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0 Uodug

00000 O0,RY0000' 200000 random variable ¢(2) O O O microscopic 000 (0000
O0)0000O00000oOoOo00oooOOoOoUoooOoUOooO.

gdoooooo,000dbog,0odob00 “c00”’00dbo0fdbOo,0boo0oooooooOooonog
000002 ooooao.

oo oon
5S() =0 | = ¢S dp
(0oDo) (Doooo)

000,000000D000D0000000,0000000 nontrivial D0O0O0D0O0ODOO, 0000
(renormalization) 0000000000000 0OOOO. OO

ubooaboo,bbobobogboobodoboooboobgoooa.

0000000000 model 0OODO, 0000000 OCODOOOOODOODOODNO relativistic field
theory 00 00O0O0O0. OOO0ODOO,00000000000000 modelDOOOODOOODO
O0000,model OO0ODODOODOOO,0000000000000000000,0000 modelDODO
go,0ddoooboooobbbooobbooooboo,ogoboboooobbooooon
oooo.

O00,000000 model 0O0OOODOODOOODOODOO,O0000 Euclidean field theory 00 00O
OO0000O0O0000O000D0. Euclidean field theory O O, formal O O, relativistic field theory O O O
00000 t0 2% 2° € R) 000, Minkowski 000 Euclid 0000000000000:

Minkowski Euclidean
t=iz°

1.2 .3 0.1 .2 .3

(t7'r "T ?x) (x "T 7x 7x)

eSvin(®) d¢ e~ SEuc(®) dg

Eucid 0O0O0OO0OO0OD0OOD0O0ODOO0DOODOODODO,00000D00 measure 000, 0000000
0o0o0ooOdooooooDooo. o0, kedid00000OD0OODOO,000000D00OO00OOODOOO
00,0000000000o0o0g0oooooooon.

000000, Euclidean field theory O 00 OO, scalar O, fermion 0, gauge 00000000000
oogs.

0000,0000000000000 (000)00000O0OO0 (ooo)oooooooooog,
oooooooooo.

good Newton [0 [ gooano ugogo (oboabod

goo goooo gboooog (booo 77

oo, b0bobobobodabodaboobooboobaooboobban.

lopooooooooo
200000000 [20].
300000000000000, 0000 (000)0000,00000000000000000.




1. Euclidean field theory 4

1 Euclidean field theory

Euclidean field theory 0, R 000 z 00000 random variable ¢o(z) D0O00OOOOOOOOOO
0,00000 (Doo0)obooUoooooo

< F(¢) >

7 [ PO Dauo) (1)
z = [V @duo) (1.2)

0000 formal O “O00” 000. 000, du(¢) O Gaussian probability measure, V(¢) O ¢(-) O
functional O potential 000 O00. 00O V=0000,(1.1)0 Gauss 0OO0O0,000000000
0000 (000)0O00O0O0. 000 0000 (00D 200000) potential 0000, 00000
ggooooboooboogog.

00O0oooo (1.1)(1.2)0o000oo00odoo0o0oooooooooon.

Semi-boundedness

00 (1.1)(1.2) 000000000000, potential O lower bound O OO

inf V(9) > —oo0 (1.3)
gogooooo.
Regularization

Gaussian measure p 0 sample field ¢ O regularity 000000, ¢ 0 VOOOOODOOOOOOOO
O00. 000 Gaussian measure [0 regularization

== e (1.4)
00000. 000
ec—00000,u 0 p0000,

e c>00000, measure u. JOO0O00O0O 10, sample field ¢ O regularity 00000, V(¢) O
well-defined 0 0 O

DDDDDDD.DD,RdDDDDDDDD bounded region 0 0 O 0O O regularization 00 OO0 O0O.
000,00000000D0000000000DOOOO0

e 00 (UV)OO : ¢() 00000000 ¢(y) 00000
e 00 (IR)0D : ¢(x) 000000000 ¢(y) 00000

0ooooOo,00dd cutof COOOOOODO.
Renormalization

000 regularization 000000,e—0000000000000000000,0000000000
00000000. 000000000000000000,e0000000000 (counterterm) 8V ()
ooooo,

Ve(¢) = V(9) +0Ve(0) (1.5)
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000,V(p)O Vi(p) DODOODDODODOODOO0D. 00000000 renormalization 00 0. Coun-
terterm U O OO0, 000000O00OO0O0O0O0O0O0O.

goooo

000, regularization 0 renormalization 0000000

SF@) > = o [FO " duo) (1.6)
zo = [ Do) (1.7)

ood
lim < F(6) > (1.8)

e—0

gbooa,bgoogbboaobod.

(H)lmit 000000, 00000000 limit 000 (DOOO0O0OOO 0O0O0OOO)
(2) Gaussian measure 0 00 00 (triviality)

(3) Non-Gaussian measure 0 0 0 O 0 (nontriviality)

Counterterm 000000000, (1) 0000000O0OO. 0000000, (2)0000000 Gauss O
0000o00o0o0ooo.00o0o,0000 (3)ooooooooa.

Minkowski O

Euclidean field theory O relativistic field theory 0000000000, 000000000 0OOCOOO
0000000 (Osterwalder-Schrader axioms, [Section 2.4]).

googoogoooon

Well-defined 000 (1.6)(1.7) 0000000,
e c—~(000000ODODODO
e JOODODO trivial O non-trivial O
e relativistic field theory OO0 OO0 O0ODO

obobooobo,0o0o000o0o0oo0oobooboo. oooooobo,obobobobobooboboobob 2
oo 3ooobooboooboooogooaa,

e 400000O*, nontrivial field theory > 000000

g,gbobooboobooogooa.

2  ¢* model

¢*model 1000000000 D. 0000000000000 O0OOOOOOOOOOD.

i0poooooog
Sgooooo
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2.1 000000

A>0000,000000

<F@)> = 5 [F@e Dduc(o) (2.1)
z = [V @ducto) (2:2)
Vo) = A [ o)t (23

0007000000 d00 ¢*model 0006 . ¢(-) 0000000 random field, puc O,
mean : /qﬁ(m)duc((b) =0, zeR? (2.4)
covariance : [ o(@)o(wduc(0) = (<4 + ) z,y) = Clay),
z,y e R, m >0 (2.5)
O Gaussian probability measure 0 O O (Theorem 2.1). Gaussian covariance C' O,

—const. log |z —y|, d=2,
Clz,y) ~ |z —yl—0 (2.6)
const.|z —y|~*2,  d> 2,

Clz,y) ~ e COMStmiz=yl 15y oo (2.7)

OoooooooO, formal 00O

etr(z—y)

Clz,y) = /Rd ]mdp (2.8)

O000.m0Omass000. 00 O0O000O0O0O0O0O000O0OO, action A(¢) O explicit 000000

<F@)> = — [ doF(g)eA@ (2.9)

Z
A@) = A [ o)+ g [ (VO@P + mPo(w))ds (2:10)
000000007.00 F(¢)O feld0000O,

Sn(w1, @2, an) =< $(21)(72) - - P() > (2.11)

O Schwinger function 000. Model 0OODOOO0OO0O0O0O0O0O0OO (DODO)00OOODOOOO,
Schwinger function 000000000000 [2,1].

Potential O semi-boundedness 0 A >000000000.000,0000000000 (2.1)000
0000000000 000.00000,0000R0 regularize 0O well-defined D00 O0OO.

0000 potential VO ¢ 0 4000000,20000,000000000000000000000 (P(é)2 00 [21]).
000 Section 5.1 0000000, potential 0000 00000000000000,000 4000000 400000000
ooo.

"d=1000,0000 200000 ¢t00000, field ¢(z) 0 =(t) 0000, (2.1)(29) 0, 00000000000
Feynman-Kac formula OO 00O0. 000000000000 ¢t0 « 00000 “Minkowski 0”7 00000000000, OO
0,d=100000,0000000,00000000000.
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2.2 Gaussian measure 00000
(24),(25) 0000 Gauss 100000, 00 Minles 000000000,

Theorem 2.1. [9] S(RY) OO functional S(-) 0000 800000000, S"(RY) OO probability
measure du(¢p) O

S(f) = / D du(g), | e SRY (2.12)
gpoooooogao:

(1) Continuity  S(fn) — S(f), if fn — [ in S(RY)
(2) Positivity g: enCmS(fn — fm) >0, fneSMRY, ¢, eC

n,m=1

(3) Normalization S(0) =1

00O, characteristic function

1 1
() = exp(-3(1.n) =exp (=5 [ o [ dni@CEnim) (2.13)
000 measure D00, C O covariance 000 mean 0 0 Gausssian measure duc 00000 . o

00000000000, Gaussian measure puc 0 sample field o 0000000, OO00,00000
field 00 ¢*(x) 000000, ¢ O potential VOO OO0O0OO.

Theorem 2.2. [3] OO

R = {¢pcS'RY |3U open R such that

olu is a signed measure} (2.14)

000 pue(R)0 0000. o

2.3 Regularizations

Sample field 0 OO0O0OO0O0ODOOOO,D000 regularization 00000000 . 000O0OOCOOO
0000000, momentum cutoff O lattice regularization 00 0.

momentum cutoff

Gaussian covariance C' J momentum space 0 cutoff O

eiP(z—y)
Cu(z,y) = /Rd mXM(p)dP (2.15)
xu(p) = e PIAD ars (2.16)

gbooobooo,boobooboooobooooobog.

const.log M, d=2,
[Cu(z,y)| < (2.17)
const. M472  d > 2,
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Theorem 2.3. [19, P.28] Gaussian measure pc,, O sample field 0,00 10 C*ns 0000. o

00 UV cutof 000000, sample field 00 ¢(2)* O well-defined 0000, 0000000 V()
00000000000.000,00 (IR)0O0 cutoff (volume cutoff) 000 00. AcRY0O0DD00
000, potential V(¢) O

Vae) = A [ o(@)'ds (2.18)
gooo IRcutoff[ll:Jl:J,(Z.l)[l[l[l[l[l[l well-defined O OO OO0O.
<F(0) samr = ZiM [ F@e D duc, 0) (2.19)
Zow = [ Dduc, ) (2.20)
ood
[ Va@ldney, (6) < o (2.21)

ooogn0,Jensen DOOOOOO

[, ) > e (— [va@yinc, <¢>) -0 (2.22)
godoooooogoood.

lattice regularization

Euclidean space R 00000, 0000 e00000 €Z¢ 000 # O random variable ¢(z) 00 00
0ooooo, (29,2100 000000. 00000000000 ADODOOOO,IRcutof 00000
0O

SF@) >ae = 5 [doF(@)e A (2.23)
Zhe = / dpeAnr<(9) (2.24)
6df2
Ane@) = Y (@' +m’o(@)?) + ——(@(z) = 6(y))* (2.25)
vecZinA ly—a|=e
/ dp = ] / do(z) (2.26)
mGeZdﬂA

oooooooooooa.
Renormalization

Momentum cutoff 0 O 0O lattice 0000 regularize 0000, 00000000 counterterm OO O
O00. Counterterm 000,00 400000 [Section 4.1,Section 5.1]. O O regularization 00000 O
000000000, regularization 00000 OO0O0O. Momentum cutoff O lattice regularization O O
goooooOo0O0O,000000000QCDO.
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2.4 Osterwalder-Schrader Axioms

Euclidean field theory O O relativistic field theory O O 0 O O, Schwinger function S, (x1,---,x,) O
Wightman function [21] 000000000000 . ODO0DO00OO, Schwinger function 0000 =, O “O
oo”an m,lv 0000,000000000000 “0000”0,00000000 Wightman function
000.00000000000000000,000000 Osterwalder-Schrader axioms D0 0000
ooo.

Notation

Or = (—z' 22, ~,md) 2.27)
Tix = (' 4t,22%,--- 2% (2.28)
XT1,T2, ", Tp ERd agoo
Of(x1,x2, - xn) = [f(0x1,0x2,---,0x,) (2.29)
th(xlv Loy - 7xn) - f(Ttxlv Tth, e ,Ttl’n)7 (230)
Ri = {z=(2',2%-,2¥) e R | 2! > 0} (2.31)
e S(R™

feS: (R < feS®Y) (2.32)

0%f(x1, 22, -+, 2n) =0, if x; = x; for some i # j
feSLR™) & feS:R™), Suppf C (RY)" (2.33)

Osterwalder-Schrader Axioms

(OS1) Temperedness: S, € S;(R"d)

(0S2) Euclidean invariance: S, 0 R‘0000000000000O0.

N
(0S3) Reflection positivity: S Sim(0fn @ fn) >0, fr €S (RF, k=0,1,2,---\N

n,m=0
(0S4) Symmetry: S, (f) = Sn(fx), fE€ESL(R™) (x 0ODODOODDO)

(0S5) Cluster property: tlim Spim(f @ Tig) = Sn(f)Sm(g), f € SL(R™), g€ Sy (R™) with com-
pact support.

(Z) Technical condition: Laplace 100 0000000000%.

00 OS3 0 fielddOOOOOO,
<FOF> > 0 (2.34)
P o= Z/dwl-~-dxmfm(a:l,-~-,J;m)¢(m1)~-~¢(xm) (2.35)

oog.
8 000000000000,0000000000 [11).
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Theorem 2.4. [5, 6, 11] Schwinger function 0 Wightman function 000 000000000000
0, (0OS1)-(0S5)(Zz)000. o

0000, 0Saxioms 0000000, Section 2.3 0 regularization 0000000000 CCOOO0OOO.
e momentum cutoff 0 0O, reflection positivity D 000 O O.
e lattice regularization 00, 000000000000, 00000000000O.

000,000 regularization 00000000 Schwinger function 0000000000000, 000
0oooooboooooooooooog.

25 0000

000 regularization 000000000 Schwinger function 00000000000 OOOO, Schwinger
function 0 AOOOOOOOOO,000000000. 000,000 Schwinger function 0 A OO0
ooooooooO.

goo,1o0b00ooooobon

I\) = /R exp(— Azt — %x2)dx (2.36)
= i(_n%yl /R zin exp(—%xQ)dx (2.37)
= f: Nay, (2.38)
n=0
oooo,
an = (—=1)"V2r(4n — 1)1!/n! (2.39)

000,(233) 000000 000O0. 00000 AOOOUDOOOO cwt 00O0O00O,00000 I(N)
gooaooaoobood.

(2N +3/2)  V2(4|A)N+!
(N+1)! cos?N+3/2(Larg A)

N
1T = D Aa|
n=0

|arg A| < 7 (2.40)
Borel summability
ggooboboooboooooobobooooo,bbbooda
e Borel summable 000000, 0000000000000O
gogooooo.
Theorem 2.5. [22] R,r>0000
Dr = {M=z+yv/—1| (x—R/2)>+1y? < (R/2)*} (2.41)
S, = {zeC| dist(z,Ry) <r} (2.42)
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0O00.0000 DrDODO

f(N) OO (2.43)
N
FO) = D an\"+Ry(N) (2.44)
n=0
|>\| N+1
IRv(N)| < AN +1)! <7> , N>0 (2.45)
000, Borel sum
[e%e] a, .
B(z) = 2% N (2.46)
gooooo.
|zl <r 000 (2.47)
S, 0000oooDoon. (2.48)
|B(z)| < Kell'B 2 e 8, (' <) (2.49)
FO) = % / B(2)e—*/*dz, \ € Dg (2.50)
0
<&

000, Schwinger function O Borel summability OO0 00000, 0000000000303, regularization
independence 0O O OOOODO.

Renormalon

Schwinger function O Borel summability O, 00 context 000000000 [20,P.463]. DO O0OO00OO
000000,000000 (238)0000000000000O000OOO,00000000 (OO0
000000 [Section 5.1)) 00 0O0ODO0OO0O0O. O00D0O0OOOOO0OO0OO,00000000000O
O0000,4000 model OO0, Borel plane 0000000 B(z) O singularity 000000000
O0000. OO0 singularity 0 renormalon 00 0. Renormalon 00O O Schwinger function O (O O
0,000)000000.0000000 triviality 0000,4000 model0O0OO0OO0OOOOOO
oooooooog.

3 Uooouon

Section 2.3 0,00 (UV)OOOOO (IR) OO0, 000 regularization 0000 0. 00 section 00O
IR regularization 1 00 0000000°. IRlimit 0000, 000 model 00 00DO0O0D. 00O
od,

e Momentum cutoff 0 00O
— cluster/Mayer expansion 00000 [19)
e lattice cutoff O O O
— reflection positivity /correlation inequality 000000000 [21]

gooaood.

9000 counterterm 00000 0D0,00000000000,0000000000000, counterterm 000 model 00O
oooooo.
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3.1 Polymer OO

Momentum space 0 O UV cutoff M O 000, Gaussian covariance Cy; O C, partition function Z s
O zZ,O00o0o.

Gaussian variables 00 OO OO0

Gaussian covarinace 0, (UV cutof 000 O00000000)IROO0O (2.7) 0000 massive decay O
0.00, Gaussian field ¢(z) 0, 000000000. 00000000000, IRImit 0000000
O000000.RY0000000000000000O000000 (cell) O RIOOD pave O 0. cell
00000,0000000 O)000.000 A0 O0OOODOOOOOOO.O0O0 Cy=CA0O

Co = Y C° (3.1)

Cozy) = D()C(x,y)0(y) (3.2)
000000 G 0000000, (22000000000 decouple 00

/e—VW dpcy(¢) = [ Za (3.3)

OCA
Zn = / e 2O dpco (¢) (3.4)

O00.(2.19) 0000000 decouple 0. 0O0O, F(¢p) DODODOOODODO ¢(z) D000 celODODO
O SuwppFOOOO,SuppF CcAODODOOO, (219000 0 ADDODDOOOOOOOODOO. OO,1IR
limit 00O0OOO.

00,000 Gaussian covariance J, IR 00000000 O0OOOOOO0O,

e 00 field 00 0O0OOOOOOOOOOOOO

0000.00000,cell 00 decouple 00O covariance Cyp O, 0 00O covariance C' O interpolate O O
10

00 Gaussianmeasure 1 000000000 O0O0O0O.

Theorem 3.1. [2, P.208][4] U0 s 00000 Gaussian covariance Cs 000,

& e @re) = [ [ ao [ a0 dCutey) i (35)

ooooolt, o

Partition function 0 polymer O O

0000000000, cluster 00000000000 polymer 000000012 . Cell O pair(0 00
0){O,0} 0000 POOO. POOD index 00000 s=(sp)eep 0000, Gaussian covariance
CO Co000O0D0ODO interpolate OO .

Cs(w,y) = Colwy)+ D soo [D@)Clw,9)D (y) + ' (2)Clx,y)O(y)] (3.6)
{0,0'}eP

Cs(z,y) = Colx,y), if s =0for Vb e P (3.7)

Cs(z,y) = Cz,y),ifsp=1forVoeP (3.8)

10 co000 coupling 0ODODODODODODO.

U 0ogoo FOOOOODDOOOODOOODOODOOOODOO,([2,4000000,00000000000000.
1200000000000 Gaussian covariance 0 interpolation O positive definite 00000, 00000 polymer 000
ooo0oooooooooooon.
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Oooo
2(5) = [ " Dduc,(9) (3.9)
gpoo. gooo
b¢A = Z(s)O s, 00000 (3.10)

000,00000 AODOO cell0 pair000000 P(A) 00, interpolating parameter 0 s = (sp)ep(a)
00O0.[0000 s, 00000 ]
0beP(A)DDO,

OyZ(s) = Z(s)|gb:0 (3.11)
DyZ(s) = Z(3)lsymt — Z(5)lum0 (3.12)
_ / 0., 7(s)dss (3.13)
oooo,
Zn = [ (Os+Dy)z(s) (3.14)
eP(A)
= 3 (H Db> (H ob> Z(s) (3.15)
YCP \beY beyYe
gooo.
b={0,0'} 000.s 0000000 Theorem 3.1 0000
0., [ duc.(&)F @) (3.16)
_ . 9 o2 o~ Va(®)
= Jaueo) [ ar [ driso,Ciwy 5 P (3.17)
_ ” 0 VA (@)
[ et / d / WOl (y)F<¢>> (3.18)
— [ dne. (015 ¢ - qu,F((")e Va(®) (3.19)
ood
0
5o = L) dya¢ Y350 ( ) (3:20)

O00.00000,cell 0,0/ 0 covariance C 00000000000, (3.15)0 YOOOOOOO cell
O pairwise 0000000, YOOODOODOODODOODO cell 000 connected component 0 00O 0O
O.YCAOccllOOOODODO

A(Y)

/ ds/duc ) Xpge V¥ (@) (3.21)
[01

(3.22)

B connects Y

xg = ]

{o,0}eB

¢u 3¢u/

oooo,

= Z Z H A(Y3), (3.23)

q=1Y1,Ya,--,Y,

00O0.000,Y%,Y,---,Y,000000,00
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e kA K 0D0,Y,, Yy OODDOOOODO
e Polymer 0 ADDOOOD: UJ_ Yy =A

0000000000. [Al<ec0O0OO0,0000000000.
(3.23) O, “polymer” Yy O hard core interaction 000000 AODOOOOOODOOOOOOOOOO
000, polymer 00 OO0,

3.2 Cluster OO

Section 3.1 0000 00O interpolation Cs O positive definite 00000, 000 polymer 00000
000000000000 0D0000. OO0 Section 3.1000000, polymer 0000 celOOOO
OO bond O loop 00 O0O0O0O0OO0O0O, 000000000000, O000000,000000000
O polymer 0O0ODOOODO.

00000, momentum space 0O UV cutoff M 00O O, Gaussian covariance Cy; O C, partition
function Zy p O Z, O0O0O.

Partition function O cluster O O

< Stepl>» 000000,

- Za Za
Iy = —r =2 3.24
A=z T (3.24)
OCA
O00.A0DDO0 ODO0O0OODOODODOOO0.
517527...7D\A| (3.25)
000 o,=0'000
Cs, = s1C+(1-s1) (0,00 +07COY) (3.26)
= 0,00, +01CO% + 51 (0,C0 +01COyq) (3.27)
O00.000
0)=1-0 (3.28)
O00. 000
Zn = [duc, @) (3.20)
51:1
! d
= [, @@ 4 [Cds [ duc, (@ (3.30)
1 8120 0 dS1 1
ooQ
In="Tog+ Y, Z0" (3.31)
0270,

13000, 324000000 Z, 00000, polymer D ADOODOODOODO UZ:IYk:ADDDDDD. (3.43) O polymer
ooo,000o000.
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goog.ooo

oo, 1! o) v
R = / ds) / i, (0)55—C e (3.32)
0 0 0
9om Ca¢u = / dm/ dy C (,y) 7~ 56) (3.33)

000 [Theorem 3.1 00].

< Step2>> (331)00000000,A\D' 00 020 decouple 00 parameter 000000000
O,Stepl000000000000. 00, (33)000000000, Opp=0,U0,0 O}y =A\ Oy
0 decouple O 0O parameter so 0000

Csys, = 5205, + (1 — 52) (01205, 012 + 01,C5, O7) (3.34)
gooo
Z/?mg Z511252ZD' + Z (D1D2 (O10s) Z(Dlﬂz)(ﬂzﬂs)) (3.35)
O3#07,02
gooo. oo
~(D1D2)(51D3) . 1 / / (9 3 a a *VA(¢)
A = — [ d d C Cy 3.36
: 2 ] e g5 C 550, Boo, C Bae, 0
5(0105)(0203) 1 / / 0 0 0 9 —Va(é)
A = — [ d d C Cy 3.37
: 2 O e g5 C 850, Bon,  Boe, 47

1 1
/ds = / ds1/ dss (3.38)
0 0

< Step 3 > gobgooaobooaoboobooad,

goo.

ZN{,, Y C A, 7 :rooted ordered tree on Y (3.39)
gooooo. oogo

e YO ADDD cel0 (00O0DO0)00O0O

e rooted ordered tree on Y 00 0O

()Y OODO celDODOOODO tree0O00O
(2)root 0O0OOOOOOOOOODO
(3)bond 00 0O00O0OODOOOO
(400000, root 000000 consistent 00000

e ZZOODOOODODOO.

Z = g [asdrs) [ due, 0% (3.40)

000, M,(s) O s1,80,---0000,C, 0 tree 0000000000 decoupling parameters s
00000 covariance, 0 0O O

0 0
X = ] c (3.41)
(Oa,04)ET a¢5 a¢5b

ugoo.
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goao

A(Y) = > AR (3.42)

r:rooted ordered tree on v

oooo,

ZA=1+§: > %kHlA(Yk), (3.43)

a=1Y1,Ys, .Y,
00000.000,%,Y,,---,Y, 000000
e Vi CA k=1,2,---,¢q
o |Vi|>2, k=1,2,---,q
e kA K 0D0,Y,, Yy OUDDOOOODO

O000000. |Al<eoO00,0000000000. 000 cluster expansion 00 0.

Unnormalized Schwinger function O cluster O O

Unnormalized Schwinger function

N
- 1
S [T ste " @duco) (3.44)
o i=1
goooooooooooao
- i 1
San(zr iz, ,an) =) Y ~ T4 M) (3.45)

goo.ooo,bo
o I 00000 Y,00OOOO.
e YV, CA
o |Yi|>2if 21, -, 2n ¢Y5
e kK 000,Y,Yy 000000000

gooaood.

e (340)0000D0O0O0O, Zo O lower bound DOOOOOO, 000

vim [ Vold)ducs (9) < oc (3.16)

ooooo,
Zn = / e Vo @ dpeo (3.47)
> exp (- / Vg(qb)ducu> e (3.48)

ugbooano.
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3.3 Mayer 0

00000000 (hardcore 00) 0O (343) 000000 Z,0,000000000000000 W
000000,Zy=eY 00000000 [(3.55) 00]. 00 unnormalized Schwinger function (3.45) O
000000000, Zy, 00000 [(3.61) 00], normalized Schwinger function J 000000000
(3.62) 0 0.

Partition function 0 0 O

0000 polymer O ordered sequence

M= (Y, -, Y,) (3.49)
O configuration 00 O,
AM) = o H A(Yz) (3.50)
PM) = {Z]|1<’L<]<q} (3.51)
ggodooon
<Y, Y; > = (3.52)
otherwise
oooo,
Zn = Y AM) ] (-<vY;>) (3.53)
M (4,5)eP (M)
= Y A Y ] (—<wy>) (3.54)
M JCP(M) (i,j)eJ

O00.000,formal 00O00DOOO [12],

Zn = ;}%(%ﬂM)A(M)) (3.55)

™) = > [ —<vv>) (3.56)
JEC(M) (i,j)ed
CM) = {JcPMM)| J connects M into a single component} (3.57)
ggd
1 ~ 1
W1og Zn = T > T(M)AM) (3.58)
M

OO00. 000 Mayer expansion 00 0.

Theorem 3.2. [12][19, P.180] O O

> AWM <1 (3.59)

v30,ycR?

ooog, (3.58) 0 ADDDDDDDDDDDD,AHRdDDDDDD. o0, (3.59)0 xO0oooo
gooaogad. <o

(3.59) J000000DO,0000000D0O0OO0OO.
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e (3.41) 0O OO, covariance C' 0 massive decay O O
e (340) 0000, X, 0000 ¢ 000 potential Vy-(¢) O hit 000 0O, small constant A 0 0 O

e (340)0000,0<e Y™ <100000

Schwinger function O 0O O

Unnormalized Schwinger function (3.45) 00000, 00000000000. 0000, polymer Y O
(activity A’(Y') O) “external variable” ¢(z;) DOD0O000,00000000000O. configuration
M= (Yy,---,Y,)000,Y,---,Y, 00000 external variable 100 ¢ ={z1,---,2ny} 00000, M
O (-configuration OO0 OO0O0OOO. OOOO

SAn(©) = > T(M)A' (M) (3.60)

M:¢—configuration

0000, formal 0 Sy v O factorize O O

San(Q) = Za ;UC IS5 (G) (3.61)
oo
San(Q) = CZUC IS5 (G) (3.62)
ooo [12].

Theorem 3.3. [19,P.194] A0000000O0O, (3.60),(3.62)0, A0000000000O0O0OO. OO0

Sn(z1,-,2N) = limdSA,N(zl,~-~,zN) (3.63)
r—R

goooo. <o

3.4 Reflection positivity

lattice regularization (2.23)-(2.25) 000 O00O0OO.

<P >ae = 5 [@OF@) (070 (3.64)
Zne = [dv(@)emp(os9) (3.65)
016 = 3 Jeyb(@)6ly) (3.66)
Joy = < le-yl=emyel (3.67)
0 otherwise
dva(¢) = IGIAde(x)) (3.68)

dv(op(x)) = exp (—)\€d¢(l‘)4 —el(2de? + m?)¢(x)?) do(z) (3.69)
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Theorem 3.4. 00 A O

(1)00 z'=000000000000,
(2)00 z' =¢/200000000000,

0000, lattice * model (2.23)-(2.25)0, 000000000000 #0000 reflection positive O
ggd. <o

Proof. (1) ADDOODOOOOOCOOOODOOOO

[ano) = [T ato(a) (3.70)
[avee) = IT avtoto) (3.71)
[ - 1] avtota (3.72)
¢Jop = <Z () Sy d(y) (3.73)
Iro = _Z e ytl) (3.74)
oI ¢ = >Zy> &) Joyd(y) (3.75)

r1<0 Or y1<0

000. F(¢) O ¢(z), ' >000000000000, (3.64) O

F(®)0F(¢) >r,e = ZA /duo /dl/+ /dy_ exp(pJP)F(p)0F (9) (3.76)

= 7 / dvo(¢) exp($Joo) ( / v (¢) exp(¢J+¢)F(¢)> (3.77)

=Y (3.78)

ooo0oo. (2)000. .

00 2! =¢20000 ADDDDOOOOO,Ar=An{z!>¢2}000. A, 000000000
0000 F(¢),G(¢) 000, Schwarz 0000

| < FOG >p . | << FOF >)/?< GoG >)/? (3.79)

O0000.000 zeAL 000 y=020000,

| < F(6(2)g(6(y) >ac| < < f(@(@)f(6(y) >V 2< 9(d(x))g(b(y) > )7 (3.80)

goad.

oo,00 ADDOODOODODOOOOOOOOOOOOOOOO.OO0O0O,0000000000,AO
torus 00000, 0000000000000000000000,00000000 reflection positive
O00.000 (3.80) 000000000, 00 chessboard bound 000 .

Theorem 3.5. [21] 000 ADODOOOOOOO. O zeADO0 F()0¢t000000000,
\<HF >AE|<H|<HF >pc |VIA (3.81)

ooooo. <&
4 ADODODO0DO0OO0O0OODOOOOO,JOOOOOOO.
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a=(a;) 000,
¢o° =] é(a)™ (3.82)
00 0. Schwinger function < ¢® >, 0 (3.81) DOO0OO,

| <6 >acl < ]I <o >ac 1" (3.83)
z v

0000,000 200000000,0000 20000 1000.000 <[[,¢é()* >rc0000
ooooo,

—d(2)* = d(y)* < 20(2)d(y) < ¢(x)* + (y)* (3.84)
O0000,000 decouple 00O

| < ]I o) >a.c| < const. (3.85)
Yy

goo.ooooo

Theorem 3.6. 000 ADOOOOO0O0OO0O0O0O, Schwinger function < ¢* >5 .0, A000000
gooooagt. o

3.5 Correlation inequality

0000000000000000 [Grifiths 000000000,

Theorem 3.7. ¢~ —¢p 0000000 ROO measuredv 00000000000

<F@)>s = o [T]dre)F@es(y 1.0 (3.86)
z = [ TLavto) exp(3 1us®) (387)

gooo. oog,
Va  J.>0 (3.88)
vo [ Tl aviote)le”|exp(3 a6 ) < o0 (3.89)

gogo.oooo
<¢*>; > 0 (3.90)
<P >;—< > <P >; > 0 (3.91)
9 8

T <¢’>; > 0 (3.92)
gogogg. &

B O000,A—20000000000000. 000000000 Schwinger function 0000000000, 000000
00000,000 correlation inequality 000 000.
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Proof. (3.90) 0 exp DODODDOO.
(391)0,¢0 000 copy D ¢ DOO,

<P >5 — < 9% > < ¢ > =< ¢%(¢F — ¢'P) >,
000,000 ¢=¢+n,¢ =6—0000,670000, (3.90)0000.
(3.92)0 (3.91)00D.

000 (3.92)0 (3.64)00000.

21

(3.93)

Theorem 3.8. Schwinger function < ¢ >, . O, free boundary condition D000 ADODOOOO

0000, infinite volume imit 0O 0 OO .

<&

Proof. 00O AODOOOOOO, @670 J, 000000000O000O000,0000000. 00, free
boundary condition O periodic boundary condition 00000 J,, 0000000, Schwinger function
OO0000. 0004, Schwinger function 0, ADOOODOCOO bound OOOOO0,0000000. o

4 ¢t000O

Momentum cutoff 000 2 00 ¢* model 0 UV limit 0, 00 000000000000, OO0
O, cluster/Mayer 0 00 O IR limit (infinite volume limit) 0 O 0 O, Schwinger function 00 000 0.

Lattice cutoff 00 0O construction 00000, [fjU00000O0O.

4.1 Renormalization

Feynman graph
Cy O UV cutoff 00 O Gaussian covariance (2.15) 00, Gauss 0 00O

<F(¢) >c,, = /ducMF(¢)

ooog.
000 field 000 Gauss OO,

2N
< H (xr) >cn= Z Om(Thy s Thy) -+ Ot (Thon 1 Thow )
k=1

pairing

0000, pairwise contraction 00 00O . 00O, unnormalized Schwinger function

Sapan(@r, - mn) = /ducM H¢($k)€7v"(¢)
k=1

= < H blap)e VA >
k=1

gooabooaoboooboobooon,

n

< H¢($k)€_VA(¢) >on = Z (_l')j

k=1 =0 J:

jO0000,00000 graph G (Feynman graph) 00 O00000O0.

<V H (k) >
k=1

(4.3)

(4.4)
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()n00 00 OO0
(200 00 000
(3)0000,400 0 000

Graph G OOO0O0OOO0OO0O G O amplitude D00
oddn=20000,000000000:

jZODD —:CM(IEl,.’EQ)
j=100 AQ = A/R2 dyCur (1, y)Cm (Y, ¥)Cnmr (y, 2)

j=200 )\2@ =\ /R2 dy /Rd dzCp(z1,y)Cr(y, 2)2Crr (2, 22)

n=40000,j=200
>\2>O< 2)\2/ ”dy/RQ Cor(x1,y)Cnr (w2, 9)Coar (v, 2)*Coar (2, 23) Cra (2, 74)
ogoooo.
oood
000 graph OO0, (470000 UVewof OO0O0 M —oco0O00OO,0000

Jim Cu(y,y) = o0

22

(4.9)

(4.10)

0000 [(26)00]. 000, (4.3) 0000 UVlmit M 0o 000000000, 000 counterterm
0000000000000 00000. 00000 counterterm 0, 000000 Wick product 000
O0000. 00,2000 Gauss covariance O singularity 0, (2.6) 000000000000, (4.8)(4.9)

oooo,

e 000000 graph 0, (4.7) 0000 Cy(y,y) D00D0DODDODO.

Wick product

Jointly Gaussian variables ¢;,j = 1,2,---,k 00000000000000000C000O0O00 F(¢) +—

. F(¢) D,
1. =1
9 . _ .9 .
8¢j.¢. = rrads
< ¢p%:i> = 0, |a|>0

0000000 Wick product 000. 000, < > 0 Gaussian expectation 000,
o = [lo™
J
>
J

|

goo.

(4.11)
(4.12)

(4.13)

(4.14)

(4.15)
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00 (4.1) O Gaussian 00O

co(x) = ¢(x)
¢*(z): = ¢*(x) - Cu(0)
¢'(x): = ¢'(x) —6Cu(0)¢*(x) + 3C(0)*
19" (2): = p(x) 19" (x) : —(n—1)Cwm(0) s ¢" P (2) , n>2

Wick product O Gauss OO

Wick product 000 Gauss 0000, 00000000000O.

Theorem 4.1. RO fieldp OO0OOOODOO

0

< ¢(x)": R >cp,= /R2 dyChr(z,y) <: o)1 - WR >,

Proof. (4.19) 00O O

<P R >, = <ox):d(@)" R >0, —(n—1)Cy(0) <: p(x2)" "2 : R >¢,,

00O0,“00007 [2, P.208]

< OF@) >eu= [ dCuo) < GaF(O) >cn
ooooo,
<t ()"t R >cy,
o O e9) < G (9 B) Sy, —(n = DOW(0) <5 6@ R e
_ /R2 dyCas(z,y) <: d(a)" - %@R >0
ooa.

000 Wick product 00 field D00 contract OO ODOOOO0OOOOO. O00OO:
< ¢t (n) = 0 (1) > =4Cu (Y1 — y2)!
000, Wick product 000 Gauss 000
e Wick product 00 field D00 contract 000000000000

e pairwise contraction 00 00000 ODOOOO.

23

4.16
4.17
4.18
4.19

—~ o~ —~
—_ O ~— —

(4.20)

(4.21)

(4.22)

(4.23)
(4.24)

(4.25)

(4.26)

000, Wick product 000 2 00 Gauss OO (renormalized Feynman graph) 00 O00000O0.



4. 44000 24

Renormalization

Renormalized potential [

Va(o) = /A dr : ¢(x)* - (4.27)

ooooo. o000,
SF@) s = 5 < FE) ey (428)
Zaym = <e " >c, (4.29)

O UV limit M — oo, IR limit A — R>0000.
Renormalization D00, (2.18) 0 V, O (427)0 V4, 000000, 000000000000000
O0O000D0. 000, (418)0000,000000 ¢00000OOODOODO,

e 000 (2199000000 cancel O,
e 000000000, (210), (215 0000,00000 m20 m?2—6ACy(0)000000000.

00,000 action (2.10) DO OO0 parameter 0 cutoff M 000000000000 OO0OOO,O00
000000000oOoOooooooots,

O00,X— 00 ¢* model O Gaussian measure 000 000000000000, 00 Schwinger
function Sa(z,y) O, A 000000, (2.7) 0000 massivedecay 00000 00. OO00O00O decay
000000 m O, Gaussian covariance D00 m 00000000, counterterm 0000000000
parameter 000 (M OO0OOOO0OOO)O00OODO.

000, counterterm 00000 OO0OO0OOODOOO action 00000 (cutoff dependent O ) parameter
O bare 7 | Schwinger function 0000000000000 physical (renormalized) 1* 000000,

e bare 00 (m? —6ACy(0) 00) 0 physical 00 (m200)000000000

000000,0000000000000 modelD000DDOODODOOODODOY.
0000000, ¢ O Gauss measure uo 000 variable 000,

A

om(x) = e @(x) (4.30)
O00.0000, ¢ 0 GaussODO pe,, OOO. 00O,

Vam(p) = /\/ dz : o (x)t (4.31)

A

1
< F(om) >am = <e MO F(gyr) >c (4.32)

M

Zay = <e @ sg (4.33)

gooano.

40000, (5.15) 0000, : (8¢)2 : 00 counterterm 00D D0 O0O0O0O0O0O0OOOOOO0. OO0 ZOOOOOODO
field p 0 Zep OODOOODO0O, OO counterterm 0 Gausssian measure 00O 000. 000 ¢ OO0O0O0OO0OOOOOOOO,
renormalization 000000000 0O0O.

17000 model 000D OO parameter

¥ 0pooo0o00000000000

¥ O0pDDo0000000000000,0000000000000000000O0O0D0D00000. 00000000000, O00
0000000000000 0O0000000,000000000A0, regularization 0000000000000 0O0OOCOOOO
0000000.00000000 regularization 0000, 00000000000 OOOOOOOOOOOOO,00000 UV
cutof 0000000000000, 00000000000000,0000D000O000O00O00O00.
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4.2 0O0O0O0O
oooooo
e Renormalized Feynman graph (Wick product 00O Gauss 00 ) O UV limit

e Partition function 0 M-independent bound

Zanr < cconst.|A| (4.34)
O00.000,0000 LY(S,ue) 00 functional analysis 00 0000.

Renormalized Feynman graph

00 w(z) =w(wy,z2, -, z.) O

w € LYR?™), Jg>1 (4.35)
Suppw C Oy x Oj, x ---0;, (4.36)
gogooooo,
Ruto) = [ e[ outz™ - wiz) (137
i=1
goad.
Theorem 4.2. [4vVvr>1000
R = A/}linoo Ry in LY(S', pe) (4.38)
o0 rROODOO
IR visney < KNT[Ne!lw]lea (4.39)
O

O0000. 000 NgO,RO0000 fieldé(x;) D00 cellOO0DOOOO0ODODOOOO, N=> Ng,
00 KDwOODOOOODOOO. <o

Momentum space 00 Cy(p) >000000,000000 wO Fourler 000000000 ODO. OO
O L'norm 000, 0000 Feynman graph OO0 2000 0000000. » 00000, R4, O Ry
00000000000, boundd L' bound 00000, » 000000000, Holder DOOODO
gd

v<i/ = | R|w<| Rl (4.40)

O0000000O0000.00,000 ¢0 NOOO GaussOOOOO (N/2))ODDOOODOOODOOO,R
ooooboooboo

(g) = ;QND ! (4.41)

O00000. 000, “local factorial” [[pNg! D0OOO0O0O0,0000000.
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e field 000D cellD0DOOO0OD,000 cellOODOO field ¢(x;),¢(x;) OODOOO0O0ODO |o; — )
000000, Gaussian covariance 0 massive decay O 00O .

Partition function

Wick product 00000, 000 bound
0<e M <1 (4.42)

00000, Wick product 000000000 counterterm 0000, 000000 uniform bound OO
00 [M-dependent bound OO 0]. 000, Wick product D 00000

<Vam>c = 0 (4.43)
00 (4.26) 000
<V@u>c < const.A?|A[? (4.44)

0000000 [const. O M-independent], effective D0, VA 00000 AMA|OOOOOOOOODO
o.o0o0,00b000000.

Theorem 4.3. [4]36)\20,1§1/DDD,[|[| K, O0OoOo0oo,
” e—Vam ||LV(S,’NC)S eKvlAl (4.45)

goooo. <o

Theorem 4.2, Theorem 4.3 00, 000000000O0.

Theorem 4.4. [4 ReA>0,v>1000,00

Re " = Jim Ruye™ V2™ in LY(S', uc) (4.46)
oooo,
I Re™™ |lpv(srpey < KNI Na! [ w[pa e (4.47)
g
ooooo. o

4.3 0OO0OO0OO0OO

000 UV limit 0000, Section 3.2,Section 3.3 0 cluster/Mayer 00000000, ¢3 model OO
ooogd.

(1) Wick product O OO0 renormalization 000000 (4.28) O, Section 3.2,Section 3.3 O clus-
ter/Mayer 0O 0O0OO.
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(2) Polymer activity O UV limit O Theorem 44 00 000000. 00O Section 4.2 0 C,Cy O,
custer 0000000000 C,,CysD00O0OCCOOODODODODO.
(3)00000000000000000UO00UOO0O,IRlmit000.

go,0o00o00oooon.

Theorem 4.5. ¢3 model O Schwinger function

Sp(x1, - 2n) = lim  lim < ¢(z1) - d(Tn) >AM (4.48)
A*»RZ M—o0

0,8 RYZ)000000000. o

5 ¢iel0DDOOOODOO

OO0o00O00DOoO0ooO0o0ooO00oOb00b0. oboo00D0odD0 model OODOOO, 000000
O 000000.00D0000D00 scale00 OO0DOOOO0O0DOOOODDO, multiscale analysis 00O
goooo.

5.1 Renormalization

Feynman graph 0 0O 00O

d00 ¢*model 000DOD00D0O0O0O0DO. nO000O0D j>00000000 connected Feynman
graph G OO0

w(G@)=(4—-d)j+ n—d (5.1)
good.
Theorem 5.1. w(G) <0000, GO amplitude 0D ODO. o
45 —
Proof. 0000 = ) " gppoo. Feynman graph O amplitude A(z1,---,2,) O Fourier 00O

/dxl e /dmn exp (Z ipkxk> Az, ) = 5(Zpk)A(p1, ce D) (5.2)
k=1

k=1

(000 6000, amplitude 0000000 OOOO) O “kernel” A(p1,~-,pn)|],DD Feynman rule
goooooooo.

e 000 (Pi+m*)' 000 (k=1,2,---,n).
e 00O (¢+m»)~t000 (k=1,2,---, "),
e 100 momentum 000000 §00000.

e 000 momentum g, 0000 RYO0000 (k=1,2,---,22).
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ooo,
e J00000D000000C momentum 0000 45 — n.

e OO OODO j0O0,0000000,00 momentum 00000000 ((5.2) D000 6000

4_
oo,0oo0po0ooo 22" i1,
000,00000
44 -n
4j—n<( i+ 1)d (5.3)
00 w(@) <0000, o

OOo0O0O00OD0O0O00.000,G0O subgraph OOO0OD0OD0ODODO, GO amplitude 000000000
0.000,GDO subgraph (GOOODOO)0O connected 000 FOOOD,w(F)D w(G)OODOOODO
go. 000, Fo00b00o0o0onoOo FOODO,FOOODODOO GOODOODO FODOODOOOOO
rFoogooog.

Theorem 5.2. [19, P.65] Graph G O subgraph F O, connected 0000000000, 000
w(F)>0 (5.4)

OO0o0o0oo0g, GO0 amplitude 000000, <o

00 (54)000000 subgraph 0, 00000000.
googog

000 subgraph 0O OO

000.d00bOoo0oOn graph O
QO 59

O000D00,000 Wick product 00O renormalize 00O .

oooooo

000 subgraph 0O OO
o1

000.d00bOoo0oOn graph O

(J,n)=(1,2) : Q (5.8)

(22) © 3

(Gn) =
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00000.0000000000000 counterterm O, Wick product 00O 0O 0O
Ko /A drd(z)?, ko= —6AC(0) (5.10)
ggd,0bbbbb0o0ddubl counterterm U,
m[\dm¢(x)2, /f=48)\2/AdyC'M(x,y)3 (5.11)

000. 00 ¢3 0 counterterm O

(ko + ff)/ dro(z)? (5.12)
A
potential 0 (00O OO0OO)
Var(9) :)\/Adm co(x)t +H//\dm:¢(x)2: (5.13)
goad.
googog

n<400 subgraph OO0 O00O0OO0OO,00 n=2,40000000.000,000000 subgraph O
JoddOd counterterm DO OO0O0O. OOOO

oA /A ded(z)! + (ko + #) /A dod(z)? +C /A d(96)(z) (5.14)

0000 200 400000000000, 000 explicit 0000000000, ODODODO,
Section 52 0000000000000 O0D0O00O. OO ¢} O potential O, N =A+6\0000

Vam(o) = )\’/Ada: cp(x)?t —|—/€’/Ad33 cp(x)? —|—C/Ad33 :(09) () : (5.15)
ooa.

0000000000 [20]

d>400,0 n000O0000O0OO0 jO0000,w(G)<0000.0000000000000000

goo,0bdn counterterm DO UODOUOOOOOO0OOOOOOOO0O0OO0OO.
00,4000000,counterterm OO0 0000000000 O00DOOO,000000000. A0

000000000000000000000000000000000000000 00020,

ugb jboaboaoaoo

2,3,4 0o

>5 ooo

5000000, non-trivial 0 ¢* 0000000000000 O0O0O0OO0OOO.
20000000000 00000,000000000000000000000,000000000, subgraph 000000
OO00d. Salam 0O QOO

The difficulty, as in all this work, is to find a notation which is both concise and intelligible to at least two
persons, of whom one may be an author.

ooooooo.
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5.2 UO0O0oQno

#s0 UVImit 0,0000000000000000000DO. ¢;0 UVImit0OODODOOODODODO
goooo,IRO0000000000DOO0O0DOO0DOOO0DbO0OO0O0bO. OO, 0000000 bOoOoOboOoon
goooaoo.

goodoodn

00000 Gaussian covarinace ((2.15) 00 )0 D OO, D00 Gaussian covariance O O

N
D=> Dy (5.16)
k=0

O0000O0. D O covariance 000 (000000 ) Gaussian variable O ¢ (z) 00O,

k

Gro = > ¢j, k=012 N (5.17)
7=0
k

Dio = » Dj, k=0,1,2---,N (5.18)
7=0

0000, ¢go O Dio O covariance 0 00 Gaussian variable 0 O O .
000,000 He O upOOOOOOO

[ano@m@) = [ dun,(ono)Hons) (5.19)
— [ duparo(6x-10) [ dupn (o) H(Gx + 6-10) (5.20)
goooooo. ooo
Hor(ér10) = [ dun (@0H(G0+dior0), k= NN =101 (5.21)
Hy = H (5.22)

ooo.
Covariance 000 (5.16) 0, 00000000 scale 000000000, ¢, OO scaleD “000” 0O
0000, recursion (5.21) 0000000000000 D0OO0O0ODO O0OO.

Gaussian measure 0 scale 00 0O O

Covariance Dy o 000

Dyolz,y) = /Rd%x(ﬁkp)dp (5.23)
xp) = e (5.24)
0o00. 000
Dy(z,y) = Dyo(z,y) — De-10(z,y) (5.25)
= /Rd%(x@’“)—x@(’“)p»dp, k=12, N (5.26)
Do(z,y) = Doo(z,y) (5.27)

etP(r—y) J 5 o3
= /Rd mx(p) P (5.28)
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000,00 ¢x O, momentum scale L* 00 (00 L=*00) 0000000 Gaussian variable 0000

go.

00000, heat kernel x(p) D OO scale 000000, cutoff function x(p) D000, Ce 00000
O00000. 00, lattice regularization 00 00 scale D00, Block spin 0000000000 [14].

Scaling

00 (5.21) 0 scale 000000000, 00000000 iteration 0000000, L>1000, ¢p(x)

O scaling OO,
pr(x) = LM (L7 a)
O00.0000, ¢gk(x) O covariance O
Cr(z,y) = L7*=2DDy(LFz, L™ y)

Oo00.000 (b26)000O0O,

eiP(z—y)
Cr(z,y) = /Rd W(X(Z’) — x(Lp))dp

000,C, 000 k00000,000 ¢,00000000 k0000 O(1)000.
ooo,

SOIC,O("E) _ Lfk(d72)/2¢k’0(L7kl,)
Cko(z,y) L™= Dy o(LFz, L7Fy)

oooo,

ero(@) = pr(@)+ L7 0 o(L7 )
Cro(r,y) = Crlz,y)+ L DOy o(L 2, L 1y)

goooo.oono,
Hi(¢r,0) = Hi(pk,0)

o0o0oo000 Hg O,

/ dpp(D)H(@) = / A1 o (6.0) Hi(1.0)
= /duck,o(wk,o)Hk(Wk,o)
Hj 1(pe-10) = / dpc, (o) Hi(or () + L7722, o(L71)

(5.29)

(5.30)

(5.31)

(5.37)
(5.38)

(5.39)

OO000.00,Hg—1 0O, Hg O fluctuation o, 0000000, 00000 scalingO00O0O0O0D0O0O.

00000 Hy O
Hy(p) = exp(=Vn(p))

00000, ¢s 000

Vn(p) = /LNA de (LN () +L7 k1 p(2)? )

(5.40)

(5.41)
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¢3 000
Vn(p) = / dz (N () +L7 2K o()? 1 ¢ : Op(2)? ) (5.42)
LNA
ooo2t.

goodaooan

UV cutoff 0 scale 000000000000 ,0000000 (5.21)0,

high momentum 00000000000 “0O000”00000, low momentum OO0 OO
000000000 marginal distribution 000000000

O000.000,scale 000000000OO00O0OO0ODO (5.39)0

U0 H,O0OOOOOOOODOOoOOoDOOoobOobOobooboooo,b0b00ob0bobobon
obooob H,., OOO,0000000000

gooooa.

5.3 UOoOogobobod

oOoD0,000000 flowODODOOCOOO,00000000. DOODOOODOOD,00000 for-
mulation 000000000, 00, Brydges group OO0 00000000 DOODOOOOCOOO0O,O000
formulation 0000, 000000000000 OO0O [13].

Polymer 0O O

OO0 IRcutof D000, 0000000 ADDCOOODO. ¢=9¢n0o0 ADODO field 0000, ¢ O
scaling @0 0 LFA DD fieldOOO.
000000 kstep O Hg(p) O, “polymer 007

Hy(p) = > [TAGX: ) (5.43)

{Xi}:) ) Xi=LFA ¢

ooooooo.ooo,

e “polymer” X; 0 L*FA OO cell00DOO

e {X;} 000000, LFA O disjoint polymer 00 000000000000.

e “polymer activity” A(X,¢) O, ¢|x 0OO00OO.
ooo,
e Hi(p) O (543) 0000000000 inductive 000000,
e A(X,9) 000000000000

00000000.000 AX,o)ODOOOOOO,

21 000 Wick product O, (¢ D0000) ¢ O covariance 0000000000000, 0000, : ¢* := L2N@=2) . p4 .
ooooo.
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(1) X O shortest spanning tree 22 000 L(X) 0000 decay

(2)p0000000

g0 norm 0Ooooooong.
Local potential

0000, polymer activity D00 D0O0O0OO.
A(X, ) = B(X)e™ "9 + K(X, ) (5-44)
ooo,

1 X =cell
oX) = (5.45)
0 otherwise

V' O “local potential”, O O

WX&%iiQW@Mm Q:000 (5.46)
000000 functional O, K O local potential 0 00000000, 0000

> [[E&X)e VX9 + K (X5, )
{Xi}:y o, Xi=LkA @
= > e (VIR Xiw) [[ KX ) (5.47)

{X:}:y . XiCLFA

O00.000000 {X;}000000,00 LFA OO (0000) disjoint polymer 0 OOO0DO (OO
0000)0oooo. oo (47) 0000 K=00O0O0O0O,

Yoo JIoX)e V&) = exp (~V(LFA, ) (5.48)
{Xi}:ZiXi:Lk'A i

00000,000 Hy O, (5.41), (5.42) 000000 local potential 0000, (5.43), (5.44) 0000
oo.

goodoodaooad

00000000, polymer activity A= (V,K) 0,000 A'=(V,K') 00000000000, 00
ooooooooooo?.

(1) Fluctuation: (5.43) 0 (5.39) 0000 pe, 0000,0000000 (543)00000000.

(2) Extraction: 000 KOOOOOOOOOOOOOOOOOO VOOO.vVOOO counterterm O,
0000000000000000000. ¢400,000000000000000, counterterm
goooo.

(3) Scaling: Scale 000000000, iteration DO O 0O.

22 X 00000 cell 000000000 connected tree graph 000, 000000
2 00000000000000.



5. ¢4,¢t00000000 34

54 000000 flow

000 Ay =(Vy,Ky)000000000000000,00 flow (Vi, Ki),k=N,N—1,N—2,---
00000.00000,V,0000000,K,000000000. FlowDOOOOOOO V, 000
000,000000 K,0OOOOOOO.

000000000000,000000000 (000000007 00000.

(1) v, DDODO0O0OO0O00D000 (polynomial interaction)
(2) Coupling constant (V;, DODDOOO00O0OO0 A)OOOOOO (asymptotically free)

Asymptotically free 00000000, 000 flow 000 (UV/IR)00000 (00000O0O00).
¢*model 0000000000D00000O0O0DO0D00.

ub (ooooboboooo
2 ao
3 uvioooo
4 IROOOO
>95 IROOOO

20000,000000000000D0000000000O,V,000000000.000 ()0
00000,000000000000000.000,000000 UvO0O0O0O0O0O0OODOOooooao,
(0000000000002,

300 (Uvono)

00000000000 Ay = (Vy,Ky) O,

W(X,p) = /X dx (L_N/\ cp(x)t 4Lk s p(x)? ) (5.49)
Ky = 0 (5.50)

O00.00000000000000000,00 flow (W, K,) OOOOO. 000OO V,0O0O0OOOO
0,K,000000000.L7*\000000 iterate 000,

Vi(X,p) = /X dz (A s @(2)! : +ry  o(2)? ) (5.51)
M = LR\ (5.52)
ke = L7240\ (5.53)

goo.
ooo0, 0000000000000,k=000 lowOOOOOO.00,k=000000,000
NDOooODOOOOODOD UVImit OODDO,A000000000,UVImitdO00OO0OO00ODOCOO.

300 (IROO)—000

Massive model(m > 0) O IR limit O cluster 00000000 O, massless model(m = 0) O cluster O
00000O0. 00000 model ODDOODOOODOODOODO,DO00DOOCDOODODODODOOONO,
Wilson, Kadanoff 0000000 OODO.

24 (1) 0000000000000000000. 000 (2)0000,0000000 (Section 5.5 00).
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Massless m = 0000, k=00000 k<0000 (IRODO)DDOOO, N\ =L" 2000000
OO0,000000000D0O000D00C000DODO00.00DCO0000OD flow O, 000 nontrivial
fixedpoint 000000000 OOOOODOO.

400 (UVOO)—000

¢; 000, 0000000, coupling constant A\, 0, 0 O recursion 000

AN = A (5.54)

Mic1 = A — Al +O(A\}) (5.55)
00d,e>0000.000,

A A k< N (5.56)

FYN R :

O000. k00000 N—-ocoOOOO, coupling constant A\, 0 00000 0. OO, X0000000
00000 UV limit O, Gaussian 00 0. 00O weak triviality 00O .

A0D000D0O0O0000DOO0, lattice regularization 00O O, triviality 00000000000 OO
O000o00,0000000000000 [8, P.389].

400 (IROD)

Massless m=0000, N=00000000 k——oco0000O0OO0O0ODOODOOOODOOOOODOO.
00000 coupling constant O flow O

A
A~ ;, i>1 (5.57)

000,IRO000 asymptotically free 00 0. 00 model (IR¢4) 0, 0000000000000000
00,00000000.

5.5 UOOgooog
goboobooboo,oooboobooboobooboooon.
e JDODOODO 1940 ~

— O0b0oboooooo
e JOODOODO 1960 ~

— oboooboooo
— gbooogoboo

e JODOODODO 1980 ~
— 0O Gauss 00O (asymptotically free theory) D00 OO
e 00O 2000 ~ 77

— 0O Gauss 0O (large coupling problem)
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- QEDO (0)OO
— quarkk ODO0OODOOO

ooo0o“Cc0000or’o0oOoUo0oOoUO0.0oo0o0o,00o0Dooooooooo [23.

oobooooboooboobooobbo oo oooooobooobooboooooboooon
oboooobooooboobooobD so0b000oDb 204a100000000000000O000O0DOO
oooobo---0000 204100000000000000D00000200000000000
obooobooooboooobboboobD 2000000000000 21000000000
ubooboabooobooboobooboobn

6 Fermion

Section 2.4 0 OS4 O, Schwinger function 0 000 0000000. 00, ¢* model 00000 OO0
boson 000. 000000 fermion D00 OO, 000 Schwinger function 000, 000000000
000000000000 PawliOOOODOO. OOOO0O bosonic integral 0 0 O O fermionic integral
0, Grassmann variable 0 00 000000% . 00,00 section 00000 gauge 1000000 fix
0000,00 section 000 00D0 functional integral D0 0000, 00000 torus T¢ = (R/Z)?
goooo.

6.1 Grassmann O[O

Grassmann variable [20, P.439)

goooo
Vi + i = 0 (6.1)
Yy + i = 0 (6.2)
Vi + 0 = 0 (6.3)

00000000 variable 4,1, i = 1,2,---,N 00000 C 00O Grassmann algebra G D00 0.
Grassmann variable [0 formal power series 0, 00 O000O0. OO0

exp(ip11p1) = 1+ h11hy (6.4)
good.
goooooo r1:g—-cC0od
I(F) =0, F:polynomial of order < 2N (6.5)
I(p1910athy - - o) = 1 (6.6)
00000, Grassmann integral 0 00O,
I(F) = / dpdipF = / dprdipydipadihs - - - dipndNF F € G (6.7)

goo.
25 Fermion 00000 Euclidean framework 0 0 relativistic framework 100000000, (5 000000.
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Grassmann Gaussian integral

NxNOOODO A=(4,) 000,

(0, AY) = D hidijthy (6.8)
;
nooo,
/ dpdp e~ @A) = (—1)NdetA (6.9)
/ dpdip Pithye @AY = (—1)N A7 LdetA (6.10)
[ dwdd by R = M A - A A (6.11)
goooogd.

6.2 Fermion OOOO

Euclidean Dirac operator [17]

00000 gauge group 0 U(1) 00, L*(T%) O act 0 02¢ Euclidean free Dirac operator 0 @ 000 :

d
= 0y (6.12)
pn=1
000, v, 0 Euclidean Dirac matrix
YV + WY = —20u (6.13)
Y. = (6.14)

000, 214/2 x 2l4/2 matrix 000 D0OO000. 0000 2 0000 spinor 00 0.
Gauge O

Gauge potential A, (-),p=1,2,---,d, 000 covariant Dirac operator [

d
aA Z ’Yu(au - igAu) (6.15)
p=1
@ —ig4 (6.16)

000.000,¢0000000,fermion 0 “007000.00 A4, 00000000000000. 0
0 section OO, 0000

A, € C=(T) (6.17)

O0000. 00000000000, @40 gauge 00D DO. 00, UB@)u(z) =e?@u(z) 0 U®) O
ooooo,

U(=0)Pa100U(0) = P (6.18)
26 0gOO0O, trivial bundle O section D000,
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goooo.

Quantization

38

Bosonic path integral (1.1) 00 00O fermionic path integral O, 00 formal 0 Grassmann 00000,

ooooooo.
1 _ - . _
7 _ ~ (@i atmD))
< F >y det(id + ) /dWwe (¥, )

O00,m>00 fermion O mass O,

old/2]

H H dipo(z)dibg (2), (a O spinor O subscript)

xETd a=1
old/2]

Guipa+mny) = [ do 3 Gul@)(Pa)sg + mbar)in(z)

dipdip

a,b=1
ooo.
000

S = (i@+ml)!

Sa = (ida+mI)™?
oooo,

<F>, = detS/dwdq[ze*(ll_”(s_lwd)w)p(dj’w)
00 F=10000,
<14 = dets / dpdipe (55 +oh)

= detSdet(S™" + g4)

= det(I +g54)
F=1vy()p(y) 0000,

< a(x)p(y) >a = det(I+ gSA)Sa(z,y)a

F = o (@)t (y)ve(a')a(y’) OO D,

_ _ Salxz,Y)ar  Salz,y)a
< Ya @) (@)l 4 = det(I+gsg)| TAEYr ALY

Sa(@,y)es Sa(@',y )ea

O00.0000000, Matthews-Salam formula 00 0.
00O section OO,

e Matthews-Salam formula OO0 O 0 fermion 00 O00O0O0OO0DOO

(6.19)

(6.20)

(6.21)

(6.24)

(6.28)

(6.29)

O0000000. 00000000000 Matthews-Salam formula OO0 00O0O0O0OQO, Section 7 O

go.



6. Fermion
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39

Matthews-Salam formula (6.27)(6.28)(6.29) 000000000 (fermion determinant) det(1 4 gSA4)
00,00000000000. 004, fermion determinant 00000000 O, Fredholm determinant O

formalism [10, 17, 18] 00000000

Fredholm determinant

L*(T%) 00 compact operator K 0 ¢=1,2,3,---000,
KeB, «— Tr(K*K)"? <
* /2 /4
K, = (T K)"2)
oooo.o0ooo,

B,CBy, p<q

KeB, K'e€B,,— KK €B,, p'+q¢'=r

gogooo.
K € B, 000. Exterior product A"L?(T%) O

UL A AUy = Kug A A Kuy , uy € LQ(Td)

00000000 operator O A"K 000, Fredholm determinant [

det(I +gK):=> ¢"Tr(A"K)

n=0

ooooo. o000
n 1 n
T (N < — || K |
oooon
|det(I 4 gK)| < eldllI Kl
ooooo.o0oo0 {\}O0 KOoOoooooooooao,

det(I+gK) = JJ(1+g))

J

ooo.
0ood,q=2.3,---000,

)
|
—

KeB,=1—- (I +gK ( 9" k>
q g )exp Z K c B

000000000000, modified Fredholm determinant det, O

dety(I + gK) := det

k=1

gooano.

q—1
(I +gK)exp ( (‘5)’3@)]

(6.30)
(6.31)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)
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Theorem 6.1. KB, OODO,

|detq(I + gK)| < elol"e@lIxl (6.41)
q—1

[T 1@ +gx)exp (Z (_]f)kxg?)] (6.42)
k=1

J
O0000.000 ¢(g) 0 ¢goooooooon,{\}0 KO o000000000.00 KeB,
gog

dety (I + gK)

q—l
det(I + gK) = exp ( Z TrKk> dety(I +gK), 2<g¢q (6.43)

k=1

000 lg| | K 1<1000
_ _ = (_g)k k
det(I+gK) = exp Z rK (6.44)
k
k=0

gogoono. o

Fermion determinant

Fredholm determinant O formalism O fermion determinant det(I +¢S4) 000 0OO.
00 Jgl|| S4|h<100000000, (6.44) D000 gauge OO effective potential O

- (—g)k k
V(A =>" T (S4) (6.45)

k=0

goooOoo.oooooo
/ diy - / dantr (S(an — 210) A(21)S (21 — 32) A(2)
S(xe — x3)A(x3) - S(T)—1 — 78) AT8)) (6.46)

Ograph DO0DOO0OD0. OD0ODOOO |g| | S4]i<1 00000000, effective potential V(A) OO
goooo.

Theorem 6.2. 00 A, cC>(T) 0000

SA e By (6.47)

000, detgi1(I+gSA) O well-defined 000 . o
Proof. 00O f,ge LY(TYH 000D,

| f(z)g(i0) |lq< const. || f [[Lell g [|La (6.48)

D0000. f(z)=A(z),9(p) =8(p) = p+m)~' 0000 (6.47) 000, O

000000000, (643) 0000 det(+9S4) 0000000

= (=9
exp (—Z ;f Tr(SA)k> (6.49)
k=1
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Jod.0oob,0b00d0000oobbboOodd counterterm

d

> #Tr (S4)* (6.50)

k=1
000000,00000000000. 000,00000 nonlocal O counterterm 0O 0 OO O, reflection
positivity 000000, 0000000000000000O00OO0 (gauge field ADOODOOOOO
ooooooooo). ooa,

/Qo x))dx ,/Ql(aA(a:))dx , Qo, Q1 : polynomial (6.51)

00000 local counterterm OO0 00000000 O0OOOOOOOO.

6.4 Renormalized determinant

UV cutoff function

1, |p| < M,
xm(p) = M >0 (6.52)
0, |pl>M,
oooo,
Su(p) = Sp)xm(p) = (b+m) xm(p) (6.53)

000.0000, SydeBy,k=1,2,---000,00 Fury 00000000,
Theorem 6.3. [20, P.276] k =1,3,5,--- 000,

Tr (Sud)f =0 (6.54)
goooo. <o

200000

Theorem 6.3 000, 000000000000, Tr(Sy4)? 00000. Momentum space T?* = 27 Z?
nooooo,

Tr (Su4)* = 1,(q) (6.55)
qGTQ* HY
i (q) = (2i)2 > xu@xa(p— )t ((B+m) " (b —d+m) ') (6.56)
pETZ*

0000,T%(q)0 M -0 000000000,

Th(g) = lim (T ()~ Ti (0)) (6.57)

ren
M—oo

000, renormalized trace [0 renormalized determinant O

Trren(SA)Q = ren )Au(q) (6.58)
qETZ* [

detren(I + gSA4) = ( =T pen (S A) ) dets(I 4+ gSA4) (6.59)

= ( =Tt pen (S A) ) dets(I 4+ gSA4) (6.60)
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JoodobD.0dDbo,00000 counterterm [

¢ ST (0) /T2 ded, (1) Au(z) = g¢Pkn /T2 dr 3" Ay(w)? (6.61)
1 —2m?
wnr =Ty (0) = 2n)? peZ:Tz* XM(p)m (6.62)

0000,k 0 M—-00oO000O00OO,200000,det(J+95S4)0000000000000O0OO.
JOoodOdOboO counterterm O, gauge O 0O O

detren (I +gS4) = detren(I + gS(4+ PE)) (6.63)
(0000 regularity 0000 0O)

00000000000 000000000 [Section7]. 00, gauge 1000000000 counterterm O,
e J0OIDOOO (and/or)
e momentum cutoff 00000000 gauge OO DO OO

gbooabooaobooabogoaog.
400000

DDDDDDDDDDDD,k:2,4DDDDD.MomentumspaceT4*:27rZ4[I[IEJEJEJEJ,

Tr (Su4)? = %4 SN T (@) Au(9)Au(q) (6.64)
qcT* Hv
Ty (q) = r > xu@xulp—a)tr (B+m) (b —d+m) ) (6.65)
pET‘l*

T(@) O M —oo0 (000)20000000,

. 14 14 T 14 ]' T O v

Tin(a) = Jim (T3 (q) — Th7 ( Zq O Tiy (0) = 5 Y a7a70:0, T3 (0)  (6.66)

= A}@Q@(qu) ~ T (0) - 5 Z q"q° 0,0, T}y (0)) (6.67)

Trren(SA)2 - 4 Z Z ren A () (668)

q€T4* g
ooooo.
gd,4 00 trace
1
Tr(SMA)4 = (27‘(’)16 Z Z 5Q1+QZ+%+Q4,0

4
q1,q2,q3,q1€ L7 #¥77

Qﬁf/[ym((h, 42,43, Q4)AM(Q1)AV(Q2)AT(%)AU(%) (6~69)

U, M -occ0U0O00O0OOO0ODOOOO,0D00000.0000,gauged00obooboonog,od
O000 counterterm OO O 0ODO.

1
Trren(Snd)* = (@m0 Z Z5q1+q2+q3+q4,0

4%
q1,q2,q3,qa€ L7 V79

Q"™ (q1, 42,43, q1) — Q477 (0,0,0,0)) A, (q1) As (02) Ar (g3) Ay (qa)  (6.70)



7. Gauge O 43

000 renormalized trace 0 O O O, renormalized determinant O

detyen (I +gS4) = exp (—‘(J?Trmﬂ(SA)2 _ gZTr ren(SA)4> dets (I 4+ gSA4) (6.71)

exp (=G Tan(SAP - G Trun(S D)) detall +954) (672

goooo.

7 Gauge [

000, fermion 0 gauge 000000000 ODOOODO. OODOOOOODOOODOOODOODOOOOO
gbooobo,oboooobobooobobooo,2000b00000000000.

00000, fermion O U(1) gauge field 10000 (QED) O, 200 torus T? = (R/Z)2 0000
O0. 00, Section 6 000 OO renormalized determinant detyen (I + gS4) O, gauge field A 00 00O
measure J OO OO00O0O.

7.1 Gauge field measure

Classical action

T 00 U(1) Gauge field A = (A,) O classical action 0,

S(A) = i /T Lz Fyy(2) F () (7.1)

Fu(@) = 8,4,(2) - 0,A,(x) (7.2)

000.00000000000,S0 gauge 00000 [20, P.12]. Momentum space 00 ,

ogooo.
Gauge fixing

Gauge field A 0 0 O probability measure O, formal 0O O
1
—exp(—S(A))dA (7.5)
N
0000000000, 00, S(A4) = 3(4,J4) 000, 3" O covariance 00 0 measure 000000

DD,JW:p%W—pHpVDDDDDD matrix J 0000002 . 000 action OO0,

Si) = i/ s Fw(f”)Fuu(x)Jr%/Td da (0, A, (x))? (7.6)
- % s (25W+ 1_1)pﬂpy) Au(p) A, (p) (7.7)
pETd*

27 Jp=0. 00000 F,000 action SO gauge 00 000D0O0.
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oooo?,
9 1
J;w =D 5;w + (a - 1)]3#]31/ (78)
000000 matrix J O pA0000000O,
_ 1 PuPv
Cy,y(p) = JHVI — p—2 <5HV + (OZ — 1);—2> , D 7é 0 (79)

O00000.00 a>00000, matrix C(p) DO0O0O00 bilinear form 00000,

Gauge field measure

gog

)

_ 1 5 .
[ e A D A,0) =80 (G + 0= DR ) T\ (0) (7.10)
0000 (mean 0 O) Gauss measure duc 00 O, gauge field

Alp), peT\{0} (7.11)

O, measure duc O O0O0O0O00OODOOO0ODODO.

0o
1 ipxT
A(x) = @n)? Z e’ A(p) (7.12)
peT""\{0}
0000 (UV cutoff) O
1 )
AN(@) = G > € A(p)xn(p) (7.13)
peT*"\{0}
() b lehe N (7.14)
N - .
0, [p|>N

0000. Ay 0,eP* 0000000000 smooth 0OD0.

7.2 QED,

200 torus T2 00, QED 00OODOODODO. OO, Section 6 00000 renormalized determinant
detyen (I +95S4) O, Section 7.1 00000 measure duec JO0O0O00. OO000,00000000000.

e Measure duc O sample field A 00 0O O, renormalized determinant 0000 O000.
[Section 600, A O smoothness 00000 ]

e Renormalized determinant 0, duc OO0 O O0O0000O.
[effective potential O semi-boundedness DO 00000 ]

22 0000, gauge fixing term 00000, (710) 000000 measure 000000, 000 « 0000ODOO, gauge
invariant 000000000 « OOOOO.
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Renormalized determinant 0 00 0 0O 0O

Section 6 0 0 O, detyen(l+9S4y) 00 D0O0OO0O0O0O0. 0000000000, Section6 00000
goo.

(1) fermion field 4,¢ 000000 L*T?) O, anti-periodic boundary condition 0 O O [Theorem 7.4 00
0]%.

(200,
Q = (—A+m?) VA= (5754 (7.15)
Vo= Q*—id+mlI) (7.16)

0000,S0O polar 00D DO .

S = QW (7.17)
vy = v (7.18)
@ V] = 0 (7.19)

ooo
Ky(4) = QVANQ (7.20)

0ooO
QEN(A)Q™r = Sdn (7.21)

00000, (721)000 (00000 formal O0),
Tr(S4x)F = TrKy(A)F (7.22)
det(1+ gSAn) det(1 + gKn(A)) (7.23)

O0000000000.000 Section6 0000 S4Ay O Ky(A)ODOOODOOOOO

exp (—g;Tr renKN(A)2> dety(I + gKn(A)) (7.24)

00000 [Theorem 7.1 00].
(3) 00O, renormalized determinant [

detren(1 + gKn(A)) = exp (—g;Tr ren : Kn(A)? :) dety(I + gKn(A)) (7.25)

000000000, (7.24)0 (7.25) 0000, Wick product 00O constant factor (N 0000
0)0000000, Schwinger function 00000, 00 factor DOO0O0OO cancel OO. OO0,
(7.25)0 N 0o 0000000000,00 factor(0000)0D00.

Renormalized determinant 0 00 0 OO

pc O sample field A O J(A) € B, 000 mapping J O,

(f, J(A)g)LZ(R2) is a.s. measurable, Vf,g¢€ L*(R?) (7.26)

= ([ e 154 ||g)1/q < oo (r.27)

obobooobbo BlOOO0.00000 complete D00
29 Gauge field A O periodic 000 .

I
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Theorem 7.1. [15]

(1) Kn(:),N>00 B§0ODOO, Cauchy DOODO. 000

K= lim Ky € B (7.28)
ooooo.

(2)0000,0000000.
K(4) = lim Ky(4) inBy (7.29)
deta(1+gK(4)) = lim dety(1+gKn(A)) (7.30)

(30000,0000000.
dety(1+gK(A) > 0 (7.31)
&

Proof. (1)

| Knl) = Kr(4) s = [ duc(4) (T1Q%(Ax — Aar))’ (7.32)

O, Feynman graph 0000000000030 .

(1)00 (7.29) 00000, Gauss measure 0 0 00O hypercontractivity [21] OO0 O0O. (7.30) O, B, 00O
J—dety(1+J)00000000000.

(3) gKn(A)DDDDD -1 000,00 000 complex conjugate pair 00003 . 000,

dets(1+ gKn(A) > 0 (7.33)

000, g¢K(A)ODOOOO —-100000, (731)00000. o

oooooo,boogooood.
Theorem 7.2. [15]

(1) Tr : Kn(-)?: ,N>00 L*duc) 000, Cauchy 0000
(2)0000,00 limy_eTr : Ky(A)2:00000.

<&

Theorem 7.1, Theorem 7.2 0 0O
Tr: K(A)?: = Jim Ty Kn(A)?: (7.34)
detren(1 4+ K(A)) = exp (—g—;Tr c K (A)? :) dety(1 + K(A)) (7.35)

goooaoo.

Renormalized determinant 0 0 0 O O

Gauge 00 000O0O0OOOOOOOOOOOOO,

30 Kn(A)ODOO S4Ay 00,000000.
31 Ky(A)DODO S4y 00,0000000.
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o effective potential (6.45) O semi-boundedness 0000 000000000000

000. 00000,000 gauge 00O0D0OD0OODOODOODODO,000000,gauge00000OO0O
000 lattice regularization D OO0 00O .
Lattice OO O0ODODODOOODO.

e 10000 AO0DDDO, K(A) O lattice approximation K(9(A) 0000003 . 0000000
000 e0OO.

e 10000 AODUODDO, detren(l + gK(A)) O lattice approximation
2
detyen (1 4+ gK 9 (A)) = exp (—‘%Tr c K(9(A)? :) dety (14 gK 9 (A)) (7.36)

obooogo,00b0gogd. 0obd trace Tr, 0OO00O, 000000000 Tr 000, OO0,
lattice 00 gauge 000 D000 00O0O0O0OO, gauge 00 O0O00D0O0OO0OO counterterm OO
oooooooo.

e, A0D0DDOOODODO B,6600000,000000000.

det(1+gK9(4)) < 1as. (7.37)

detren(1 + gK (A))
detren(1 + gK(€>(A))‘ ~ 1] < PBexp(=4/€") (7.38)

pe Hlog

000 (7.37) O diamagnetic bound O 0 O O, gauge field O effective potential O semi-boundedness
000003 . Diamagnetic bound O, gauge 00000000000 [Section 7.5]. (7.38) O, lattice
approximation 0 00 000000. 00000000000, ¢30 (445) (JAl=1) 000000000
ooooo.

Theorem 7.3. [15]0<p<oco 000,

detren(1 + gK () € LP(dpc) (7.39)
o

Proof. (7.37)0 0
detren(1+ gK((4)) < &'/ (7.40)

000 (Wick product 000000000 0O0O). OO0

detren(1 4+ gK(A))

Ae =108 (1 T 9K(A) (741
oooo,
log detren (1 + gK (A)) < log(0'/e”) + |A| (7.42)
goooo.ooo,0oo0d z>0000
log detyen (1 + gK(A) >z = log(6'/e”) + |Ad > = (7.43)

32 K(9(4) 0 (DODD)000DOO0.
33 A=00000000000.
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gog
log(8' /! Y +1 ==z (7.44)
00 e0DODO3,
logdetren(1 + 9K (A) > 2 = [Af>1 (7.45)
00D (7.38) 00
poldetren(1+ gK(A) > 2] < Bexp(—8"2?"), x>0 (7.46)
0O (7.31) 000
poldetien(1 + gK(A) <0 = 0 (7.47)
goooooooon. O

7.3 DiracO0OODOODOO

(7.37) 000000, gauge 0 OO lattice regularization 00 000. OO lattice regularization O,
Matthews-Salam formula 0, 000000000000 O0O0OO framework O O0OO.

goo

e=1/N,N=1,2,---00000000 discrete torus T? = (¢Z/Z)? 0000. 000000, L3(TY O,

(w,0) =€ > Agv, (7.48)
IET{:

OO0O0O00O000DO vector space LQ(Tg) O0OO0. 000 anti-periodic boundary condition O 0O O.
L2(T%) 00 linear mapping 0, (00000)00000003% |
Free Dirac operator [

d
E=%§)Mﬂ—ﬁ) (7.49)
p=1

000000000.7,0 — 0000 free translation
(Tyw)(x) = w(z+eey,) (7.50)

O00. T 0 bond 000 covariant translation 00000000, bond (z,z +ee,) O U(1) 00D
assign 0 0 :
U'E,r-&-ee,l, S U(l) (751)
U$+eeu,m = U';‘k,x-‘,-ee“ (752)

341/e0000000000000,0000000.
35 Linear mapping 00000000, 0000000000 (00000O) 00 normalizaiton 000000000000. O
O,000000000.



7. Gauge O 49

000, covariant translation T),(U) O
T, (U)w(r) = U gyece,w(x + €ey) (7.53)

000, covariant Dirac operator O
1
) = 5. Y TuU) = T, (V) (7.54)
pn=1

goooooooa.
Continuum gauge field A O U, .1, 00 000000000000, 0000000

Urotee, = exp(—z’g/ Au(x + sey)ds) (7.55)
0

O0O0O0. 0000000, ue 000000 10 well-defined 000

1
Us atee, = exp(—igeAff) (z + ee,) (7.56)

00000.000,A4© =(AY)0,A0 UV cutoff (7.13) 000. 000000000,0U0 ADDO
ooooooooo.

Spectrum
Lattice 0 0 momentum space O
T = {perRZ+1)*| —w/e<p; <7/e,j=1,2,---,d} (7.57)
ooo.wec® poo,
wy () = ePw, p e T (7.58)

O00. 000 free Dirac operator p,d D000 O0O0O,

1
Dy Z Mg sin(pue)wp (7.59)
m

Juwy

Zi'yﬂpuwp (7.60)
m

000 e~0000,

e p=0(1)00 w, 00000, P0 §O0OO00DOO00ODO

opEO(l)(modg)[l[l p#£0(1)00 w, 00000, PO gOOOOOO0DD0.
oo,

e @ 0O eigenfunction O, PO eigenvector 0000000,

e DO eigenvector 0000, @ O eigenfunction 0000000000000,

DO eigenvector 000, @ O eigenfunction 000000000 doubler, 0000000 normal mode
000.00000000000,0000000 doubler 0000000, 00000000000. I)(U)
ooo0oo,0000o0000.
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Wilson term

goo,r>00000

RU) = 5> (T;(0) = DELU) - 1)
= 5o (L= T,(U) - T;()
R = o) (I-T,-T))

0000,e~0000,

e doubler w 00000, RU)w=0(e 1)

e normal mode w 00000, R(U)w = O(e)
000.000,ixU)+mI 00000

iU)+mI+ R(U)
O00. R(U) O Wilson term O0O0O. OO0,
I @AU) +ml + RU)w [Zm || w |

00000, (U)+ml+RU))~1 0000,

det(iIXU) +mI + R(U))

£ 0
det(iP+mI+R) # 0

gbooobooooooon.

7.4 00 fermion

Lattice regularization

(6.19) 0000 action (¢, (i@ +ml)p) O lattice version

Sc(th,$,U) = e Y (@) (iAU) +mI + R(U))(x)

a:eTf

0000, fermionic integral (6.19) O lattice regularization O

© _ L 7 S ()
<P = det(immHR)/dwdzbexp( S (i, 4, U) F
[ = ] [aite) [ v
wETf

50

(7.61)
(7.62)

(7.63)

(7.64)

(7.65)

(7.68)

(7.69)

(7.70)

Ooooo. 000, (762)(763) 0000 r0 0<r<1000000 [Theorem 7.4 0 O]. Functional
integral 0 O doubler 00O OO, Wilson term 0 OO O, continuum limit e = 0 000000000 OOO.
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Matthews-Salam formula

(769)0 F=10000,

<139 = det(I +gSOTO W) (7.71)
S = (ip+ml+R)™! (7.72)
rO@) = é(ilD(U) —iD+R(U) - R) (7.73)

000, (6.27) O lattice version 00000000, D00 (6.28)(6.29) 0 lattice 00000000,
000, (7.15)-(7.2000 0000,

QY = (S g/ (7.74)
Ve = QO (—iD+mI+R) (7.75)
K(e)(U) - Q(G)V(E)F(e)(U)Q(G) (7.76)
oooo,
Tr (SOTO@)* = Tr(KOW))* (7.77)
det(I + gSOTOW)) = det(I +gKOU)) (7.78)

0000O0. 00 (7.56) 0000, (7.36)(7.37)(7.38) 0000 K©(A) O, K®O@W)ODOooDooo0O0O.

Gauge 00O 0O
Gauge 00O
P(x) = e Py(a) (7.79)
) = Px)e @ (7.80)
Ua/c,acheeu = ei§(a:)Uw’w+€€“67i§(z+ee#) (781)
0000, action 000000 :
S, ¢, U") = Sc(¢,4,U) (7.82)
0o
Ay d’ = dpdip (7.83)
ooooo.
000,000
2(0) = [ dbdv exp (~8.05.4.0) (7.84)

0O gauge DO DO DODO:

Z(U") = Z(U) (7.85)
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7.5 Diamagnetic bound
Diamagnetic bound (7.37), O O
Z(U)] < Z(1) (7.86)
ooooo [i8).

Reflection

T!0,000 o' =¢/2,2 =1/2+¢/20000,00000 TY,,T!_000,00000000000

O Tg ooog enoODO. Tdi 0000 Grassmann variables 0 00 0O O Grassmann algebra 0 G4 0O

€

O, reflection 0 : Gy — G_ O

(1) 09 () = ¥(Ox)im
(2) 0(x) = i3 (0z)
(3) 0(f9) = (69)(61)
(4) antilinear

obooooobo0. a0 ymatrix0O0OODO,

0(app(z)) = (0p(z))a” (7.87)
(P (x)a) o™ (04(x)) (7.88)

goooo.

Theorem 7.4. 000 2t =¢/2,2' =1/2+¢/2000000 bondb 00 U,=1000 gauge 000
D36,

exp(—Sc(1h,¥,U)) = FOF exp()  G;6G;) (7.89)

F F'.Gjeg. ] (7.90)

G; : odd (7.91)

gooooo. O
Proof. OO

Se =S4 +S_+So+Si (7.92)

00oopooO0Od. 000,81 €6 000, 80,8, 0,000000 z=¢/2,2=1/2+¢/2000
coupling 00 O00O0OOOOO. O0O0O

F = exp(—Sy) (7.93)
F' = 60 texp(-S_) (7.94)
0000, FFeg.000.
00 -S, 0000000
z/?(:v)m; “p0r),  ceTd (7.95)
@(Hx)%w(x), zeT] (7.96)

000 UD00,000 gauge 0100000000 DO,00000000.
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000000000, P=22 0 projection 00000, (7.88) 00000, 000

90 o) = g 00 () (7.97)
- = Twmew(x) + L (@) PO () P) (7.99)
DOo00o,Y,;G¢G; 00000000% . 00000000.
-$,,, 0000 ¥,6;6G; 00000000% . o
Theorem 7.5. Theorem 7.4 0 gauge D000
2 < 2W)2(U) (7.99)

ooOoOoo.oo0,Uy O, Theorem 7.4 0 gaugeDDDDDD,TfiDD UDDDD,T?¢DD Ulrpa
e+
00000000 configuration 000 . o

Proof. 000 reflection positivity

/ dpdipAA >0 A€ Gy (7.100)
000, Schwarz 0000
| / dbdipADB| < ( / dbdip AGA) / dbdyBOB) A Be€G, (7.101)
goooo. ooo
| / du?dzpFeF’exp(Z G,0G;)| (7.102)
= > Z /dwdw FOFNGy, ---G;,0[Gj, --- Gy ]| (7.103)
o B 1/2
< >y o (/dwdw(FeF)Gjl -G, 01G, "'Gjn]>
o1, ]n 1/2
( / dbd(FOF)G,, - -Gy 0y, - Gjn}) (7.104)
1/2
< (Z Z /dwdw FOF)G;, --- G, 0[G;, ...Gjn})
n ji,
1/2
(Z Z /dwdwFGF Gy e[Gjl.-.Gjn}) (7.105)
no ji,
1/2 1/2
< ( / dipdip FOF exp() Gjac:j)) ( / dpdyp F'OF exp() Gjec;j)) (7.106)

J J

STo<r<100000.
38 000 anti-periodic boundary condition 0000 .
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(7.86) 000

400 bond 0O0OO0OOODODO (plaquette) POOOOODO U, 0000000000 UpOO,Up=1
000,00 POOOO triviall OOOOOOOODOOO. Theorem 7560 Uy 0,00 xz%[l[l[l u

sz%DDDDDDD plaquette P 0000 trivial 0 O0O.
Z(U) O compact set 000000000,

max|Z(U)| = |Z(U")| (7.107)
OO0 U*00000.0000, Theorem 7.5000
|Z(UN? < Z(UF)Z(U*) (7.108)
ogoao
1Z(U")| = Z(UL) (7.109)

ooooo.

000 U*00000 plaquette 0000 trivial 00 0OD0. OO0O0O local O Up,=1000 gauge O
0000, torus 0 nontrivial cycle D0 O0O0O, global 0 Up,=1000 gauge OO0O0O0O00O0O0O0O0O. O
00 Ui O,z 000 nontrivial cycle 0000 (Uf), D0D0O0O0DO0 1000. Theorem 7.5 00000
000000000, global 0 U, =1000 gauge OOOO. OOO

1Z(U")| = Z(1). (7.110)

00 U*0O,00 plaquette PO OO0 nontrivial 00 O00. 00000, POOODOOOOODOODOO
00000 (7.109) 00000,0r 0000000000020, trivial plaquette 00 000000O0. O
000000000,0000 plaquette 0000 trivial 000 configuration 00 00O .
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