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大学院入学試験問題（測度論）略解
３．収束定理 (1)と Fubiniの定理

お断り．第１，２分冊の解答を作って以来６年を経てこの第３分冊の解答に取りかかったため，解答のて

いねいさや細かい記号や言葉遣いや体裁等，一つ一つは細かいことだが全体の雰囲気がかなり変わってい

る可能性がある．違いに気づくほど勉強熱心な諸君には申し訳ないが，いかんともしがたいので，なじんで

いただければ幸いである．

収束定理の名前は原則として通常の教科書に準拠するが次の重要な「ここだけの用語」を導入する．積分

の積分範囲に関する可算加法性，すなわち，測度空間 (Ω,F , µ)において En ∈ F , n = 1, 2, 3, · · ·, が互いに
共通部分を持たないとき E =

∞⋃
n=1

En とおくと，可積分関数 f に対して
∫

E

f dµ =
∞∑

n=1

∫
En

f dµ となるこ

と，を変形すると，F1 ⊂ F2 ⊂ · · ·,
∞⋃

n=1

Fn = E なる可測集合列に対して
∫

E

f dµ = lim
n→∞

∫
Fn

f dµ となる

ことがわかる．この事実を以下では，一般的な呼び名ではないようだが，積分の積分範囲に関する連続性と

呼ぶことにする．{Fn}の主な選び方として，

(1) f が可積分であることを証明する際には，

(a) Fn = {ω ∈ Ω | |f(ω)| � n} とする場合（被積分関数の値域による分類，紫外切断）と，
(b) Ω = Rの場合に Fn = [−n, n]とする場合（積分範囲による分類，赤外切断）がある．

(2)非負関数の積分が 0ではないことを言うには Fn = {ω ∈ Ω | |f(ω)| � 1/n} が使える．

これらの場合は以下の解答例ではどう選んだかを断らない．

単調収束定理と積分の積分範囲に関する連続性．

[1] (H7 熊本大 1)．仮定により f は可積分だが，これは |f |が可積分であることと同値である．したがって
|f |は非負可積分だから，任意の ε > 0に対して，非負単関数 gε であって gε(x) � |f |(x), 0 � x � 1, およ

び

∣∣∣∣∣
∫

[0,1]

gε(x) dµ(x) −
∫

[0,1]

|f |(x)dµ(x)

∣∣∣∣∣ � εを満たすものがある．gεは単関数なので特に有界である．す

なわち正数M = M(ε) > 0が存在して 0 � gε(x) � M が全ての 0 � x � 1に対して成り立つ．以上から，∫
En

|f |(x)dµ(x) �
∫

En

gε(x) dµ(x) +
∫

En

(|f |(x) − gε(x))dµ(x)

�
∫

En

gε(x) dµ(x) +
∫

[0,1]

(|f |(x) − gε(x))dµ(x) � M(ε)µ(En) + ε.

n → ∞とすれば，仮定により µ(En) → 0なので， lim
n→∞

∫
En

|f |(x)dµ(x) � ε．左辺は εによらないので

lim
n→∞

∫
En

|f |(x)dµ(x) = 0 を得るが，
∣∣∣∣
∫

En

f(x) dµ(x)
∣∣∣∣ �

∫
En

|f |(x)dµ(x) なので lim
n→∞

∫
En

f(x) dµ(x) = 0

を得る．

[2] (S61 山形大 10)．
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(1) fn の定義は各点で有限個（n個）の非負実数を比べているので各点それぞれにおいて右辺の極大は gi

のいずれかの値で実現する．したがって
n⋃

i=1

Ani = Ωである．また {Ani}n
i=1 はどの２つも共通部分

を持たない．よって任意の x ∈ Ω に対していずれかただ１つの k があって x ∈ Ank（j �= k ならば

x �∈ Anj）となるが，このとき fn(x) = gk(x)および
n∑

i=1

χAni(x)gi(x) = gk(x) となるので，両者は等

しく，fn =
n∑

i=1

χAnigiを得る．

(2)題意と前小問から
∫

A

fn dµ =
∫

A

n∑
i=1

χAnigi dµ =
n∑

i=1

∫
A∩Ani

gi dµ �
n∑

i=1

ν(A ∩ Ani) となるが，最右

辺は測度の加法性から ν(A ∩
n⋃

i=1

Ani) = ν(A ∪ Ω) = ν(A) に等しい．

(3) fnと fの定義から，fnはxの各点でnについて非減少非負値関数で lim
n→∞ fn(x) = f(x)となることは初等

的に分かるので，前小問においてn → ∞として単調収束定理を使えば
∫

A

f dµ = lim
n→∞

∫
A

fn dµ � ν(A)．

[3] (S61 名大 4)．fnが各点で−∞ではなく，かつ，nについて非減少なので，+∞を許せば lim
n→∞ fn(x) =

f(x) が [0, 1]上で確定する．fn − f1は各点で nについて増加し非負なので，単調収束定理から

lim
n→∞

∫
E

(fn(x) − f1(x))dx =
∫

E

(f(x) − f1(x))dx

が+∞を許して成り立つ．仮定から f1が可積分なので，両辺に
∫

E

f1(x) dxを加えて， lim
n→∞

∫
E

fn(x) dx =∫
E

f(x) dx が成り立つ．

[4] (H7 筑波大 7)．f がルベーグ積分可能で 0 � f(x) < 1, a.e.–x ∈ R, ならば単調収束定理から

lim
n→∞

∫
R

f(x)ndx = 0 である．逆に E = {x ∈ R | f(x) � 1} の測度 |E| が正とすると，f が R 上で非

負で E 上で fn � 1だから，

lim
n→∞

∫
R

f(x)ndx � lim
n→∞

∫
E

f(x)ndx �
∫

E

1 dx = |E| > 0.

よって必要十分条件になっている．

[5] (H8 大阪市大 D3)．単調収束定理から（+∞を許せば）
∫

R

∞∑
n=0

|fn(x)|dx =
∞∑

n=0

∫
R

|fn(x)|dx �
∞∑

n=0

2−n = 2 < ∞

となるので，
∞∑

n=0

|fn(x)|はほとんど全ての x に対して収束する．すなわち，ほとんど全ての x に対して

∞∑
n=0

fn(x) が絶対収束しているから，収束もしている．

[6] (S60 都立大 7)．

(1)単調収束定理から（+∞を許せば）
∫

R

∞∑
n=1

|fn(x)|dx =
∞∑

n=1

∫
R

|fn(x)|dx < ∞ となるので，
∞∑

n=1

|fn(x)|

はほとんど全ての xに対して収束する．すなわち，ほとんど全ての xに対して
∞∑

n=0

fn(x) が絶対収束

している．
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(2)
∞∑

n=1

∫ 1

0

|an||x−rn|−1/2 dx =
∞∑

n=1

|an|
(∫ rn

0

(rn − x)−1/2 dx +
∫ 1

rn

(x − rn)−1/2 dx

)
=

∞∑
n=1

|an|(2r1/2
n +

2(1 − rn)1/2) � 4
∞∑

n=1

|an| < ∞ だから，前小問から
∞∑

n=1

an|x − rn|−1/2 はほとんど全ての点で絶対収

束する．

[7] (H3 岡山大 B1)．

(1)単調収束定理から（+∞を許せば）
∫ 1

0

∞∑
N=1

|S(N2, x)|2 dx =
∞∑

N=1

∫ 1

0

|S(N2, x)|2 dx =
∞∑

N=1

1
N4

N2∑
n=1

N2∑
m=1

∫ 1

0

e2π
√−1(an−am)x dx.

仮定により {an}達は相異なる自然数なので，最後の積分を実行すると n �= mならば 0になるから

∫ 1

0

∞∑
N=1

|S(N2, x)|2 dx =
∞∑

N=1

1
N4

N2∑
n=1

1 =
∞∑

N=1

1
N2

< ∞.

よって積分は有限値である．

(2) G = {x ∈ [0, 1] | lim
N→∞

S(N2, x) = 0 ではない }とおき，そのルベーグ測度を |G|と書いておく．|G| = 0

を証明せよというのが題意である．x ∈ Gと lim
N→∞

|S(N2, x)|2 > 0は同値であることに注意．したがっ

て x ∈ Gならば
∞∑

N=1

|S(N2, x)|2 dx = ∞となるので，もし |G| > 0ならば
∫ 1

0

∞∑
N=1

|S(N2, x)|2 dx = ∞
となるはずだが，前小問からこれは矛盾．よって |G| = 0が成り立つ．

[8] (H2熊本大 8)．単調収束定理と仮定からE[
∞∑

n=1

|Xn|p ] =
∞∑

n=1

E[ |Xn|p ] < ∞なので，特に，
∞∑

n=1

|Xn|p <

∞, a.e.．さらにしたがって， lim
n→∞Xn = 0, a.e.．

[9] (H6 北大 16)．ε > 0を任意にとる．f は可積分だから，積分の積分範囲に関する連続性から，M =

M(ε) > 0が存在して
∫
|f(x)|�M

|f(x)|µ(dx) � ε

3
とできる．さらに，µ(D) < ∞および f は可積分だから，

測度の連続性と積分範囲に関する積分の連続性から，L = L(ε) > 0が存在して µ(D \ [−L, L]) � ε

3M (ε)
お

よび
∫
|x|�L

|f(x)|µ(dx) � ε

3
とできる．

このとき，まず |x| > 2Lかつ |y| � Lにとると，|x + y| � |x| − |y| > Lなので，ルベーグ測度の並進対

称性と合わせると |x| > 2Lならば∫
[−L,L]

|f(x + y)|µ(dy) �
∫
|z|>L

|f(z)|µ(dz) � ε

3
.

次に，やはりルベーグ測度の並進対称性と合わせることで∫
{y∈D||y|>L}

|f(x + y)|µ(dy)

�
∫
{y∈D||f(x+y)|�M}

|f(x + y)|µ(dy) +
∫
{y∈D||y|>L, |f(x+y)|<M}

|f(x + y)|µ(dy)

�
∫
|f(y)|�M

|f(y)|µ(dy) + Mµ({y ∈ D | |y| > L, |f(x + y)| < M}) � ε

3
+ M µ({y ∈ D | |y| > L})

� 2
3
ε .

よって，|x| > 2Lならば

|g(x)| �
∫

D

|f(x + y)|µ(dy) �
∫

[−L,L]

|f(x + y)|µ(dy) +
∫
{y∈D||y|>L}

|f(x + y)|µ(dy) � ε.
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ε > 0は任意だったので lim
|x|→∞

g(x) = 0 を得る．

[10] (H8阪大 8)．fnが f に一様収束するので，特に，ある k0が存在して k � k0ならば |fk(x)−f(x)| � 1
が全ての xで成り立つ．一方，仮定から，|f(x)| � k ならば |fk(x) − f(x)| � |fk(x)| + |f(x)| � 2|f (x)|．
そこで，

g(x) =

{
2|f (x)|, |f(x)| � k0 ,

1, |f(x)| > k0 ,

によって非負値関数 g を定義すると，k � k0 ならば |fk(x) − f(x)| � g(x)が全ての xで成り立ち，また，

チェビシェフの不等式を用いて，∫
Rn

g(x) dµ(x) = 2
∫
|f(x)|�k0

|f(x)|dµ(x) +
∫
|f(x)|>k0

1 dµ(x)

� 2
∫

Rn

|f(x)|dµ(x) +
1
k0

∫
Rn

|f(x)|dµ(x) = (2 +
1
k0

)
∫

Rn

|f(x)|dµ(x) < ∞

だから，gは可積分になる．よって，優収束定理から

lim
k→∞

∫
Rn

|fk(x) − f(x)|dµ(x) =
∫

Rn

lim
k→∞

|fk(x) − f(x)|dµ(x) = 0

[11] (H3 筑波大 7)．fnが非負値なので，単調収束定理から（+∞を許せば）∫
R

∞∑
n=1

fn(x) dx =
∞∑

n=1

∫
R

fn(x) dx < ∞

となるので，
∞∑

n=1

fn(x)はほとんど全ての xに対して収束する．

Fatouの補題．

[12] (H8 山形大 8)．

(1) lim
n→∞

fn(x) = lim
n→∞ inf

k�n
fk(x).

(2)単調収束定理 lim
n→∞

∫
fn dµ =

∫
f dµ が成り立つ．ここで等号は両辺が+∞の場合を許すものとする．

(3) gn(x) = inf
k�n

fk(x)で関数 gn : Ω → Rを定義すると，gnは非負可測関数で非減少だから，前小問２問

の fnを gnと読み替えると lim
n→∞

∫
gn dµ =

∫
lim

n→∞ gn dµ =
∫

lim
n→∞

fn dµが成り立つ．各 x ∈ Ωに対

して gn(x) � fk(x), k = n, n + 1, n + 2, · · ·，だから
∫

gn dµ �
∫

fk dµ, k = n, n + 1, n + 2, · · ·. した

がって
∫

gn dµ � inf
k�n

∫
fk dµ を得るから，以上を合わせると

∫
lim

n→∞
fn dµ � lim

n→∞ inf
k�n

∫
fk dµ = lim

n→∞

∫
fn dµ

を得る．

[13] (H3都立大 10)．仮定から fn−g, n = 1, 2, 3, · · ·,はほとんどいたるところ非負な関数列だから，Fatou
の補題から ∫

Ω

lim
n→∞

fn − g dµ � lim
n→∞

∫
Ω

(fn − g) dµ.

gが可積分なので，積分の加法性から∫
Ω

lim
n→∞

fn dµ −
∫

Ω

g dµ � lim
n→∞

∫
Ω

fn dµ −
∫

Ω

g dµ.
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gが可積分なので
∫

Ω

g dµは実数値だから，これを両辺に加えることができて，主張を得る．

[14] (H1 熊本大 3)．

(1) f が有界なので |f(x)| � M が全ての x ∈ Ωで成り立つような実数M > 0が存在する．
∫

Ω

|f | dµ �
Mµ(Ω)となるが，有限測度空間なので右辺は有限値だから f は積分可能である．

(2)シュワルツの不等式から

∫
Ω

|f | dµ =
∫

Ω

1 · |f | dµ �
(∫

Ω

12 dµ

)1/2(∫
Ω

|f |2 dµ

)1/2

=
√

µ(Ω) ×
(∫

Ω

|f |2 dµ

)1/2

< ∞

となるから積分可能である．

(3) Fatouの補題
∫

Ω

lim
n→∞

|fn| dµ � lim
n→∞

∫
Ω

|fn| dµ において， lim
n→∞

|fn| = lim
n→∞ |fn| = |f |であることと

lim
n→∞

∫
Ω

|fn| dµ � sup
n�1

∫
Ω

|fn| dµ < ∞を使うと
∫

Ω

|f | dµ < ∞ となって f が積分可能であることが分

かる．

[15] (H3 お茶大 1)．

(1) fn が非負なので Fatouの補題から 0 �
∫

Ω

lim
n→∞

fn dµ � lim
n→∞

∫
Ω

fn dµだが， lim
n→∞

fn = lim
n→∞ fn = f

と lim
n→∞

∫
Ω

fn dµ = lim
n→∞

∫
Ω

fn dµ = αを使うと 0 �
∫

Ω

f dµ � α を得る．

(2) (Ω,F , µ)を実数の区間 [0, 1]上のルベーグ測度空間 (Ω = [0, 1])とし，

fn(x) =

⎧⎪⎨
⎪⎩

αn, 0 < x <
1
n

,

0, x = 0 または
1
n

� x � 1,

で fnを定義し，f を恒等的に 0なる関数とすると，(*) と
∫

R

f dµ = 0が成り立つことはすぐ分かる．

(3) (Ω,F , µ)を実数の区間 [0, 2]上のルベーグ測度空間 (Ω = [0, 2])とし，

fn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(α − β)n, 0 < x <
1
n

,

0, x = 0 または
1
n

� x � 1,

β, 1 < x � 2,

で fnを定義し，f(x) =

{
0, 0 � x � 1,

β, 1 < x � 2,
で f を定義すると，(*) と

∫
R

f dµ = βが成り立つことは

すぐ分かる．

有界収束定理．

[16] (S62 京大 7)．

(1)
∫ 1

0

f(x) log f(x) dx =
∫
{x∈[0,1]|f (x)<1}

f(x) log f(x) dx+
∫
{x∈[0,1]|f (x)>1}

f(x) log f(x) dx において右

辺が確定すれば左辺の積分が確定する．f は可測関数だから，右辺第１項（被積分関数が負値の部分の積

分）が有限ならば，題意通り+∞を許して積分が確定する．h(y) = y log y とおくと，h′(y) = log y +1
だから

y 0 · · · e−1 · · · 1 · · · ∞
h(y) 0 ↘ −e−1 ↗ 0 ↗ ∞
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したがって特に f(x) log f(x) = h(f(x)) � −e−1 が任意の xに対して成り立つので，

0 �
∫
{x∈[0,1]|f (x)<1}

f(x) log f(x) dx � −e−1

となり，たしかに有限である．

(2) I(f) < ∞，すなわち f log f が [0, 1]上で可積分，のときは，max{e−1, |f log f |}も（[0, 1]が有限区間な
ので）可積分．いっぽう，題意から fn � f , a.e.,だから，（増減表から）|fn log fn| � max{e−1, |f log f |},
a.e., が全ての n について成り立つので，優収束定理から lim

n→∞ I(fn) = I( lim
n→∞ f) = I(f)．

I(f) = ∞のとき，Ω ⊂ [0, 1]を fnが単調増大して f に収束する点の集合とする．仮定から [0, 1]\Ωから
積分への寄与はゼロ．Ω′ = {x ∈ Ω | f(x) > 1}，およびm ∈ Nに対して，Ωm = {x ∈ Ω′ | fm(x) � 1}
とおくと，fnの単調性から Ωm 上では n � mならば fn � 1．よって，

⋃
m�1

Ωm = Ω′．これに加えて，

（増減表から f < 1のところからの I(f)への寄与は有限なので，）
∫

Ω′
f(x) log f(x) dx = ∞だから，積

分範囲に関する積分の連続性から，任意のM > 0に対してmが存在して
∫

Ωm

f(x) log f(x) dx � M．

増減表から，n � mに対して

I(fn) � −e−1 +
∫
{fn log fn�0}

fn(x) log fn(x) dx � −e−1 +
∫

Ωm

fn(x) log fn(x) dx.

よって（n � mのとき Ωm 上で fn log fn � 0に注意すると）Fatouの補題から，

lim
n→∞

I(fn) � −e−1 +
∫

Ωm

lim
n→∞

fn(x) log fn(x) dx = −e−1 +
∫

Ωm

f(x) log f(x) dx � M − e−1.

M は任意だったから lim
n→∞

I(fn) = ∞，したがって lim
n→∞ I(fn) = I(f)．

[17] (H5 神戸大 3)．

(1) Gapの大きさが 1/n以上の不連続点の集合を Gn とおくと，G1 ⊂ G2 ⊂ · · ·であって不連続点の全体
の集合 Gは G =

∞⋃
n=1

Gn である．�Gn � (f(1) − f(0))n < ∞ だから，Gは高々可算集合．したがっ

て特にそのルベーグ測度は 0である．
(2) xが有理数 q/p（ただし p, qは既約で 0 � q � pとする）で，pがm!の約数ならば [cos(m!πx)]2 = 1，
そうでなければ [cos(m!πx)]2 < 1である．m!の約数は有限個だから [cos(m!πx)]2 = 1となる xは [0, 1]
の中に有限個である．したがって，有限個の点を除いて lim

n→∞[cos(m!πx)]2n = 0，有限個の点では極限
は 1である．
全ての nについて被積分関数が 0以上 1以下で lim

n→∞[cos(m!πx)]2n が各点収束するから，有界収束定

理が適用可能で，

lim
n→∞

∫ 1

0

[cos(m!πx)]2n dx =
∫ 1

0

lim
n→∞[cos(m!πx)]2n dx =

∫ 1

0

0 dx = 0 .

(3) p > q � 0なので，a � 1ならば ap−q � 1に注意すると，f ∈ Lp(0, 1) ならば∫ 1

0

|f(x)|q dx =
∫
{x∈[0,1]||f (x)|<1}

|f(x)|q dx +
∫
{x∈[0,1]||f (x)|�1}

|f(x)|q dx

�
∫
{x∈[0,1]||f (x)|<1}

1 dx +
∫
{x∈[0,1]||f (x)|�1}

|f(x)|q|f(x)|p−q dx � 1 +
∫

[0,1]

|f(x)|p dx < ∞.

よって1 f ∈ Lq(0, 1)でもある．
1ふつうは積分範囲を分けずに Hölder の不等式で証明する．p > q > 0 ならば r = p/q > 1 なので s−1 + r−1 = 1 で s > 1 を

定義すると，Hölder の不等式から� 1

0
|f(x)|q dx �

�� 1

0
|f(x)|qr dx

�1/r �� 1

0
1s dx

�1/s

=

�� 1

0
|f(x)|p dx

�q/p

.

しかし，そうすると他の小問と比べるとやや進んだ知識を使うことになるので，面接試験で Hölderの不等式の証明を質問されるかも
しれない（冗談です）．
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[18] (H1 広島大 6)．

(1) sgn ξの定義から f(x)sgn(f(x)) = |f(x)|なので
∫ 1

0

f∗(x)f(x) dx =
∫ 1

0

|f(x)|p dx．これは仮定により

1である．また，|sgn(f(x))| |f(x)| = |f(x)|なので
∫ 1

0

|f∗(x)|q dx =
∫ 1

0

|f(x)|q(p−1) dx =
∫ 1

0

|f(x)|p dx = 1.

(2)条件から lim
n→∞ fn

∗(x) = f0
∗(x) = 0, a.e. （f0(x) �= 0ならば十分大きな nに対して fn(x)は f0(x)と

同符号になるから sgn(fn(x))は定数になるので成り立つし，f0(x) = 0ならば lim
n→∞ fn(x) = 0 = f0(x)

なのでやはり成り立つ）．また |f∗
n(x)| = |fn(x)|p−1 � Mp−1, a.e., も明らか．よって有界収束定理か

ら lim
n→∞

∫ 1

0

|fn
∗(x) − f0

∗(x)|dx =
∫ 1

0

lim
n→∞ |fn

∗(x) − f0
∗(x)|dx = 0 .

優収束定理（Lebesgueの収束定理）．

[19] (H6 神戸大 3)．

(1) n′ > n > 0とすると，
1
n
− 1

n′ > 0だから，0 < f(x) < 1ならば f(x)1/nf(x)−1/n′
< 1，すなわち，

f(x)1/n < f(x)1/n′
．よって単調増加．さらに lim

n→∞ f(x)1/n = 1だから2，単調収束定理によって

lim
n→∞

∫
E1

f(x)1/n dµ(x) =
∫

E1

lim
n→∞ f(x)1/n dµ(x) = µ(E1).

(2) n � 1ならば 1− 1
n

� 0だから，f(x) � 1ならば f(x)1−1/n � 1，すなわち，f(x) � f(x)1/n．さらに

lim
n→∞ f(x)1/n = 1だから，f が E2 上可積分という仮定に注意すれば，優収束定理によって

lim
n→∞

∫
E2

f(x)1/n dµ(x) =
∫

E2

lim
n→∞ f(x)1/n dµ(x) = µ(E2).

(3)前２小問の結果から lim
n→∞

∫
R

f(x)1/n dµ(x) = lim
n→∞

∫
E1

f(x)1/n dµ(x) + lim
n→∞

∫
E2

f(x)1/n dµ(x) =

µ(E1) + µ(E2)を得るが，E1 ∩ E2 = ∅なので最右辺は µ(E1 ∪ E2)に等しい．

[20] (S63 奈良女大 IIA)．

(1) |f(x− y) g(y)| � M |g(y)|で gは可積分であり，f は連続なので lim
x′→x

f(x′ − y) = f(x− y)だから，優

収束定理（ルベーグの収束定理）から

lim
x′→x

F (x′) =
∫

Rn

lim
x′→x

f(x′ − y) g(y) dy =
∫

Rn

f(x − y) g(y) dy = F (x).

よって F は連続関数．

(2)任意に小さい ε > 0 に対して，F の定義の積分範囲を分解する： |F (x)|≦ I1 + I2 + I3;

I1 =
∫
|g(y)|�K

|f(x − y)||g(y)|dy,

I2 =
∫
|y|<|x|/2, |g(y)|<K

|f(x − y)||g(y)|dy,

I3 =
∫
|y|�|x|/2

|f(x − y)||g(y)|dy.

2たぶん，f(x)1/n は単調増加であることを示せ，という題意の真意は，f(x)1/n は単調増加であることに注意せよ，という意味
で，だから lim

n→∞ f(x)1/n = 1 の証明までは求められていないと思う．
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問題の仮定から g が可積分なので（関数列 {g1{y||g(y)|�K}}K を考えることによって）優収束定理から

（あるいは，元をただせば積分範囲の和に関する可算加法性から），

lim
K→∞

∫
|g(y)|�K

|g(y)| dy = 0

だから，問題の仮定の |f(x − y)| � M と合わせると，十分大きい K をとって

I1 � M

∫
|g(y)|�K

|g(y)| dy � 1
3
ε

とできる．以下この K = K(ε) を固定して，I1, I2, I3の分解に用いる．

I2 は，積分範囲の定義を使った後，x− y = z と変数変換して三角不等式 |z| � |x|− |x− z|を用いると

I2 � K

∫
|y|<|x|/2

|f(x− y)| dy � K

∫
|z|>|x|/2

|f(z)| dz

を得るが，I1 のときと同様に，問題の仮定の f の可積分性と優収束定理（あるいは積分範囲の和に関

する可算加法性）から，右辺の積分は |x| → ∞ で 0 に収束するので，L = L(ε, K(ε)) を十分大きくと
れば，

I2 � 1
3
ε, |x| > L,

とできる．I3 も，問題の仮定の |f(x − y)| � M と g の可積分性を（今までと同様に）用いると，

L = L(ε, K(ε)) を（必要ならさらに）十分大きくとれば，

I3 � 1
3
ε, |x| > L,

I1 + I2 + I3 をとることによって，任意の ε > 0に対して Lが存在して |x| > Lならば |F (x)| < ε とな

るから， lim
|x|→∞

F (x) = 0を得る3．

[21] (H5 大阪市大 C1)．

(1) h(y) = eαy − (1 + yα)で関数 h : [0,∞) → Rを定義する．ey � 1 + y > yと α − 1 � 0から y � 0の
とき e(α−1)y � yα−1なので，y � 0のとき ey � 1と合わせると h′(y) = α(eαy − yα−1) > 0, y � 0，と
なるので，h(0) = 0と合わせると y > 0で h(y) > 0となることが分かる．y = f(x)/n > 0を代入し
て，eαf(x)/n > 1 + (f(x)/n)α, x ∈ E. 両辺の対数をとって n倍すれば主張を得る．

(2) lim
n→∞(1 +

x

n
)n = exなので x ∈ Eに対して lim

n→∞nα log(1 + (
f(x)

n
)α) = f(x)α．よって，α = 1のとき

lim
n→∞n log(1 + (

f(x)
n

)α) = f(x)，α > 1のとき lim
n→∞n log(1 + (

f(x)
n

)α) = 0，が各点で成り立つ．前
小問から被積分関数は可積分関数 αf で nについて一様に抑えられるので優収束定理から

lim
n→∞

∫
E

n log(1 + (
f(x)

n
)α) dx =

∫
E

lim
n→∞n log(1 + (

f(x)
n

)α) dx =

⎧⎨
⎩
∫

E

f(x) dx, α = 1,

0, α > 1.

[22] (H6 広島大 6A)．

(1) (a)を仮定する．h = χE+ − χE− とおくと，f = |f |hだから，仮定から
∫

R

|f | (1 − g h) dµ = 0．定

義から g h � 1, a.e., なので，ほとんどいたるところ非負の関数の積分が 0となり，被積分関数はほ
3本解答例旧版で，「f の可積分性と連続性から lim

|x|→∞
f(x) = 0となる」としたが，可積分性からは，遠くで積分をとったとき単調

に小さくなることが言えるだけで，それと被積分関数の連続性だけでは被積分関数が小さくなることは言えない．（つまり，旧版は誤
り．）たとえば，k = 1, 2, 3, · · · に対して，x = k を中心とする幅 k−2 の区間の両端点で 0，中心で 1の 2等辺三角形をとり，これら
の区間たちの外では x 軸をとってつないだ図形をグラフとする関数 f は可積分で連続だが整数点で値 1をくり返しとるので x → ∞
の極限がない．極限 0 とするには，たとえば f に大局的ヘルダー連続性を保証するなどの追加条件が必要である．逆に，問題のよう
に，そのような条件が無い場合は，上記解答例のように，被積分関数 f の位相的性質を新たに主張することなく積分 F の評価を直接
得ないといけない．
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とんどいたるところ 0でなければならない．すなわち，1 − g h = 0が E+ ∪ E− 上ほとんどいたると
ころで成り立つ．したがって，E+ 上で g = 1, a.e., E− 上で g = −1, a.e.．このとき (a)からさらに

0 <

∫
R

|f | dµ =
∫

E+∪E−
|f | dµ なので µ(E+ ∪ E−) > 0も従う．よって (b)が成り立つ．

次に (b)を仮定すると
∫

R

f g dµ =
∫

E+

f dµ −
∫

E−
f dµ =

∫
R

|f | dµ. (b)から集合 E+ ∪ E− の測度は

正だが定義からその上で |f | > 0でなので，積分の積分範囲に関する連続性からある δ > 0があって，

G = {x ∈ E+ ∪ E− | |f | > δ}の測度は正になる．よって
∫

R

|f | dµ �
∫

G

|f | dµ � δµ(G) > 0．

(2) µ(E+∪E−) = 0のとき，すなわち，f = 0, a.e.,のとき，左辺も右辺も0で等しいので，以下µ(E+∪E−) >

0とする．
φn の定義から x ∈ E+ ∪ E− ならば前小問中の (b)で与えられた gを用いて lim

n→∞ φn(f(x)) = g(x)と
なっている．また |φn| � 1なので f(x) |φn(f(x))| � |f(x)|, x ∈ R, である．|f |は可積分なので優収束
定理から

lim
n→∞

∫
R

f(x)φn(f(x))dµ(x) =
∫

R

f(x) lim
n→∞φn(f(x))dµ(x) =

∫
R

f(x) g(x) dµ(x).

gの定義から f(x)g(x) = |f(x)|なので， lim
n→∞

∫
R

f(x)φn(f(x))dµ(x) =
∫

R

|f |(x)dµ(x)が成り立つ．

非負値関数の概収束と L1収束．

[23] (S61 筑波大 7)．

(1) fnが f に各点収束する（条件 (B)）ので lim
n→∞(f(x)− fn(x))+ = 0．このことと 0 � (f(x)− fn(x))+ �

f(x)であって f が可積分であることから優収束定理によって lim
n→∞

∫
R

(f(x) − fn(x))+ dx = 0 .

(2) z ∈ Rに対して |z| = 2 max{z, 0} − z なので条件 (A)と前小問から

lim
n→∞

∫
R

|f(x) − fn(x)|dx = 2 lim
n→∞

∫
R

(f(x) − fn(x))+ dx − lim
n→∞

∫
R

f(x) dx + lim
n→∞

∫
R

fn(x) dx = 0.

[24] (S60 広島大 6)．

(1)実数αに対してα+ = max{α, 0}と書くことにする．fnが f に概収束する（条件 (a)）ので lim
n→∞(f(x)−

fn(x))+ = 0, a.e.．このことと 0 � (f(x) − fn(x))+ � f(x)であって f が可積分であることから優収

束定理によって lim
n→∞

∫
R

(f(x)− fn(x))+ dx = 0 . 実数 αに対して |α| = 2 α+ − α だから条件 (b)と合

わせると

lim
n→∞

∫
R

|f(x) − fn(x)|dx = 2 lim
n→∞

∫
R

(f(x) − fn(x))+ dx − lim
n→∞

∫
R

f(x) dx + lim
n→∞

∫
R

fn(x) dx = 0.

(2)条件 (a)と Fatouの補題から∫
R

x2 |f(x)|dx =
∫

R

x2 lim
n→∞ |fn(x)|dx =

∫
R

x2 lim
n→∞

|fn(x)|dx

� lim
n→∞

∫
R

x2 |fn(x)|dx � sup
n�1

∫
R

x2 |fn(x)|dx.

よって特に，

sup
n�1

∫
R

x2 |fn(x) − f(x)|dx � sup
n�1

∫
R

x2 |fn(x)|dx +
∫

R

x2 |f(x)|dx. � 2 sup
n�1

∫
R

x2 |fn(x)|dx.

条件 (c)と fn � 0からこれは有限である．シュワルツの不等式から∣∣∣∣
∫

R

(x fn(x) − x f(x))dx

∣∣∣∣ �
∫

R

|x|
√

|fn(x) − f(x)|
√
|fn(x) − f(x)|dx

�
√∫

R

x2 |fn(x) − f(x)|dx

√∫
R

|fn(x) − f(x)|dx
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だが，上に注意したことと，前小問の結果から右辺は n → ∞で 0に収束するから lim
n→∞

∫
R

(x fn(x) −
x f(x))dx = 0 を得て主張が成り立つ．

[25] (H8 広島大 6B)．

(1) k → ∞ のとき fk(x) → f(x) ならば，fk(x) − f(x) → 0 および |fk(x)| → |f(x)|は明らかだから，
lim

k→∞
|fk(x)| − |f(x)| = 0および lim

k→∞
|fk(x) − f(x)| = 0．２式を加えれば lim

k→∞
gk(x) = 0を得る．

(2)三角不等式 |α + β| � |α| + |β|に α = |fk(x)| − |fk(x) − f(x)|と β = −|f(x)|を代入すれば gk(x) �
| |fk(x)| − |fk(x) − f(x)| | + |f(x)|．さらに三角不等式 ||α| − |β|| � |α − β| に α = fk(x) と β =
fk(x) − f(x)を代入すれば gk(x) � 2|f (x)|を得る4．

(3)以上の 2つの小問から {gk}は積分可能関数で各点で抑えられていて，かつほとんど全ての点で 0に

収束するから，優収束定理によって lim
k→∞

∫ b

a

gk(x) dx = 0．一般に
∣∣∫ h(x) dx

∣∣ �
∫ |h(x)| dx だから

lim
k→∞

∫ b

a

(|fk(x)| − |fk(x) − f(x)| − |f(x)|)dx = 0．fk, f は積分可能だから積分の加法性から

lim
k→∞

(∫ b

a

|fk(x)|dx −
∫ b

a

|fk(x) − f(x)|dx

)
=
∫ b

a

|f(x)|dx.

[26] (H5 熊本大 1)．fn が f に各点で収束するので，各 x に対して lim
n→∞(|fn(x)| − |f(x) − fn(x)|) =

|f(x)| が成り立つ．三角不等式 ||a| − |b|| � |a − b| に a = fn(x) と b = fn(x) − f(x) を代入すると
||fn(x)| − |f(x) − fn(x)|| � |f(x)|である．f は R上で可積分だから，もちろん任意の区間 [a, b]で可積分
なので，優収束定理によって

lim
n→∞

∫ b

a

(|fn(x)| − |f(x) − fn(x)|)dx =
∫ b

a

|f(x)|dx

が成り立つ．

一方 Fatouの補題と各点収束の仮定から

lim
n→∞

∫
(−∞,a)∪(b,∞)

|fn(x)|dx

�
∫

(−∞,a)∪(b,∞)

lim
n→∞

|fn(x)|dx =
∫

(−∞,a)∪(b,∞)

lim
n→∞ |fn(x)|dx =

∫
(−∞,a)∪(b,∞)

|f(x)|dx

だから，仮定 lim
n→∞

∫
R

|fn|(x)dx =
∫

R

|f |(x)dx と合わせると

lim
n→∞

∫ b

a

|fn(x)|dx �
∫

R

|f |(x)dx −
∫

(−∞,a)∪(b,∞)

|f(x)|dx =
∫ b

a

|f(x)|dx

を得るが，Fatouの補題と各点収束の仮定からは

lim
n→∞

∫ b

a

|fn(x)|dx �
∫ b

a

lim
n→∞

|fn(x)|dx =
∫ b

a

lim
n→∞ |fn(x)|dx =

∫ b

a

|f(x)|dx

も得るので

lim
n→∞

∫ b

a

|fn(x)|dx =
∫ b

a

|f(x)|dx.

これを先に得た結果と合わせると lim
n→∞

∫ b

a

|f(x)−fn(x)|dx = 0を得るので lim
n→∞

∫ b

a

fn(x) dx =
∫ b

a

f(x) dx

が成り立つ．

4問題文では「ほとんどの点で」となっているが，この小問は前の小問と違って無条件で全ての点で成り立つ．全ての点で成り立
てばほとんどの点で成り立つので問題文が間違っているわけではない．
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積分とパラメータに関する微分の順序交換．

[27] (H5 学習院大 6)．t �= 0, x � 0のとき
∣∣∣∣1t (sin tx − tx)f(x)

∣∣∣∣ � 2x|f(x)|であって，仮定から右辺は可
積分だから，tについての極限と積分の順序交換が可能で

lim
t→0

1
t

∫ ∞

0

(sin tx − tx)f(x) dx =
∫ ∞

0

lim
t→0

1
t
(sin tx − tx)f(x) dx =

∫ ∞

0

lim
t→0

(x − x)f(x) dx = 0.

[28] (H5富山大 BVI)．0 < p < δとする．0 � x � 1を 1つ定めて g(p) = p|f(x)|p log |f(x)|−|f(x)|p+1と

おくと，g(0) = 0と g′(p) = p(log |f(x)|)2|f(x)|p � 0, p � 0, を得るので g(p) � 0，すなわち，
1
p
(|f(x)|p −

1) � |f(x)|p log |f(x)|が 0 � x � 1で成り立つ．あとは右辺が可積分であることが言えれば，p ↓ 0の極限
と積分が交換できて

lim
p↓0

1
p

∫ 1

0

(|f(x)|p − 1) dx =
∫ 1

0

lim
p↓0

1
p

(|f(x)|p − 1) dx =
∫ 1

0

log |f(x)|dx

を得る．

残っているのは |f(x)|p log |f(x)|, 0 � x � 1, の可積分性の証明だけである．0 � y � 1 に対して
h1(y) = yp log yとおくと，h′

1(y) = pyp−1 log y + yp−1なので
y 0 · · · e−1/p · · · 1

h1(y) 0 ↘ − 1
ep

↗ 0

よって，|yp log y| � 1
ep

, 0 � y � 1．次に，y � 1に対して h2(y) =
1

δ − p
yδ−p− log yとおくと，h2(1) > 0

かつ h′
2(y) =

1
y

(yδ−p − 1) � 0, y � 1, なので h2(y) > 0，すなわち yp log y � 1
δ − p

yδ, y � 1．

これらを用いれば∫ 1

0

|f(x)|p| log |f(x)||dx

=
∫
{x∈[0,1]||f (x)|�1}

|f(x)|p| log |f(x)||dx +
∫
{x∈[0,1]||f (x)|>1}

|f(x)|p| log |f(x)||dx

�
∫
{x∈[0,1]||f (x)|�1}

1
ep

dx +
∫
{x∈[0,1]||f (x)|>1}

1
δ − p

|f(x)|δ dx

� 1
ep

+
1

δ − p

∫ 1

0

|f(x)|δ dx < ∞

となって可積分性が言えた．

[29] (H4 新潟大 3)．

(1) t, x � 0ならば |e−txf(x)| � |f(x)|であり，f は可積分だから，tについての極限と x積分は順序交換

が可能で

lim
s→t

g(s) =
∫ ∞

0

lim
s→t

e−sxf(x) dx =
∫ ∞

0

e−txf(x) dx = g(t)

だから gは連続である．

(2) x � 0かつ h > 0ならば 0 � 1 − e−hx � hxである．また，t > 0, x � 0かつ −t/2 < h < 0ならば
0 � e−hx − 1 � −hxetx/2である．（いずれも hについて微分して増減表を書けば分かる．）よって t > 0,
x � 0, かつ |h| < t/2ならば∣∣∣∣e−(t+h)x − e−tx

h
f(x)

∣∣∣∣ �
∣∣∣∣1 − e−hx

h

∣∣∣∣ e−tx|f(x)| � xe−tx/2|f(x)| � 2
et

|f(x)|.

最後の不等式は，xe−tx/2 の x � 0についての増減表を書けば分かる．f は可積分だから，t > 0のと

き
1
h

(g(t + h) − g(t)) =
∫ ∞

0

e−(t+h)x − e−tx

h
f(x) dxは h → 0の極限と積分の順序が交換できて

g′(t) = lim
h→0

1
h

(g(t + h) − g(t)) =
∫ ∞

0

xe−tx f(x) dx.
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すなわち g′(t)は t > 0で存在する．g′(t)について今得られた表式で前小問と同様の議論を繰り返せば
g′が連続であることも分かる．

[30] (H10 都立大 11)．

(1)仮定より a < t + h < b に対して f(x, t + h)は x ∈ [0, 1]について可測だから，
1
h

(f(x, t + h)− f(x, t))

も可測であり，したがって極限 lim
h→0

1
h

(f(x, t + h) − f(x, t)) =
∂

∂t
f(x, t)も可測である．（hは十分 0に

近いところだけ考えればよいから，a < t < bで主張が成り立つ．）

(2) tについての微分可能性の仮定から各 0 � x � 1と a < t < bに対して δ = δ(x, t) > 0が存在して∣∣∣∣ 1h (f(x, t + h) − f(x, t)) − ∂

∂t
f(x, t)

∣∣∣∣ � 1, |h| < δ.

これと仮定から |h| < δ で
∣∣∣∣ 1h(f(x, t + h) − f(x, t))

∣∣∣∣ � 1 + φ(x) となるが，右辺は [0, 1]で可積分だか

ら，h → 0と積分の順序が交換できて，

d

dt

∫ 1

0

f(x, t) dµ(x) = lim
h→0

∫ 1

0

1
h

(f(x, t + h) − f(x, t)) dµ(x)

=
∫ 1

0

lim
h→0

1
h

(f(x, t + h) − f(x, t)) dµ(x) =
∫ 1

0

∂

∂t
f(x, t) dµ(x) .

[31] (H4 名大 8)．

(1) q(z) = zez−ez +1とおくと q(0) = 0かつ z > 0のとき q′(z) = zez > 0から，z > 0で 0 <
ez − 1

z
< ez

である．よって，|h| � 1ならば∣∣∣∣ 1h (e(y+h)f(x) − eyf(x))
∣∣∣∣ =

∣∣∣∣1h (ehf(x) − 1)
∣∣∣∣ eyf(x)

� 1
|h| (e|hf(x)| − 1) eyf(x) � |f(x)|e|hf(x)| eyf(x) � |f(x)|e|f(x)| eyf(x).

f が有界で積分範囲は [0, 1]だから左辺は可積分関数．よって h → 0の極限と積分が交換できて

g′(y) ×
∫ 1

0

ey f(x) dx = lim
h→0

1
h

∫ 1

0

(e(y+h)f(x) − eyf(x)) dx

=
∫ 1

0

lim
h→0

1
h

(e(y+h)f(x) − eyf(x)) dx =
∫ 1

0

f(x)eyf(x) dx, y ∈ R.

特に g は微分可能である．２階以上の微分についても今と全く同様の議論によって，
∣∣∣∣ 1h (ehf(x) − 1)

∣∣∣∣
が hによらない可積分関数で抑えられれば良いが，既に上にその評価は得られているので，gは何回で

も微分可能である．

(2)前小問で得た g′の具体形においてさらに微分すると y ∈ Rに対して

g′′(y) =

∫ 1

0
f(x)2eyf(x) dx × ∫ 1

0
ey f(x) dx −

(∫ 1

0
ey f(x) dx

)2

(∫ 1

0 ey f(x) dx
)2

=

∫ 1

0

(
f(x) −

∫ 1

0 f(x)eyf(x) dx∫ 1

0
eyf(x) dx

)2

eyf(x) dx

∫ 1

0

eyf(x) dx

� 0.

[32] (H4 富山大 BV)．f の n階導関数 f (n) が存在して f (n)(λ) =
∫ ∞

0

(−t)ne−λt W (dt) で与えられるこ

とを帰納的に全ての自然数 nと λ ∈ (0,∞)で証明すれば十分である5．
5この問題は見やすいので，参考のために他の解答例に比べて少しだけより完全な形式で証明を残しておく．
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まず n = 0 の場合．被積分関数が t � 0 の各点で λ ∈ (0,∞) について微分可能なことすなわち極限

lim
h→0

1
h

(e−(λ+h)t − e−λt) = −te−λtを持つこと，は明らか．さらに極限をとる前の被積分関数が，λ > 0を

固定する毎に |h| < λ/2の範囲で hによらない可積分関数で抑えられることは，t � 0で∣∣∣∣ 1h (e−(λ+h)t − e−λt)
∣∣∣∣ � |t|e

|ht| − 1
|ht| e−λt � te|ht|−λt � te−λt/2 � 4

λ
e−λt/4

となることとと，仮定
∫ ∞

0

e−λt W (dt) < ∞（の λを λ/4 > 0としたもの）から分かる．ここで，最後の変

形は
4
λ

eλt/4 � t, t � 0, を用いたがこれは左右の差をとって微分すれば増加関数になることから容易であり，

また，途中の変形において，z > 0で 0 <
ez − 1

z
< ez となることを用いたが，これは q(z) = zez − ez + 1

とおくと q(0) = 0かつ z > 0のとき q′(z) = zez > 0となることから分かる．以上によって，優収束定理か
ら λについての微分（極限）と tについての積分が交換可能になり，λ > 0で f が微分可能で，その微分係

数が

f ′(λ) = lim
h→0

1
h

(f(λ + h) − f(λ)) =
∫ ∞

0

lim
h→0

1
h

(e−(λ+h)t − e−λ)W (dt) =
∫ ∞

0

(−t)e−λt W (dt)

となることを得る．

次にある n � 1に対して f (n)(λ) =
∫ ∞

0

(−t)ne−λt W (dt) が λ > 0の各点で成り立っていると仮定する．

被積分関数が t � 0 の各点で λ ∈ (0,∞)について微分可能なことすなわち極限 lim
h→0

1
h

((−t)ne−(λ+h)t −
(−t)ne−λt) = (−t)n+1e−λt を持つこと，は n = 0と同様に明らか．極限をとる前の被積分関数が，λ > 0
を固定する毎に |h| < λ/2の範囲で hによらない可積分関数で抑えられることは，t � 0で∣∣∣∣ 1h ((−t)ne−(λ+h)t − (−t)ne−λt)

∣∣∣∣ � |t|n+1 e|ht| − 1
|ht| e−λt � tn+1e|ht|−λt �

(
4
λ

)n+1

(n + 1)! e−λt/4

から分かることは n = 0の場合と全く同様である．最後の変形だけみかけが違うが，n = 0の場合に 1階導
関数が正になったところが n + 1階導関数が正になることが分かって，逐次さかのぼるだけの違いである．
以上によって，優収束定理から λについての微分と tについての積分が交換可能になり，λ > 0の各点で

f (n+1)(λ) =
∫ ∞

0

(−t)n+1e−λt W (dt) を得る．よって帰納法の主張が成立し，問題の主張もその一部として

証明された．

[33] (H4 上智大 3)．

(1)まず，e−txf(x) = e−
t x f(x) cos(�t x)−√−1e−
t x f(x) sin(�t x) が x � 0の可測関数であることは
明らかだから，積分が有限になることを証明すれば F (t)が定義されていることが分かるが，シュワル
ツの不等式から

∫ ∞

0

|e−txf(x)|dx �
√∫ ∞

0

e−2
t x dx

√∫ ∞

0

|f(x)|2 dx =
1

2�t

√∫ ∞

0

|f(x)|2 dx

なので，|f |2が可積分という仮定から，�t > 0で F (t)が定義されていることが分かる．
正則であることは tについてコーシーリーマンの関係式が示されればよいが，被積分関数が xの各点で

tについて正則，したがってコーシーリーマンの関係式が成り立つことが明らかなので，F (t)が微分可
能で，xについての積分と tについての微分の順序が交換可能であることが言えれば十分である．その

十分条件として，被積分関数の微分の定義 lim
h→0

1
h

(e−(t+h)x − e−tx)f(x) において極限をとる前の関数

が hについて（0を含むある近傍で）hによらない可積分関数で抑えられることを言えばよい6．とこ

ろが，�t > 0かつ x � 0 のとき∣∣∣∣ 1h (e−(t+h)x − e−tx) f(x)
∣∣∣∣ � |x|e

|
h x| − 1
|hx| e−
t x|f(x)| � x

e|hx| − 1
|hx| e−
t x|f(x)| � xe−(
t−|h|) x|f(x)|

6t, h は複素変数で考えている．ルベーグ積分の定義からは虚部と実部に分けてそれぞれ上から抑えることになるが，評価をまと
めて実行した表記上の便法になっている．気になる向きは，実際に虚部と実部に分けて確認されたし．
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となる．なお，途中の変形で，z > 0で0 <
ez − 1

z
< ezとなることを用いたが，これは q(z) = zez−ez+1

とおくと q(0) = 0かつ z > 0のとき q′(z) = zez > 0となることから分かる．よって，|h| < �t/2 で h

によらない関数 xe−
t x/2|f(x)|で抑えられるが，x � 4
�t

e
t x/4, x � 0, が（差をとって微分すれば）

分かるので，さらに xe−
t x/2|f(x)| � 4
�t

e−
t x/4|f(x)| で抑えられる．右辺が xについて可積分なこ

とは，最初に F (t)が存在することを証明したときのシュワルツの不等式による評価と同様である．よっ
て，F (t)の �t > 0での正則性が言えた．

(2) F が正則なので任意の自然数 kに対して k階導関数 F (k)が存在するが，さらに，前小問と同様の議論

（「hによらない可積分関数による評価」）を繰り返すことで微分と積分が交換可能なことも分かる．す

なわち，F (k)(t) =
∫ ∞

0

(−x)ke−txf(x) dx．よって特に

ak =
1
k!

F (k)(1) =
1
k!

∫ ∞

0

(−x)ke−xf(x) dx.

シュワルツの不等式から

|ak| � 1
k!

(∫ ∞

0

x2ke−2x dx

)1/2(∫ ∞

0

|f(x)|2 dx

)1/2

=
1
k!

(
(2k)!
22k+1

)1/2(∫ ∞

0

|f(x)|2 dx

)1/2

=
((2k)!)1/2

2k+1/2k!

(∫ ∞

0

|f(x)|2 dx

)1/2

.

[34] (S62 阪大 9)．

(1)まず，x � δかつ
1
2
δ > h > 0のとき

1
h

(xα − (x− h)α) � α

(x − 1
2δ)1−α

であることに注意する．実際，

q(h) = (x − h)α +
αh

(x − 1
2δ)1−α

− xα,
1
2
δ > h > 0,

とおくと，x � δのとき

q′(h) = α

(
1

(x − 1
2δ)1−α

− 1
(x − h)1−α

)

なので，α < 1と h <
1
2
δ < δ � xから q′(h) > 0となる．q(0) = 0だから，q(h) � 0，すなわち最初

の評価が確かに成り立つ．次に，x � δかつ
1
2
δ > h > 0のとき

α

(x − 1
2δ)1−α

�
(

2
δ

)1−α

α，すなわち

有界だから [δ, L]上可積分である．仮定により f も有界だから，極限と積分が交換できて，

lim
h↓0

∫ L

δ

xα − (x − h)α

h
f(x) dx =

∫ L

δ

lim
h↓0

xα − (x − h)α

h
f(x) dx =

∫ L

δ

α

x1−α
f(x) dx.

(2) f が有界なので |f(x)| � M , 0 � x � L, なる実数M > 0が存在する．∫ δ

0

xα − |x − h|α
h

f(x) dx =
∫ h

0

xα − (h − x)α

h
f(x) dx +

∫ δ

h

xα − (x − h)α

h
f(x) dx

について，まず 0 � x < hに対して |xα − (h − x)α| � hαだから∣∣∣∣∣
∫ h

0

xα − (h − x)α

h
f(x) dx

∣∣∣∣∣ � Mhα−1

∫ h

0

1 dx = Mhα.

次に，h < x � δに対して xα > (x − h)αに注意して∣∣∣∣∣
∫ δ

h

xα − (x − h)α

h
f(x) dx

∣∣∣∣∣ �
∫ δ

h

xα − (x − h)α

h
|f(x)|dx

� M

h

∫ δ

h

(xα − (x − h)α) dx =
M

(α + 1)h
(δα+1 − hα+1 − (δ − h)α+1).
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微分の定義から lim
h↓0

1
h

(δα+1 − (δ − h)α+1) = (α + 1)δα に注意して，以上の２つの評価を合わせると

lim
h↓0

∣∣∣∣∣
∫ δ

0

xα − |x − h|α
h

f(x) dx

∣∣∣∣∣ = Mδα.

一方，

∣∣∣∣∣
∫ δ

0

α

x1−α
f(x) dx

∣∣∣∣∣ � M

∫ δ

0

α

x1−α
dx = Mδα だから，前小問の結果と合わせると

lim
h↓0

∣∣∣∣∣
∫ L

0

xα − |x − h|α
h

f(x) dx −
∫ L

0

α

x1−α
f(x) dx

∣∣∣∣∣ � Mδα + Mδα = 2Mδα.

δは 0 < δ < L を満たす任意の実数で，左辺は δによらないから，

lim
h↓0

∣∣∣∣∣
∫ L

0

xα − |x − h|α
h

f(x) dx −
∫ L

0

α

x1−α
f(x) dx

∣∣∣∣∣ = 0,

すなわち lim
h↓0

∫ L

0

xα − |x − h|α
h

f(x) dx =
∫ L

0

α

x1−α
f(x) dx が証明された．

Fubiniの定理．

[35] (S61 大阪市大 C1)．題意から

f(x) = µ((x, x + 1) ∩ E) =
∫

R

χ(x,x+1)(y)χE(y) dµ(y) =
∫

R

χ(y−1,y)(x)χE(y) dµ(y)

だから Fubiniの定理により∫
R

f(x) dµ(x) =
∫

R

(∫
R

χ(x,x+1)∩E(y) dµ(x)
)

dµ(y) =
∫

y∈E

1 dµ(y) = µ(E).

[36] (H2 広島大 6)．

(1)(a) f =
n∑

k=1

akχEk
とおく．ここで n ∈ N, ak ∈ R, Ek ∈ F , k = 1, 2, · · · , n, かつ， {Ek} は互いに共

通部分を持たないとする．このとき
∫

Ω

f dµ =
n∑

k=1

akµ(Ek) . また， Ωt =
⋃

k; ak>t

Ek となるので，

t > 0 に対して µ(Ωt) =
n∑

k=1

µ(Ek)χ(0,ak)(t) だから，ルベーグ測度を | · | で表すことにすると

∫ ∞

0

µ(Ωt) dt =
n∑

k=1

µ(Ek)|(0, ak)| =
n∑

k=1

akµ(Ek) .

よって主張は f が単関数のとき成り立つ．

(b) 各点で非減少で f に収束する 非負単関数の列 {gn}をとる（たとえば，標準的な，

gn =
n·2n∑
k=0

k · 2−nχ{y∈Ω|k·2−n≦ f(y)<(k+1)·2−n}

をとればよい）．単調収束定理から

lim
n→∞

∫
Ω

gndµ =
∫

Ω

fdµ. (1)
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一方，Ωn,t = {x ∈ Ω | gn(x) > t} とおくと，小問 (a)から，∫
Ω

gndµ =
∫ ∞

0

µ(Ωn,t) dt. (2)

Ω1,t ⊂ Ω2,t ⊂ · · ·と
∞⋃

n=1

Ωn,t = Ωtが成り立つことは直接確かめられるので，測度の単調性と連続性

から，µ(Ωn,t), n = 1, 2, 3, . . ., は非減少で µ(Ωt)に収束する．よって単調収束定理から

lim
n→∞

∫ ∞

0

µ(Ωn,t) dt =
∫ ∞

0

µ(Ωt) dt. (3)

(1)(2)(3)から
∫

Ω

f dµ =
∫ ∞

0

µ(Ωt) dt を得る7．

(2)前小問を Ω = (0,∞)，µ(E) = |E|, f(s) = s−θχE(s)（χE(s)は s ∈ E のとき 1，そうでないとき 0と
なる関数）に適用すると， ∫

E

s−θ ds =
∫ ∞

0

|Ωt| dt.

ここで Ωt = (0, t−1/θ) ∩ E となるから |Ωt| � min{t−1/θ, |E|} となるので，t−1/θ = |E| を解くと
t = |E|−θ となることに注意すると

∫
|E|

s−θ ds �
∫ |E|−θ

0

|E| dt +
∫ ∞

|E|−θ

t−1/θ dt = (1 − 1
1 − 1/θ

)|E|1−θ =
1

1 − θ
|E|1−θ

[37] (S62 山形大 8)．

(1) E ∈ E , F ∈ F , A = E × F とおく．x ∈ E ならば Ax = F ∈ F，x �∈ E ならば Ax = ∅ ∈ F，
ν(Ax) = ν(F )χE(x) （χE(x)は x ∈ E のとき 1，そうでないとき 0となる関数）なので，可測関数．

よって筒集合は Bに含まれる．同様に Aが筒集合の素な和 A =
n⋃

i=1

Ei × Fi のとき Ax は ∅か Fi の１

つ以上の和なので Ax ∈ F，かつ，ν(Ax) =
n∑

i=1

ν(Fi)χEi(x)だから可測．よって筒集合の素な有限和

も Bに含まれる．
(2) Bの定義から B ⊂ E × F だから逆を言えばいい．
筒集合の有限和を全て集めた集合族が有限加法族であることを言えばそれが Bの部分集合族であるこ
とは上小問で分かっているから，あとは Bが集合の単調増加極限と単調減少極限について閉じている
ことを言えば単調クラス定理から B ⊃ E × F も得る．後者は容易だが，有限加法族の証明で筒集合の
有限和の補集合が筒集合の有限和になる証明が，図を書かないとわかりにくい（図を書くと明らか）の

で，伊藤清三，ルベーグ積分入門，裳華房，に譲って，ここでは Dynkinの補題経由で証明する．
明らかに筒集合の共通部分は筒集合なので，筒集合達が生成する σ加法族 E×Fは筒集合達が生成する d

族に等しい．よってBが d族であればB ⊃ E×Fを得て，B = E×Fの証明が終わる．Bが d族であるこ

とは，まず全体集合X ×Y は筒集合なので Bに入る．次に，A,B ∈ BがA ⊂ Bを満たせば，F が加法
族なので xの各点で (B \A)x = Bx \Ax ∈ F，および，Ax ⊂ Bxなので ν((B \A)x) = ν(Bx)− ν(Ax)
だから ν((B \ A)x) は可測関数になるので，B \ A ∈ B．最後に A1 ⊂ A2 ⊂ · · · が B の集合列な
らば，F が σ 加法族なので

( ∞⋃
n=1

An

)
x

=
∞⋃

n=1

(An)x ∈ F，および，(A1)x ⊂ (A2)x ⊂ · · · なので

ν(

( ∞⋃
n=1

An

)
x

) = lim
n→∞ ν((An)x) だから可測関数になるので

∞⋃
n=1

An ∈ F．よって Bは d族になる．

7旧版で f に直接 Fubini の定理を適用したが，(Ω,F , µ) が σ 有限とはなっていないので，誤り．
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(3)非負値なのは明らかだから，σ加法性を示せばよい．An ∈ E ×F = B, n = 1, 2, · · ·, が互いに共通部分
を持たない集合列とすると，

( ∞⋃
n=1

An

)
x

=
∞⋃

n=1

(An)x も互いに共通部分を持たない集合列の和だから

τ(
∞⋃

n=1

An) =
∫

X

ν(
∞⋃

n=1

(An)x)µ(dx) =
∞∑

n=1

∫
X

ν((An)x)µ(dx) =
∞∑

n=1

τ(An)

となって σ加法性が言えた．

(4)(a) f が定義関数 f = χA (A ∈ E × F)の場合．∫
X

(∫
Y

f(x, y) ν(dy)
)

µ(dx) =
∫

X

(∫
Y

χAx(y) ν(dy)
)

µ(dx) =
∫

X

ν(Ax)µ(dx)

= τ(A) =
∫

X×Y

f dτ

となって成り立つ．

(b) 非負単関数 f =
n∑

i=1

χAi の場合．Ai ∈ E × F は互いに共通部分を持たないとしてよい．この場合，
定義関数の場合の変形の和になることは容易に分かるのでやはり主張は成り立つ．

(c) 非負可測関数の場合．非負単関数の各点増加極限 f = lim
n→∞ fnだから

∫
X

(∫
Y

fn(x, y) ν(dy)
)

µ(dx) =
∫

X×Y

fn dτ

において n → ∞をとって，単調収束定理を用いればよい．

[38] (S63 岡山大 B1)．Φ(x, y) = x + yで Φ : R
2 → Rを定義すると Φは周知のとおり連続関数で，した

がってボレル可測関数であり，また問題の設定から g = f ◦ Φである．

(1) Rの任意のボレル集合 Aに対して f がボレル可測だから（定義によって）f−1(A)は Rのボレル集合，

Φも最初に注意したとおりボレル可測だから同様に g−1(A) = Φ−1(f−1(A))は R
2のボレル集合．よっ

て gはボレル可測関数8．

(2) (1)との対比で Rの任意のボレル集合 Aに対して g−1(A) = Φ−1(f−1(A))が R
2 のルベーグ可測集合

であることを言えばよい．問題文の仮定から f はルベーグ可測関数なので f−1(A)は Rのルベーグ可

測集合，すなわち，1次元ルベーグ測度 0の集合（零集合）N と Rのボレル可測集合 B が存在して

f−1(A) = B ∪N と書けて，Φ−1(f−1(A)) = Φ−1(B) ∪Φ−1(N)である．冒頭の注意から (1)と同様に
Φ−1(B)はボレル集合なので，Φ−1(N)が 2次元ルベーグ零集合ならば g−1(A)はルベーグ可測集合で
ある．

1次元ルベーグ測度を µ1と書くことにして，フビニの定理を用いて 1次元積分の逐次積分に直した後に
ルベーグ測度の並進対称性とN が零集合であることから得る µ1(−x + N) := µ1({−x + y | y ∈ N}) =
µ1(N) = 0 を用いると，Φ−1(N)の 2次元測度は∫ ∫

1{(x,y)∈R2|x+y=N} µ1(dy)µ1(dx) =
∫

R

µ1(−x + N)µ1(dx) =
∫

R

µ1(N)µ1(dx) = 0

8記録のため旧版で紹介していた，伊藤清三「ルベーグ積分入門」裳華房数学選書４，p.70 定理 11.4 (第 13 版でも 34 版でも同
ページ同定理)の解を残しておく．（この問題の場合は福島竜輝先生による本文の解に比べて遠回りに過ぎるが，σ 加法族の集合に共通
する性質を得る基本的な論法は重要である．）

f が連続関数ならば g も連続関数になるので（開集合の逆像が開集合だから）ボレル可測．f が開集合 G の定義関数 f = χG な
らば，ρ(x, A) を点 x と集合 A の距離とするとき，fn(x) = min{nρ(x, Gc), 1} (n = 1, 2, 3, · · ·) とおくと，fn は連続関数だから
gn(x, y) := fn(x + y) はボレル可測で， G が開集合だから lim

n→∞ gn(x, y) = lim
n→∞ fn(x + y) = χG(x + y) = f(x + y) = g(x, y)

なので g もボレル可測．
g(x, y) := χA(x + y) がボレル可測になる A ⊂ � 全てからなる集合族を A とおくと，定義を確かめることで A は σ 加法族で

あることが分かるので，A は開集合を全て含む σ 加法族となり，ボレル集合族を含む．したがって任意のボレル集合 E に対して
χE(x + y) もボレル可測関数．したがってその線形結合である x + y の単関数もボレル可測関数．
任意の非負ボレル可測関数は単関数列の単調増加極限で書けるから，任意の非負ボレル関数 f に対して g(x, y) := f(x + y) もボ

レル可測関数になる．さらに，任意のボレル関数は正部分 f+ = max{f, 0} と負部分 f− = max{−f, 0} に分ければ非負可測関数
の場合に帰着する．
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だから Φ−1(N)は R
2の零集合である9．

[39] (H7 広島大 6A)．

(1) gは [0,∞)で定義された連続関数で lim
x→∞ g(x) = aが有限だから，gは [0,∞)で有界，つまり |g(x)| � M ,

x � 0, を満たす実数M > 0が存在する．よって |g(x + y) f(y)| � M |f(y)|となってM |f(y)|は積分
可能だから優収束定理から

lim
x→∞h(x) =

∫ ∞

0

lim
x→∞ g(x + y) f(y) dy =

∫ ∞

0

a f(y) dy = a

∫ ∞

0

f(y) dy.

(2)前小問と全く同じ理由で優収束定理から hが一様連続であることが分かる．連続の一様性は gが一様

連続なことから従うが，問題の設定（[0,∞)で連続で x → ∞で極限が存在）で gが一様連続であるこ

とは，閉区間で連続ならば一様連続であるという既習の事項と同様である10．

(3) [0,∞) × [0,∞)上の関数 (x, y) �→ g(x + y)f(y)は（２次元ルベーグ）可測だから Fubiniの定理から∫
[0,∞)2

|g(x + y)f(y)| dxdy =
∫ ∞

0

(∫ ∞

0

|g(x + y)| dx

)
|f(y)| dy =

∫ ∞

0

(∫ ∞

y

|g(x)|dx

)
|f(y)| dy

�
∫ ∞

0

|g(x)|dx ×
∫ ∞

0

|f(y)| dy

となって，仮定によりこれは有限だから
∫

[0,∞)2
g(x + y)f(y) dxdyは可積分なので，再び Fubiniの定

理から
∫

[0,∞)2
g(x + y)f(y) dxdy =

∫ ∞

0

(∫ ∞

0

g(x + y)f(y) dy

)
dx =

∫ ∞

0

h(x) dx となって，hも可

積分と分かる．

[40] (H8 富山大 B5)．1 � f g だから f g �= 0, a.e., なので，f, g � 0, a.e., と合わせると，(f(x) −
f(y))

(
1

f(x)
− 1

f(y)

)
� 0, a.e.. これを [0, 1]2で積分すると

2 −
∫

[0,1]2

f(x)
f(y)

dx dy −
∫

[0,1]2

f(y)
f(x)

dx dy � 0 .

9(1) と同様に，伊藤清三「ルベーグ積分入門」裳華房数学選書４，p.108 §15 問 2 (第 13 版でも 34 版でも同ページ同問題) の解
を残しておく．
正の部分と負の部分に分けて考えることにより，f は最初から非負としてよい．f が非負ルベーグ可測関数なので各点で増大する

非負ルベーグ可測単関数列 fn =

kn�
j=1

an,jχEn,j
(En,j ∩ En,i = ∅, j �= i,) で f に各点収束するものがある．各 En,j はルベーグ可

測集合だから，Bn,j ⊂ En,j なるボレル集合 Bn,j であって，µ(En,j \ Bn,j) = 0 を満たすものがある．B =
∞�

n=1

�
� kn�

j=1

Bn,j

�
	 と

おくと， µ(En,j \ Bn,j) = 0 から µ(E \ B) = 0 を得る．f̃n =

kn�
j=1

an,jχBn,j∩B とおけば f̃n は非負ボレル可測単関数で，作り

方から B 上で fn に等しく，E \ B 上で 0 に等しい．fn は n → ∞ で f に各点収束するから f̃n も n → ∞ で各点で収束し，そ
の極限を f̃ と書くと，f̃ はほとんどいたるところ f に等しい非負ボレル可測関数となる．

(1) より g̃(x, y) = f̃(x + y) はボレル可測関数で，Fubini の定理とルベーグ積分の平行移動不変性から� �
�2

|g(x, y) − g̃(x, y)| dxdy =

� �
�2

|f(x + y) − f̃(x + y)| dx dy

=

�
�

dy

�
�

|f(x + y) − f̃(x + y)| dx =

�
�

dy

�
�

|f(x) − f̃(x)| dx = 0

だから g = g̃, a.e.–(x, y) ∈ �2 となって， g はルベーグ可測関数であることが分かる．
10y = arctan x で写せば閉区間 [0, π/2] の問題に帰着する，といってもいいし，初等的にやるならば次のようにすればよい．ε > 0
に対して lim

x→∞ g(x) = a が有限であるから，ある M = M(ε) > 0 が存在して x � M ならば |g(x) − a| < ε/4 とできる．閉区間

[0, M ]で g は連続なので，そこで一様連続だからある δ > 0が（場所に無関係に）存在して |x′ −x| < δ ならば |g(x′)− g(x)| < ε/2
とできる．以上から |x′ − x| < δ ならば，両方とも M 以下ならばもちろん |g(x′) − g(x)| < ε だし，両方とも M 以上ならば
|g(x′) − g(x)| � |g(x′) − a| + |g(x) − a| < ε/2 < ε だし，一方（たとえば x）が M 以下で一方（たとえば x′）が M 以上なら
ば |g(x′) − g(x)| � |g(x′) − a| + |a − g(M)| + |g(M) − g(x)| < ε となるので，場所によらず |x′ − x| < δ でありさえすれば
|g(x′) − g(x)| < ε となって一様連続性を得る．
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Fubini の定理から

2 �
∫ 1

0

f(x) dx

∫ 1

0

1
f(y)

dy +
∫ 1

0

f(y) dy

∫ 1

0

1
f(x)

dx = 2
∫ 1

0

f(x) dx

∫ 1

0

1
f(x)

dx .

0 � f , 0 � g, 1 � f g, a.e., から g � 1
f

� 0, a.e., となるので11

∫ 1

0

f(x) dx

∫ 1

0

g(x) dx �
∫ 1

0

f(x) dx

∫ 1

0

1
f(x)

dx � 1 .

[41] (S62 広島大 6)．

(1)フビニの定理から
∫ 1

0

µ(Ex) dx = µ(E) = 1なので，
∫ 1

0

(1 − µ(Ex)) dx = 0．一方，µ(Ex) � 1なの

で， µ(Ex) = 1, x–a.e.．これは µ(A) = 1を意味する．
(2) a ∈ Aのとき Aの定義から特に y–a.s. に lim

x→a
f(x, y) = f(a, y)．仮定により f は有界（で，定数関数

は [0, 1]上可積分）だから，極限と積分が交換できて，

lim
x→a

∫ 1

0

f(x, y) dy =
∫ 1

0

f(a, y) dy.

[42] (H7 都立大 8)．

(1) ε > 0を任意にとる．

f : R → Rが可積分なので，台有界な連続関数 fεが存在して
∫

R

|f(x)− fε(x)|dµ(x) < εとできる12．

ルベーグ測度の並進対称性から任意の y ∈ Rに対して
∫

R
|f(x + y) − fε(x + y)| dµ(x) < εでもある．

fεの台が [−n, n]に含まれているとすると，|y| < 1のとき

∫
R

|fε(x + y) − fε(x)|dµ(x) =
∫ n+1

−n−1

|fε(x + y) − fε(x)|dµ(x)

�
∫ n+1

−n−1

sup
z∈R

|fε(z + y) − fε(z)| dµ(x) = 2(n + 1) sup
z∈R

|fε(z + y) − fε(z)|.

さらに fε は台有界な連続関数なので一様連続だから lim
y→0

sup
z∈R

|fε(z + y) − fε(z)| = 0 なので，

lim
y→0

∫
R

|fε(x + y) − fε(x)|dµ(x) = 0.

以上より

lim
y→0

∫
R

|f(x + y) − f(x)|dµ(x)

� lim
y→0

∫
R

|f(x + y) − fε(x + y)| dx + lim
y→0

∫
R

|fε(x + y) − fε(x)|dµ(x) + lim
y→0

∫
R

|fε(x) − f(x)|dµ(x)

� 2ε

ε > 0は任意で最左辺は εによらないから lim
y→0

∫
R

|f(x + y) − f(x)|dµ(x) = 0．

11（別解）Schwarzの不等式から，
� 1

0



f(x)



g(x) dx �

� 1

0
f(x) dx·

� 1

0
g(x) dx. 仮定から



f(x)



g(x) =



(f(x)g(x)) � 1

なので 1 �
� 1

0
f(x) dx ·

� 1

0
g(x) dx.

12伊藤清三，ルベーグ積分入門，裳華房，§12 にあるように，その証明は，f を単関数近似した後，そこに現れる可測集合を中と外
から閉集合と開集合で近似（ルベーグ測度の位相的正則性）して可測集合の定義関数を連続関数で近似することで得られる．(S63 奈
良女大 IIA) などと違って，この問題は f の連続性を仮定しないので，このようにルベーグ測度の位相的な性質への言及が必要なこ
とに注意．単純な積分と極限の交換の問題ではない．なおこの位相的正則性は狭義のルベーグ測度だけでなく一般の距離空間上のボ
レル測度で成り立つことが容易に示される（たとえば P. Billingsley, Convergence of probability measures, 2nd. ed., Wiley, §1,
Theorem 1.1）．
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(2)仮定により f が有界なので全ての実数 xに対して |f(x)| � M を満たす定数M > 0がある．あとはル
ベーグ測度の並進対称性と反転対称性を何度も使って

|h(x + z) − h(x) �
∫

R

|f(y)||g(x + z − y) − g(x − y)| dµ(y) � M

∫
R

|g(y + z) − g(y)| dµ(y).

最右辺の積分は前小問により z → 0で 0に収束する．しかも，最右辺は xによらないからこの収束は

xについて一様である．よって，hは R上一様連続である．

(3) µ(A) < ∞としてよい（もし∞なら，十分大きなM をとれば∞ > µ(A ∩ [−M, M ]) > 0となるか
ら，これを A と取り直せばよい）．x ∈ Aのとき 1，そうでないとき 0となる関数を χA と書くと，∫

R

χA(x) dµ(x) = µ(A)だから χA は可積分．よって最初の小問の結果から

lim
z→0

∫
R

|χA+z(x) − χA(x)|dx = lim
z→0

∫
R

|χA(x − z) − χA(x)|dx = 0.

したがってある δ > 0が存在して |z| < δならば
∫

R

|χA(x − z) − χA(x)|dx <
1
2

µ(A) とできる．他方

χA の定義から
∫

R

|χA(x − z) − χA(x)|dx � µ({x ∈ A | x − z �∈ A}) だから

µ({x ∈ A | x − z ∈ A}) = µ(A) − µ({x ∈ A | x − z �∈ A}) � 1
2

µ(A).

したがって特に，x ∈ A, y ∈ A が存在して x − z = y，すなわち z = x − y と書ける．つまり

z ∈ {x − y | x, y ∈ A}．これが任意の |z| < δに対して成り立つから 0はこの集合の内点である．

[43] (S61 広島大 7)．

(1) f , g が可積分なので可測だから f(x− y) g(y)は R
2可測．Fubiniの定理とルベーグ測度の並進対称性

と f , gの可積分性の仮定から∫
R2

|f(x − y) g(y)| dxdy =
∫

R

(∫
R

|f(x − y)| dx

)
|g(y)| dy =

∫
R

|f(x)|dx ×
∫

R

|g(y)| dy < ∞.

よって f(x− y)g(y)は R
2でルベーグ可積分となり，Fubiniの定理から

∫
R

f ∗ g(x) dx =
∫

R2
f(x− y) ∗

g(y) dxdy なので f ∗ g(x)は可積分である．可積分ならもちろんほとんどいたるところ有限である．

(2) x ∈ Rを固定してそこでの連続性を証明する．f = χ[a,b]のとき f ∗ g(x) =
∫ x−a

x−b

g(y) dyだから h ∈ R

に対して

f ∗ g(x + h) − f ∗ g(x) =
∫ x+h−a

x+h−b

g(y) dy −
∫ x−a

x−b

g(y) dy

= −
∫ x+h−b

x−b

g(y) dy +
∫ x+h−a

x−b

g(y) dy +
∫ x−b

x−a

g(y) dy = −
∫ x+h−b

x−b

g(y) dy +
∫ x+h−a

x−a

g(y) dy.

よって，任意の zに対して lim
h→0

∫ z+h

z

g(y) dy = 0が証明できれば xでの f ∗ gの連続性が言えるが，g

は可積分なので，χA を集合 Aの定義関数として，
∫ z+h

z

|g(y)| dy =
∫ z+1

z

|g(y)|χ[z,z+h](y) dy に単調

収束定理を用いれば証明が終わる．

[44] (H4 京大 6)．

(1) f がほとんどいたるところ 0 ならば可積分であってその積分は 0 である．Fubini の定理から

0 =
∫

R

f(x) dx =
∫

R

(∫
R

χA(x − y) dx

)
χB(y) dy =

∫
R

|y + A|χB(y) dy

=
∫

R

|A|χB(y) dy = |A| |B|

となる．ここで |A| は A のルベーグ測度．よって |A| = 0 または |B| = 0 .
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(2) g(x) =
∫ ∞

−∞
χ−x1−M (x − y)χR\Z(y) dy とおく．xk − x1 − y ∈ −x1 − M ならば y ∈ xk + M ⊂ Z だ

から，全ての自然数 kと全ての実数 yに対して g(xk − x1)の被積分関数は 0 である．よって，Rで稠

密な集合 {xk − x1 | k ∈ N}上で g = 0．例えば [42](H7 都立大 8)(1)によって gは連続関数なので，g

は恒等的に 0．仮定からM は，したがって −x1 − M はルベーグ測度が正だから，小問 (1)によって
R \ Z のルベーグ測度は 0である13．

13この問題は何度も解答を改訂したが，福島竜輝先生 (2012/01/12) による上記解答例には届かなかった．旧版の解答は，解答例
としては全く劣るが，河田敬義・三村征雄「現代数学概説 II」第 1 章 §12 補題 3 の紹介のために，脚注として残す．
ルベーグ測度を µ と書く．以下，（本質的ではないが記述の簡単のため，）区間は左側閉右側開区間（[a, b) = {x ∈ � | a � x < b}

の形の集合）のこととする．

補題：　∞ > µ(M) > 0ならば，0 < δ < 1 なる任意の δ に対して，µ(I ∩M) � (1− δ)µ(I) を満たす区間 I = [a, b) �= ∅ が存在
する．さらに，0 < µ(I) = b − a < δ とできる．

証明：　河田敬義・三村征雄「現代数学概説 II」第 1 章 §12 補題 3 による次の証明に従う．（区間幅を任意に小さくとれることはそこ
では明示されていないが，以下の 2 文目に断るように，明らか．）

ルベーグ測度の定義から M ⊂
∞�

n=1

In かつ (1 − δ)
∞�

n=1

µ(In) < µ(M) となる区間列 In, n ∈ �, がある．必要ならば，各 In を

細分することによって，最初から µ(In) < δ, n = 1, 2, · · ·, としてよい．
M =

� ∞�
n=1

In

�
∩ M =

∞�
n=1

(In ∩ M) だから，

∞�
n=1

µ(In ∩ M) � µ(M) > (1 − δ)
∞�

n=1

µ(In) .

したがって ∃n ∈ �; µ(In ∩ M) > (1 − δ)µ(In)．　　（補題証明終わり．）

� ∈ �とし，区間 I = [�, � + 1) をとる．I の中で定理の主張，すなわち，

(*) µ(I \ Z)

�
= µ(I \

∞�
k=1

(xk + M))

�
= 0

を言えば，σ 加法性から，(*) を � ∈ �について加えることで定理を得る．
問題文の仮定から∞ > µ(M) > 0 なので，補題から，任意の 0 < δ < 1 に対して，区間 J が存在して，

µ(J ∩ M) � (1 − δ)µ(J), 0 < µ(J) < δ,

とできる．さらに，{xk} が稠密だから，自然数 N と k1 < k2 < · · · < kN を選んで N 個の区間 xki
+ J , i = 1, 2, · · · , N , が互い

に共通部分を持たず，全て I に含まれ，しかも，「隙間」の長さについて

µ(I \
N�

i=1

(xki
+ J)) � 2δ

とできる．実際，I の左端 � と xk1 + J の間隔は 2−1δ 以下，i = 1, 2, · · · , N − 1に対して xki
+ J と xki+1 + J の間隔は 2−i−1δ

以下，xkN
+ J と � + 1の間隔は δ 以下，に，順番にとっていけばよい．（最後の部分は間隔が δ よりあいたら，N を増やして，適切

な xk + J をはめ込めることから．N はこの条件によって定まる．）
測度の単調性と {xki

} たちの選びかたと測度の加法性とルベーグ測度の並進対称性，そして µ(I) = 1 から，

1 � µ(I ∩ Z) � µ(I ∩
�

N�
i=1

(xki
+ M)

�
)

� µ(

�
N�

i=1

((xki
+ M) ∩ (xki

+ J))

�
) =

N�
i=1

µ((xki
+ M) ∩ (xki

+ J)) = Nµ(M ∩ J)

� (1 − δ)Nµ(J) = (1 − δ)
N�

i=1

µ(xki
+ J) = (1 − δ)µ(

N�
i=1

(xki
+ J))

= (1 − δ) (µ(I) − µ(I \
N�

i=1

(xki
+ J))) � (1 − δ)(1 − 2δ).

δ → 0 として µ(I ∩ Z) = 1 を得るので，I との差をとれば，(*) を得る．よって，µ(� \ Z) = 0 である．


