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Stochastic ranking process and web ranking numbers

Tetsuya Hattori (Keio University)1

1 Introduction.

This is a summary of a series of our studies [13, 14, 15, 16, 12] on stochastic ranking
process, with its applications on ranking numbers found on the web, such as sales
ranks at an online bookstore amazon.co.jp, and thread title listings of an online
collected bulletin board 2ch.net. This is a joint work with K. Hattori, Y. Hariya,
Y. Nagahata, Y. Takeshima, and T. Kobayashi.

In Section 2, we consider mathematical aspects of stochastic ranking process.
We define the stochastic ranking process with the jump times of the particles deter-
mined by Poisson random measures, and state that the joint empirical distribution
of scaled position and intensity measure converges almost surely in the infinite par-
ticle limit. We give an explicit formula for the limit distribution, which can be
characterized as a unique global classical solution to an initial value problem for
the inviscid Burgers system of non-linear partial differential equations with time
dependent coefficients and with evaporation terms. This characterization is in ac-
cord with the hydrodynamic limit theories, where a macroscopic time development
of collective microscopic random motion of particles is smooth, so that it satisfies a
system of partial differential equations.

In Section 3, we show ranking data collected from actual websites at the Amazon
online bookstore and at an online collected bulletin board 2ch.net, and show how
they are explained by the properties of stochastic ranking process given in Section 2.
It is a new social phenomena to have a large number of items aligned dynamically in
an order of popularity, and real time values of ranks of thousands can be observed.
By performing a statistical fit of the data to the formulas from the stochastic ranking
process, one can analyze a ‘long tail’ structure of social activities at these websites.
We conclude that the best hit or top sales items dominate the activities both at
Amazon.co.jp and 2ch.net, so that, in particular, Amazon.co.jp, perhaps in contrast
to its fame, is not an example of a long tail business.

2 Stochastic ranking process.

The latest version of stochastic ranking process, which extends the original model
[13] to the case of time dependent intensities, is defined as follows [12]. Let M(R+)
be the space of Radon measures ρ on the Borel σ-algebra B(R+) of non-negative

reals R+. Let N be a positive integer, and let ν
(N)
i , i = 1, 2, · · · , N , be independent

Poisson random measures (Poisson point processes) on R+ , defined on a probability

space (P,F , Ω). For each i, denote the intensity measure of ν
(N)
i by ρ

(N)
i ;

E[ ν
(N)
i (A) ] = ρ

(N)
i (A), A ∈ B(R+). (1)

We assume that ρ
(N)
i ∈ M(R+) and that ρ

(N)
i is continuous (i.e., ρ

(N)
i ({t}) = 0,

t � 0) for all N and i. Let x
(N)
1 , x

(N)
2 , · · · , x(N)

N be a permutation of 1, 2, · · · , N , and

1More materials available at http://web.econ.keio.ac.jp/staff/hattori/amazone.htm
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define a process X(N) = (X
(N)
1 , · · · , X(N)

N ) by

X
(N)
i (t)

= x
(N)
i +

N∑
k=1

∫ t

0
1X

(N)
k (s−0)>X

(N)
i (s−0)

ν
(N)
k (ds) +

∫ t

0

(1 − X
(N)
i (s − 0)) ν

(N)
i (ds),

i = 1, 2, · · · , N, t � 0 ,
(2)

where, 1A is the indicator function of an event A. We call the process X(N) defined
by (2), a stochastic ranking process, after [13, 14, 15].

Denote the unit measure concentrated on c by δc . With probability 1 we can
write

ν
(N)
i =

∞∑
j=1

δ
τ
(N)
i,j

, i = 1, 2, · · · , N, (3)

where, with probability 1, τ
(N)
i,j ’s are random variables satisfying 0 < τ

(N)
i,1 < τ

(N)
i,2 <

· · ·, i = 1, 2, · · · , N , and τ
(N)
i,j �= τ

(N)
i′,j′ if (i, j) �= (i′, j′). In the following, we work

on the event that these inequalities hold. X
(N)
i (t) has an explicit expression using

τ
(N)
i,j ’s:

X
(N)
i (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
(N)
i +

∑
i′; x

(N)

i′ >x
(N)
i

1τ
(N)

i′,1 �t
0 � t < τ

(N)
i,1 ,

1 +

N∑
i′=1

1∃j′∈�; τ
(N)
i,j <τ

(N)

i′,j′�t
τ

(N)
i,j � t < τ

(N)
i,j+1, j = 1, 2, 3, · · · ,

(4)

for i = 1, · · · , N .
In the time homogeneous case, namely, the case where there exists positive con-

stants w
(N)
i such that ρ

(N)
i ((0, t]) = w

(N)
i t for t � 0, a discrete time version of the

process (4) has been known for a long time [26, 23, 17, 6, 22, 21] and is called
move-to-front (MTF) rules. The process has, in particular, been extensively studied
as a model of least-recently-used (LRU) caching in the field of information theory
[24, 8, 4, 7, 5, 25, 9, 11, 10, 18, 19, 20], and also is noted as a time-reversed process
of top-to-random shuffling.

Put

X
(N)
C (t) =

N∑
i=1

1τ
(N)
i,1 �t

, t � 0. (5)

X
(N)
C (t) is a random variable which denotes the position of the boundary between

the top side x � X
(N)
C (t) and the tail side x > X

(N)
C (t), where each particle in the

top side (i.e., i which satisfies X
(N)
i (t) � X

(N)
C (t)) has experienced jump to the top

by time t (i.e., τ
(N)
i,1 � t), and the particles in the tail side are those particles which

have not jumped to the top by time t.

Proposition 1 ([13, Prop. 2],[12, Prop. 1.1, Cor. 1.2]) Let t � 0. Assume

that a sequence of distributions {λ(N)
t | N ∈ N} on R+ defined by

λ
(N)
t =

1

N

N∑
i=1

δ
ρ
(N)
i ((0,t])

(6)
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converges weakly as N → ∞ to a probability distribution λt . Then the scaled position
of the boundary

Y
(N)
C (t) =

1

N
X

(N)
C (t) =

1

N

N∑
i=1

1τ
(N)
i,1 �t

(7)

converges almost surely as N → ∞ to

yC(t) = 1 −
∫ ∞

0

e−sλt(ds). (8)

Assume furthermore that λt is continuous in t with respect to the topology of weak
convergence. Then for almost all sample ω ∈ Ω, Y

(N)
C (·, ω) : R+ → [0, 1) defined by

(7) converges pointwise in t as N → ∞ to a deterministic function yC : R+ → [0, 1)
defined by (8). �

Consider a joint empirical distribution µ(N) of intensity measure ρ
(N)
i and scaled

position

Y
(N)
i (t) =

1

N
(X

(N)
i (t) − 1), (9)

defined by

µ
(N)
t =

1

N

N∑
i=1

δ
(ρ

(N)
i ,Y

(N)
i (t))

, t � 0. (10)

µ
(N)
t , N ∈ N, are random variables whose samples are distributions on the product

space M(R+)×[0, 1) of space of Radon measures M(R+) and an interval [0, 1) ⊂ R+.
We consider the standard vague topology on M(R+). Since R+ is a Polish space,
i.e., complete and separable metric space, so is M(R+) [2, Theorem 31.5], and
consequently, M(R+) × [0, 1) is also a Polish space [2, Example 26.2].

Assume that a sequence of initial configurations

µ
(N)
0 =

1

N

N∑
i=1

δ
(ρ

(N)
i ,N−1(x

(N)
i −1))

, N = 1, 2, · · · ,

converges weakly as N → ∞ to a probability distribution µ0 on M(R+) × [0, 1).
Then, in particular,

Λ(N)(dρ) := µ
(N)
0 (dρ × [0, 1)) =

1

N

N∑
i=1

δ
ρ
(N)
i

(dρ) → Λ(dρ) := µ0(dρ × [0, 1)),

weakly, as N → ∞.
(11)

Define, for 0 � s � t,

λ
(N)
s,t =

∫
M(�+)

δρ((s,t])Λ
(N)(dρ). (12)

Note that λ
(N)
t = λ

(N)
0,t in (6).

Theorem 2 ([13, Thm. 1.5], [12, Thm. 1.3]) Assume that µ
(N)
0 → µ0 weakly as

N → ∞ for a probability distribution µ0 on M(R+) × [0, 1). Assume that for each
(s, t) satisfying t � s � 0,

λ
(N)
s,t → λs,t :=

∫
M(�+)

δρ((s,t])Λ(dρ), weakly as N → ∞, (13)
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where Λ is as in (11). Then for any t > 0, and for almost all sample ω ∈ Ω, the

distribution µ
(N)
t (ω) converges weakly to a non-random probability distribution µt on

M(R+) × [0, 1).
µt has a following expression in terms of U(dρ, y, t) := µt(dρ × [y, 1)).

U(dρ, y, t) := µt(dρ × [y, 1)) =

{
e−ρ((t−t0(y,t),t]) Λ(dρ) 0 � y � yC(t),

e−ρ((0,t]) U(dρ, ŷ(y, t), 0) yC(t) � y < 1.
(14)

Here, t0(y, t) is the inverse function with respect to t0 of

yA(t0, t) = 1 −
∫
M(�+)

e−ρ((t−t0,t]) Λ(dρ), 0 � t0 � t, (15)

and ŷ(y, t) is the inverse function with respect to y of

yB(y, t) = 1 −
∫
M(�+)

e−ρ((0,t]) µ0(dρ × [y, 1)), t � 0, 0 � y < 1. (16)

�

Note that yC(t) = yA(t, t) = yB(0, t).
If we impose additional conditions, we may go further for Theorem 2 and prove

almost sure convergence as a sequences of processes µ(N) → µ, on a finite time
interval [0, T ]. See [12, §4].

The structure of the explicit limit formula (14), in particular, the appearance
of the inverse functions t0 of yA and ŷ of yB , can mathematically be understood
through a system of partial differential equations. Consider the case that the limit

distribution Λ is supported on a discrete set: Λ =
∑

α

rαδρα . Then (14) implies, for

Uα(y, t) := µt({ρα} × [y, 1)),

Uα(y, t) =

{
rα e−ρα((t−t0(y,t),t]) 0 � y � yC(t),

Uα(ŷ(y, t), 0) e−ρ((0,t]) yC(t) � y < 1,
(17)

where t0 and ŷ are inverse functions, respectively, of yA(t0, t) = 1−
∑

α

rαe−ρα((t−t0,t]),

and yB(y, t) = 1 −
∑

α

Uα(y, 0)e−ρα((0,t]).

Theorem 3 ([14, Thm. 1], [12, Thm. 1.4]) Let k be a positive integer, and for
each α = 1, 2, · · · , k, let rα be a positive constant, wα : R+ → R+ a measurable
function satisfying wα(t) > 0, t � 0, and uα : [0, 1) → R+ a non-negative smooth
strictly decreasing function, satisfying

k∑
β=1

rβ = 1,
k∑

β=1

rβwβ(t) < ∞, t � 0, and
k∑

β=1

uβ(y) = 1 − y, 0 � y < 1. (18)

Then an initial value problem for a system of first order non-linear partial differential
equations (inviscid Burgers equations with a term representing evaporation)

∂ Uα

∂t
(y, t) +

k∑
β=1

wβ(t) Uβ(y, t)
∂ Uα

∂y
(y, t) = −wα(t)Uα(y, t),

(y, t) ∈ [0, 1) × R+, α = 1, 2, · · · , k,

(19)
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with a boundary condition

Uα(0, t) = rα, t � 0, α = 1, 2, · · · , k, (20)

and initial data
Uα(·, 0) = uα, α = 1, 2, · · · , k, (21)

has a unique time global classical solution, whose formula is given by (17) with

ρα((s, t]) =

∫ t

s

wα(u) du and Uα(y, 0) = uα(y). (22)

�

The system (19) of partial differential equations is solved by a method of charac-
teristic curves, and yA, yB, and yC turn out to be the characteristic curves for (19),
which mathematically explains how the inverse functions of these functions appear
in the solutions. Theorem 3 indicates that the limit in Theorem 2 has an interpre-
tation that a collective random motion of particles is macroscopically observed as a
smooth time development explained by a system of partial differential equations, as
in the theory of hydrodynamic limit.

3 Web rankings.

With great advance in the internet technologies, a new application of the process
appeared [14, 15, 12]. The mathematical results on the stochastic ranking process
have successfully been applied to statistical explanation of practical ranking data,
such as the ranking numbers of books found in the web pages of an online bookstore
Amazon.co.jp [15, 14], or the order of the subject titles in the title listing pages of a
collected web bulletin board 2ch.net [14, 12]. A ranking of a book at Amazon.co.jp
jumps close to top of the ranking whenever the book is sold at Amazon.co.jp [15],
and a subject title in the web page for the list of 2ch.net jumps to the top whenever
a comment (a ‘response’) concerning the subject is submitted [14]. It turned out
that the time developments of the ordering of items on these online systems are
found to follow the predictions of the model.

One may wonder why such a simple model as introduced in Section 2 could be
observed in actual social activities. An explanation is that the ranking numbers
on the web (such as those representing the books, in the case of online bookstores)
usually seek to align the web pages in the order of current popularity of the pages.
A social impact of the development of web-based activities is that it has become
possible to catalog a huge amount of unpopular items [1]. In fact, a majority of
books catalogued on an online bookstore are sold less than one copy a month. For
such books, any reasonable order reflecting the current popularity would be equal
to the order of the time of most recent sales, because the second recent sale of
such book would be long ago, hence would not reflect current popularity. Thus the
move-to-front rule will provide a simple but universal model in the rankings on the
web.

Note that (2) implies the Markov property

X
(N)
i (t + u) = X

(N)
i (u) +

N∑
k=1

∫ t

0
1X

(N)
k (s+u−0)>X

(N)
i (s+u−0)

ν̃
(N)
k (ds)

+

∫ t

0

(1 − X
(N)
i (s + u − 0)) ν̃

(N)
i (ds),
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where we put ν̃
(N)
i (A) = ν

(N)
i (A+u). In practical application, this property enables

us to shift the time origin t = 0 to the time that a particle we observe jumps to
the top, namely, we may set X

(N)
i (0) = x

(N)
i = 1, by adjusting the ‘clock’ for the

intensity measure accordingly. (See Fig. 5 and Fig. 7, as well as [14, 15].)

Note also that if x
(N)
i = 1, then up to the first jump of i to the top, namely, for

t < τ
(N)
i,1 , comparison of (4) and (5) leads to

X
(N)
i (t) = X

(N)
C (t) + 1,

Therefore, in practical application in Section 3.2, we may proceed with observing
a trajectory (time development) of a single particle, putting the time of its first
jump to top as t = 0 and observing until its next jump to top, and then apply
Proposition 1.

Concerning the explicit time dependence of intensity measures for the Poisson
random measures, one should note that data from an online bookstore and from a
collected web bulletin board arise as results of social activities, which are expected
to contain day-night difference in the intensity. In Section 3.1, we summarize a
simple method of [12, §A, §5], to factorize the time dependence and the distribu-
tion of relative jump rates among different particles. Then we show the data from
amazon.co.jp in Section 3.2, and the data from 2ch.net in Section 3.3, together with
statistical applications of the theoretical results.

3.1 Intensities with common time dependence.

In practical situation, intensity measures ρ
(N)
i are usually unknown quantities to

be determined statistically from observed data. This is usually a difficult task if
intensity measures have time dependence, because then we have to consider both
particle dependence and time dependence at once in the statistical analysis. Explicit

0 24 48 72 96 120 144 168 192

250000

Fig 1:

time dependence, reflecting day-night difference of social activities, are observed in
actual data. Fig. 1 is an 8 days plot of Amazon.co.jp rankings for a book. (See [15]
for basic fact about Amazon.co.jp ranking and its relation to the stochastic ranking
process.) The vertical axis stands for the ranking number, and the horizontal axis
is the time axis labelled in the unit of hour. The large discontinuous drops near
to the top ranking correspond to the point of sales of the book. Note the 24 hours
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periodic time dependence. Without explicit time dependence of activities (i.e., the
homogeneous case), (28) implies that the curve in Fig. 1 should be concave,

y′′
C(t) < 0. (23)

However, the curve in Fig. 1 actually has convex intervals every 24 hours, proving
explicit time dependence, which naturally can be interpreted as day-night difference
in social activities.

A simplest way to take day-night-difference of social activity into account, is
to assume a common time dependence. Assume that there exist ã ∈ L1

loc(R+) and

positive constants w
(N)
i > 0, i = 1, 2, · · · , N, N = 1, 2, · · · , such that the intensity

measure (1) is given by

ρ
(N)
i ((s, t]) = w

(N)
i

∫ t

s

ã(u) du, i = 1, 2, · · · , N, N = 1, 2, · · · . (24)

Proposition 4 Let ã ∈ L1
loc(R+). If there exists a probability distribution λ on R+

such that

λ(N) :=
1

N

N∑
i=1

δ
w

(N)
i

→ λ, weakly, as N → ∞, (25)

then Proposition 1 holds with (24), and yC(t) of (8) is given by

yC(t) = 1 −
∫
�+

e−w A(t) λ(dw), (26)

where

A(t) =

∫ t

0

ã(u) du. (27)

�

The formula (26) is to be compared with the case of the (homogeneous) Poisson
process in [13, Proposition 2], where we have

yC(t) = 1 −
∫
�+

e−wtλ(dw). (28)

3.2 Factorization of day-night social activity difference, and
sales ranks of Amazon.co.jp .

We can show that under the common time dependence assumption (24), periodic
time dependence of ã can be factorized, and that the use of (28) is justified in
obtaining λ statistically from data. Assume that there exists a positive constant
T such that ã(t + T ) = ã(t), t � 0. We may normalize w

(N)
i ’s in (24) so that

1

T

∫ T

0

ã(u) du = 1 holds. Then Ap(t) := A(t) − t =

∫ t

0

(ã(u) − 1) du is a periodic

function with period T , and (26) is

yC(t) = 1 −
∫
�+

e−w (t+Ap(t)) λ(dw). (29)
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If we collect data at each fixed time of the day, at tn = t0 +n T , n = 0, 1, 2, · · ·, then
(29) implies

yC(tn) = 1 −
∫
�+

e−w(nT+t0+Ap(t0)) λ(dw). (30)

Hence the effect of day-night difference in ã is absorbed in the translation of origin
of time t0 �→ t0 + Ap(t0), and the use of formula (28) is justified.

Jun’07 Sep’07 Dec’07 Mar’08 date

500,000

ranking

Fig 2:

Fig. 2 is a plot of Amazon.co.jp rankings for a book over a year [15]. The data
was taken manually for a year starting in May 2007, at 21:00 each day. As seen
in Fig. 2, for a relatively unpopular book, a book which sells less than a copy per
week, ranking fall (increase in number) steadily and smoothly at several hundred
thousands for much of the time, but once in a while they make sudden jumps to
numbers around ten thousand. These occasional large discontinuous jumps near to
the top ranking correspond to the point of sales of the book [15].

To apply (28) or (30) to the data, we need to specify λ. A standard choice in
social and economic studies seems to be the Zipf’s law, defined by

w
(N)
i = a

(
N

i

)1/b

, i = 1, 2, · · · , N, (31)

for positive constants a and b. The corresponding N → ∞ weak limit is the (gener-
alized) Pareto distribution, defined by

λ([w,∞)) =

{ ( a

w

)b

w � a,

1 w < a.
(32)

Substituting (32) in (28), we have

yC(t) = 1 − e−at + (at)bΓ(1 − b, at). (33)

where Γ is the incomplete Gamma function defined by Γ(z, p) =

∫ ∞

p

e−xxz−1dx.

Using the data {xi | i = 1, 2, · · · , nd} of size nd = 77 at the leftmost arc in Fig. 2,
taken between May, 2007 and August, 2007, at 21:00 each day, and choosing to
minimize

E = E(N, a, b) =

nd∑
i=1

(xi − N yC(ti))
2

xi
, (34)
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we obtained the best fit for the parameter set

(N∗, a∗, b∗) = (8.15 × 105, 5.30 × 10−4, 0.767), (35)

with Emin = E(N∗, a∗, b∗) = 4.17 × 104. In particular, we have b∗ < 1, which
implies that amazon.co.jp earns dominantly from a small number of best hit books
[15], rather than the majority of books in the long tail, in contrast to the Amazon
bookstores fame as a successful long tail business model [1].

4.8 5 5.2 5.4 5.6 5.8

0.7

0.725

0.75

0.775

0.8

0.825

0.85

8 8.05 8.1 8.15 8.2 8.25 8.3 8.35

0.72

0.74

0.76

0.78

0.8

0.82

7.8 8 8.2 8.4 8.6

4.75

5

5.25

5.5

5.75

6

Fig 3:

Fig. 3 shows contour plots of E in (34), representing error estimates (confidence

intervals) for the parameters in (35): E(N, a, b) =
κ

nd

Emin , with κ defined (as usual)

by p = P[ χ2
nd

� κ ], where χ2
nd

is a random variable with chi-square distribution of
degree of freedom nd. The curves in the graphs correspond to the confidence level
of 90% , namely, p = 0.9. The three figures are cross sections of N = N∗, a = a∗,
b = b∗, respectively, in the 3-dimensional parameter space (N, a, b). Horizontal and
vertical axes are respectively a × 104 and b for the first figure, N × 10−5 and b for
the second figure, and N × 10−5 and a × 104 for the third figure. The dot in the
center of each figure is the best fit (35). Fig. 3 supports b < 1, a standard best hit
business model, rather than a long tail business model.

To see the stability of the parameters, a similar fit by adding to above mentioned
data of size 77 a data of size 21 at the rightmost arc in Fig. 2, taken between
November, 2007 and March, 2008, at 21:00 on every Saturday. The best fit is

(N∗, a∗, b∗) = (7.97 × 105, 5.93 × 10−4, 0.809). (36)

The solid curve in Fig. 2 shows the theoretical curve N yC(t) with yC(t) as in (33)
with parameters (36).

We have less data for amazon.com, the original Amazon online bookstore in USA.
Fig. 4 shows a data from Amazon.com, which obviously shows a similar behavior as
amazon.co.jp data Fig. 2.

3.3 Time change according to intensity measure, and title
listings of 2ch.net .

Fig. 5 shows a data from a web page for a list of subject titles at a collected bulletin
board 2ch.net. Each curve corresponds to the position of the title of a subject
(‘thread’) in the page of list of titles. See [14] for a description of how the order of
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Jan’10 May’10 Sep’10 date

1x106

2x106
ranking

Fig 4:

12:00 18:00 00:00 06:00 12:00

400

0 6 12 18 24

400

Fig 5:

the list of subject titles is organized at 2ch.net. In short, a thread title jumps to the
top of the list if and only if someone writes on the thread (a ‘response’), and the
jump occurs instantaneously. If one assumes that responses are independent and
random, then the time dependence of the thread list is a sample of the stochastic
ranking process. The data is taken by Y. Takeshima for 24 hours starting on Oct. 18,
2008, 12:00 JST, using his original data collection program (master thesis, [12]). The
vertical axis stands for the position in the list (the horizontal axis at the bottom
stands for the top of the list), and the horizontal axis is the time axis labelled in the
unit of hour. For clarity of the figure, 24 threads are chosen out of 697 threads, and
for each thread, shown is the part from the last jump of the thread until the end
of data collection. The second figure is a plot of same data as the first figure, but
each curve is shifted in the horizontal direction, so that all the curves starts from
the origin (0, 0).

If the jump rate of threads are constant, then the formula (28) for the homo-
geneous case should be applicable, and the curves, when shifted in the horizontal
direction so that the curves start from the origin (0, 0), should follow a single curve
defined by (28). As seen from the second figure in Fig. 5, the time dependence
of position of threads do not follow a single curve. Also, the first figure in Fig. 5
clearly indicates a violation of convexity (23) at around 21:00 and 00:00. We may
interpret the result as internet activities at 2ch.net being more active at night before
midnight, compared to deep in the night until early in the morning.
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Let us consider the factorization assumption of (24). Since the assumption is
neither of logical consequence of the model nor the established social fact, such
assumption should be tested by actual application of the formula to the data. Since
2ch.net is very ‘transparent’, concerning basic facts such as the number of threads
in a board or the records of response (jump) times, it is a useful website to test (24),
or any other possible practical assumptions.

For t � 0, let

S(N)(t) =

N∑
i=1

ν
(N)
i ((0, t]) (37)

and denote its right continuous inverse by

s(N)(t) = inf{s � 0 | S(N)(s) > t}. (38)

Let ã ∈ L1
loc(R+). For simplicity, assume further that

ã(t) > 0, t � 0. (39)

Then A(t) of (27) is strictly increasing, and the inverse function A−1 is continuous.

Theorem 5 ([12, Thm 5.3, Lem. 5.4]) Let ã ∈ L1
loc(R+), and assume (39). Put

Z(N) =
N∑

i=1

w
(N)
i (40)

and assume lim
N→∞

Z(N) = ∞. If, as in Proposition 4, there exists a probability

distribution λ on R+ such that (25) holds, then for each t � 0,

1

Z(N)
S(N)(t) → A(t), and s(N)(Z(N) t) → A−1(t), in probability, as N → ∞,

(41)
and

Y
(N)
C (s(N)(Z(N) t)) → yC(A−1(t)) = 1 −

∫
�+

e−w tλ(dw), (42)

in probability, as N → ∞, where Y
(N)
C is defined in (7). �

Fig. 6 shows the cumulative total number of jumps S(N)(t) in (37) up to time
t, for N = 697 threads at 2ch.net. The data is from the same board at same time
as the data for Fig. 5, collected by Y. Takeshima, and Fig. 6 is accumulated by
T. Kobayashi (master thesis, [12]). The dashed line denotes the hypothetical case
of constant jump rates. The data is consistent with the observation made for Fig. 5
that the activities (responses) are high at night before midnight, and low between
deep in the night to early in the morning.

Fig. 7 is a plot of the same data as Fig. 5, except that the horizontal axis
is measured by S(N)(t) of Fig. 6. Fig. 7 is a revised plot of the original one by
T. Kobayashi (master thesis, [12]). Compared with the second figure in Fig. 5, the
second figure in Fig. 7 is apparently closer to a single curve, which supports an
approximate validity of the common time dependence assumption (24).
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Using (41) in (26), with the Pareto distribution (32) for λ,

xC(t) = NyC(t) + 1 � N − N

∫
�+

e−w S(N)(t)/Z(N) λ(dw) =

N − Ne−S(N)(t)/(N1/bζN (1/b)) + (
S(N)(t)

ζN(1/b)
)b Γ(1 − b,

S(N)(t)

N1/bζN(1/b)
) =: x

(N)
b (S(N)(t)),

(43)

where ζN(z) =
N∑

i=1

1

iz
. Denote the data of size nd = 70140 given in Fig. 7 by (si, xi),

i = 1, 2, · · · , nd . We performed a statistical fit of the data to (43), by minimizing

E =

nd∑
i=1

(xi − x
(N)
b (si))

2

x
(N)
b (si)

, with N = 697, and obtained b = 0.872± 0.002 (90% CL).

Apparently, we have a good single parameter fit to the data, which suggests that
the practical assumption (24) is good.

We note that a smaller value of b was obtained for 2ch.net in [14] (with a different
set of data). The data used in [14] was small in size, because the data was collected
manually in those times, and also, to avoid influence of day-night activity difference,
the data was for a short time period, hence the result in [14] is less reliable compared
to the present result.

We also note that we have b < 1, consistently with observation for Amazon.co.jp,



13

1000 2000 3000 4000

400

Fig 8:

where we obtained b = 0.809. This shows that, as in Amazon.co.jp, the popularity
of subjects is concentrated on a small number of threads in 2ch.net.
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[19] P. R. Jelenković, A. Radovanović, Least-Recently-Used caching with Depen-
dent Requests, Theoretical Computer Science 326 (2004) 293–327.
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