対しては, D/ と ∂/ の働きは全く異なる.

即ち,

• ∂/ の eigenfunction は, D/ の eigenvector で近似できるが,

• D/ の eigenvector の中には, ∂/ の eigenfunction を近似しないものが存在する.

D/ の eigenvector のうち, ∂/ の eigenfunction を近似しないものを doubler, 近似するものを normal mode
という. 連続極限に移行するとき, 何等かの方法で doublerを除去しないと, 正しい極限が得られない. D/(U)
についても, 同様の問題がある.
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Wilson term

そこで, r > 0 に対して

R(U) =
r

2ε

∑
µ

(T ∗
µ(U) − I)(Tµ(U) − I) (7.61)

=
r

2ε

∑
µ

(2I − Tµ(U) − T ∗
µ(U)) (7.62)

R =
r

2ε

∑
µ

(2I − Tµ − T ∗
µ) (7.63)

とおくと, ε ∼ 0 のとき,

• doubler w に対しては, R(U)w = O(ε−1)

• normal mode w に対しては, R(U)w = O(ε)

となる. そこで, iD/(U) +mI の代わりに

iD/(U) +mI +R(U) (7.64)

を使う. R(U) を Wilson term という. ここで,

‖ (iD/(U) +mI +R(U))w ‖≥ m ‖ w ‖ (7.65)

であるから, (iD/(U) +mI +R(U))−1 が存在し,

det(iD/(U) +mI +R(U)) 
= 0 (7.66)

det(iD/+mI +R) 
= 0 (7.67)

が成立することに注意する.

7.4 格子 fermion

Lattice regularization

(6.19) で使った action (ψ̄, (i∂/A +mI)ψ) の lattice version

Sε(ψ̄, ψ, U) = εd
∑
x∈Td

ε

ψ̄(x)(iD/(U) +mI +R(U))ψ(x) (7.68)

を用いて, fermionic integral (6.19)の lattice regularization を

� F �(ε)
U =

1
det(iD/+mI +R)

∫
dψ̄dψ exp

(−Sε(ψ̄, ψ, U)
)
F (7.69)∫

dψ̄dψ =
∏
x∈Td

ε

∫
dψ̄(x)

∫
dψ(x) (7.70)

で定義する. ただし, (7.62)(7.63)における r を 0 < r ≤ 1 の範囲にとる [Theorem 7.4参照]. Functional
integralへの doubler の寄与は, Wilson term のために, continuum limit ε→ 0 で消えるだろうと期待する.
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Matthews-Salam formula

(7.69)で F = 1 とすると,

� 1 �(ε)
U = det(I + gS(ε)Γ(ε)(U)) (7.71)

S(ε) = (iD/+mI +R)−1 (7.72)

Γ(ε)(U) =
1
g
(iD/(U) − iD/+R(U) −R) (7.73)

となり, (6.27)の lattice version が厳密に成立する. 同様に (6.28)(6.29)も lattice 上で厳密化される.
さらに, (7.15)-(7.20)に対応して,

Q(ε) = (S(ε)∗S(ε))1/4 (7.74)

V (ε) = Q(ε)2(−iD/+mI +R) (7.75)

K(ε)(U) = Q(ε)V (ε)Γ(ε)(U)Q(ε) (7.76)

とおくと,

Tr (S(ε)Γ(ε)(U))k = Tr (K(ε)(U))k (7.77)

det(I + gS(ε)Γ(ε)(U)) = det(I + gK(ε)(U)) (7.78)

が成り立つ. 対応 (7.56)のもとで, (7.36)(7.37)(7.38)における K(ε)(A) を, K(ε)(U) によって定義する.

Gauge 不変性

Gauge 変換

ψ′(x) = eiξ(x)ψ(x) (7.79)

ψ̄′(x) = ψ̄(x)e−iξ(x) (7.80)

U ′
x,x+εeµ

= eiξ(x)Ux,x+εeµe
−iξ(x+εeµ) (7.81)

のもとで, action は不変である:

Sε(ψ′, ψ̄′, U ′) = Sε(ψ, ψ̄, U) (7.82)

また

dψ′dψ̄′ = dψdψ̄ (7.83)

も成立する.
従って, 例えば

Z(U) =
∫
dψ̄dψ exp

(−Sε(ψ̄, ψ, U)
)

(7.84)

は gauge 不変である:

Z(U ′) = Z(U) (7.85)
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7.5 Diamagnetic bound

Diamagnetic bound (7.37), 即ち

|Z(U)| ≤ Z(1) (7.86)

を証明する [18].

Reflection

Td
ε を, ２平面 x1 = ε/2, x1 = 1/2 + ε/2 によって, ２つの部分 Td

ε+,T
d
ε− にわけ, これらを互いに入れ換え

る Td
ε の反転を θ とする. Td

ε± に属する Grassmann variables が生成する Grassmann algebra を G± と
し, reflection θ : G+ → G− を

(1) θψ(x) = ψ̄(θx)iγ1

(2) θψ̄(x) = iγ1ψ(θx)
(3) θ(fg) = (θg)(θf)
(4) antilinear

によって定義する. α が γ matrix の積のとき,

θ(αψ(x)) = (θψ(x))α∗ (7.87)

θ(ψ̄(x)α) = α∗(θψ̄(x)) (7.88)

が成り立つ.

Theorem 7.4. ２平面 x1 = ε/2, x1 = 1/2 + ε/2 の一方を跨ぐ bond b 上で Ub = 1 となる gauge におい
て36 ,

exp(−Sε(ψ, ψ̄, U)) = FθF ′ exp(
∑
j

GjθGj) (7.89)

F,F ′, Gj ∈ G+ (7.90)

Gj : odd (7.91)

と分解できる. �

Proof. まず

Sε = S+ + S− + S0 + S1/2 (7.92)

のように分解する. ただし, S± ∈ G± であり, S0,S1/2 は, それぞれ平面 x = ε/2, x = 1/2 + ε/2 を跨ぐ
coupling を集めたものである. 従って

F = exp(−S+) (7.93)

F ′ = θ−1 exp(−S−) (7.94)

と置けば, F,F ′ ∈ G+ となる.
また −S0 に含まれる項は

ψ̄(x)
iγ1 + r

2ε
ψ(θx), x ∈ Td

+ (7.95)

ψ̄(θx)
−iγ1 + r

2ε
ψ(x), x ∈ Td

+ (7.96)
36 任意の U に対し, 適当な gauge 変換を施すことにより, このようにできる.
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という形をしている. P = 1+iγ1
2 は projection であるから, (7.88)を用いると, 前者は

ψ̄(x)
iγ1 + r

2ε
ψ(θx) = ψ̄(x)

1 + irγ1

2ε
θψ̄(x) (7.97)

=
1 − r

2ε
ψ̄(x)θψ̄(x) +

r

ε
(ψ̄(x)P )θ(ψ̄(x)P ) (7.98)

と変形でき,
∑
j GjθGj という形に表せる

37 . 後者も同様である.
−S1/2 も同様に

∑
j GjθGj という形に表せる

38 . �

Theorem 7.5. Theorem 7.4 の gauge において

|Z(U)|2 ≤ Z(U+)Z(U−) (7.99)

が成り立つ. ただし, U± は, Theorem 7.4 の gauge 条件を満たし, Td
ε± 上で U と一致し, Td

ε∓ 上で U |Td

ε ±
の反転と一致する configuration である. �

Proof. 自明な reflection positivity ∫
dψ̄dψAθA ≥ 0 A ∈ G+ (7.100)

により, Schwarz の不等式

|
∫
dψ̄dψAθB| ≤ (

∫
dψ̄dψAθA)(

∫
dψ̄dψBθB) A,B ∈ G+ (7.101)

が成立する. よって

|
∫
dψ̄dψFθF ′ exp(

∑
j

GjθGj)| (7.102)

= |
∑
n

∑
j1,···,jn

1
n!

∫
dψ̄dψ(FθF ′)Gj1 · · ·Gjnθ[Gj1 · · ·Gjn ]| (7.103)

≤
∑
n

∑
j1,···,jn

1
n!

(∫
dψ̄dψ(FθF )Gj1 · · ·Gjnθ[Gj1 · · ·Gjn ]

)1/2

(∫
dψ̄dψ(F ′θF ′)Gj1 · · ·Gjnθ[Gj1 · · ·Gjn ]

)1/2

(7.104)

≤
⎛
⎝∑

n

∑
j1,···,jn

1
n!

∫
dψ̄dψ(FθF )Gj1 · · ·Gjnθ[Gj1 · · ·Gjn ]

⎞
⎠

1/2

⎛
⎝∑

n

∑
j1,···,jn

1
n!

∫
dψ̄dψ(F ′θF ′)Gj1 · · ·Gjnθ[Gj1 · · ·Gjn ]

⎞
⎠

1/2

(7.105)

≤
⎛
⎝∫ dψ̄dψFθF exp(

∑
j

GjθGj)

⎞
⎠

1/2⎛
⎝∫ dψ̄dψF ′θF ′ exp(

∑
j

GjθGj)

⎞
⎠

1/2

(7.106)

�

37 0 < r ≤ 1 を仮定した.
38 ここで anti-periodic boundary condition を要する.
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(7.86)の証明

4 本の bond からなる単位正方形 (plaquette) P の周に沿って Ub を掛け合わせたものを UP とし, UP = 1
のとき, U は P において trivial であると言うことにする. Theorem 7.5 の U± は, 平面 x =

ε

2
または 平

面 x =
ε

2
を跨ぐすべての plaquette P において trivial となる.

Z(U) は compact set 上の連続関数だから,

max
U

|Z(U)| = |Z(U∗)| (7.107)

なる U∗ が存在する. このとき, Theorem 7.5により

|Z(U∗)|2 ≤ Z(U∗
+)Z(U∗

−) (7.108)

よって

|Z(U∗)| = Z(U∗
±) (7.109)

が成り立つ.
もしも U∗ がすべての plaquette において trivial だとする. このとき local に Ub = 1 とする gauge が

とれるが, torus は nontrivial cycle をもつから, global に Ub = 1 とする gauge がとれるとは言えない. し
かし U∗± は, x1 方向の nontrivial cycle に沿って (U∗±)b の積をとると 1 となる. Theorem 7.5 の操作を各
座標軸方向に行うと, global に Ub = 1 とする gauge がとれる. 従って

|Z(U∗)| = Z(1). (7.110)

また U∗ が, ある plaquette P において nontrivial だとする. このときは, P と交差する平面に関する反
転に対して (7.109) を用いると, U∗

± の少なくとも一方において, trivial plaquette の数が必ず増加する. こ
の操作を繰り返せば, すべての plaquette において trivial となる configuration が得られる.
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