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Abstract

The asymptotic behavior of value distribution of the Riemann zeta-function

ζ(s) is determined for
1
2

< �(s) < 1. Namely, the existence is proved, and the
value is given, of the limit

lim
�→∞

(� (log �)σ)−1/(1−σ) log W (C \ R(�), σ, ζ)

for
1
2

< σ < 1, where R(�) is a square in the complex plane C of side length 2�
centered at 0, and

W (A,σ, ζ) = lim
T→∞

(2T )−1µ1({t ∈ [−T, T ] | log ζ(σ + t
√−1) ∈ A}) , A ⊂ C ,

where µ1 is the one-dimensional Lebesgue measure. Analogous results are ob-
tained also for the Dedekind zeta-functions of Galois number fields.

As an essential step, a limit theorem for a sum of independent random vari-

ables X =
∞∑

n=1

rnXn is proved, where Xn, n ∈ N, have identical distribution on a

finite interval with mean zero, and {rn} is a regularly varying sequence of index
−σ. The limit theorem states the convergence of

lim
N→∞

N−1 log Prob[ X >
∑
n≤N

rn ]

and gives the explicit value of the limit. In particular, it is shown that the value
depends only on σ and is otherwise independent of {rn}.

0 1991 Mathematics Subject Classification. 11M06, 60G50
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1 Introduction.

Let s = σ + i t ∈ C (i =
√−1) be a complex variable, and ζ(s) the Riemann zeta-

function. Let µ1 be the one-dimensional Lebesgue measure. Bohr-Jessen [1] proved the
existence of the limit

W (A, σ, ζ) = lim
T→∞

(2T )−1µ1({t ∈ [−T, T ] | log ζ(σ + t
√−1) ∈ A}) ,

for σ > 1/2 and for closed rectangle A ⊂ C with the edges parallel to the axes. We
can extend W (A, σ, ζ) to a probability measure defined on C.

Consider the particular case where A is the complement of a square centered at the
origin;

A = C \R(�) ; R(�) = {z ∈ C | max{|�(z)|, |�(z)|} ≤ �} , � > 0 .

If σ > 1, W (C \ R(�), σ, ζ) = 0 for sufficiently large �, because the Euler product

expansion of ζ(s) is uniformly convergent. It is therefore the case
1

2
< σ ≤ 1 for which

the behavior of W (C \R(�), σ, ζ) raises an interesting problem.
The main purpose of this paper is to prove the following.

Theorem 1. For
1

2
< σ < 1 it holds that

W (C \R(�), σ, ζ) = exp
(
−A(σ){� (log �)σ} 1

1−σ (1 + o(1))
)

as � tends to infinity, where

A(σ) = (1 − σ) {1 − σ

σ

∫ ∞

0
log I0(y

−σ) dy}− σ
1−σ ,

and I0(x) =
1

2π

∫ π

−π
exp(x cosu) du is the zeroth modified Bessel function.

This theorem gives the precise form of the exponent in the asymptotic behavior of the
value distribution 1−W (R(�), σ, ζ) = W (C \R(�), σ, ζ) of Riemann zeta-function ζ(s)

for
1

2
< σ < 1. Professor E. Bombieri pointed out that A(σ) ∼ K (1 − σ) (with an

absolute constant K) as σ → 1−, and A(σ) ∼ 2 (2σ − 1) as σ → 1
2
+. We show this

fact in the Appendix.

The progress in the quantitative study of W (R(�), σ, ζ) was slow. For a long time,
the only non-trivial result was the upper bound

W (C \R(�), σ, ζ) = O(exp(−λ�2))
due to Jessen–Wintner [4], where λ is any positive constant. Nikishin considered a
closely related problem [15], whose result suggested an improvement in the exponent
of � in the right-hand side of the above equation (see Laurinčikas [10, Chapter 3]).

The best known result has been a bound of the form

exp
(
−M1(σ, ζ){� (log �)σ} 1

1−σ (1 + o(1))
)
≤W (C \R(�), σ, ζ)

≤ exp
(
−M2(σ, ζ){� (log �)σ} 1

1−σ (1 + o(1))
)
,
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where M1(σ, ζ) and M2(σ, ζ) are positive constants. This kind of bounds was first
proved by Joyner [5, Chapter 5, Theorem 4.3], and the values of M1(σ, ζ) and M2(σ, ζ)
were improved in subsequent works of Matsumoto [12] and Hattori–Matsumoto [3].
Those inequalities can now be replaced by the equality of the above Theorem 1.

It is possible to generalize this theorem to Dedekind zeta-functions of Galois number
fields, which will be discussed in Section 4.

A main new ingredient in the proof of Theorem 1 is an asymptotic estimate, devel-

oped in Section 2, of a sum of independent random variables X =
∞∑

n=1

rnXn, where Xn,

n ∈ N, have identical distribution on a finite interval with mean zero, and {rn} is a reg-
ularly varying sequence of index −σ [16]. The series is convergent (but not absolutely

convergent) if
1

2
< σ < 1, for which case the limit lim

N→∞
N−1 log Prob[ X >

∑
n≤N

rn ] is

shown to exist, and its value given in Theorem 2. In particular, it is shown that the
value depends only on σ and is otherwise independent of {rn}. A Tauberian theorem of
exponential type [9] is applied, which relates the above quantity to the Laplace trans-
form E[ exp(yX) ]. A Riemann-like integration is introduced to calculate the Laplace
transform (Lemma 4), where the regularly varying property of {rn} is essential. Ex-
cept for this Lemma, the regularly varying property of BN =

∑
n≤N

rn is sufficient. The

results of Section 2 are independent of number theoretic arguments, and can be read
independently of the rest of the paper.

In Section 3 we apply Theorem 2 to the case rn = p−σ
n , where pn is the n-th prime

number. The result is known [5] [12] to be related to W (C \R(�), σ, ζ), whence Theo-
rem 1 is proved. The prime number theorem plays an essential role in Section 3, most
crucially in the fact that {pn} is a regularly varying sequence, implying an applicability
of Theorem 2.

Acknowledgement. The authors wish to thank Prof. Y. Kasahara for correspondences
concerning his work, and Prof. E. Bombieri for kindly permitting the authors to include
his result on the asymptotic forms of A(σ). The present research is supported in part by
a Grant-in-Aid for General Scientific Research from the Ministry of Education, Science
and Culture.

2 Limit theorem for a sum of independent random

variables.

A positive and measurable function φ(x) defined for sufficiently large positive x is called
a regularly varying function with index α ([6] [7] [8] [16]), if

lim
x→∞

φ(λx)

φ(x)
= λα,(1)

for any λ > 1. It is known ([2] [16]) that a regularly varying function φ(x) has an
(asymptotically uniquely determined) asymptotic inverse ψ(x), that is, a function sat-
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isfying

lim
x→∞

1

x
ψ(φ(x)) = 1 .

In this section, we prove the following limit theorem for a sum of independent
random variables.

Theorem 2. Let {Xn}, n ∈ N, be independent random variables with identical dis-
tribution satisfying E[ X1 ] = 0, V[ X1 ] > 0, (where E[ · ] denotes the expectation
value, and V[ · ] the variance) and |X1| ≤M almost surely for some M > 0. Let σ be
a constant satisfying 1

2
< σ < 1, and let {rn}, n ∈ N, be a sequence of positive num-

bers, such that r[x] (where [x] denotes the largest integer not exceeding x) is a regularly

varying function with index −σ. Then X =
∑
n≥1

rnXn converges almost surely, and

lim
N→∞

N−1 log Prob[ X >
∑
n≤N

rn ] = −G(σ),(2)

where

G(σ) =
{

1 − σ

σ

∫ ∞

0
log I(y−σ) dy

}−σ/(1−σ)

,(3)

with I(x) = E[ exp(xX1) ], x ∈ R.

Remark. The integral in (3) is convergent, because log I(y−σ) = O(y−σ) as y → +0 and
log I(y−σ) = O(y−2σ) as y → +∞.

The main tool for the proof of Theorem 2 is the following Tauberian theorem of
exponential type, which was proved by Kasahara [9].

Lemma 3 [9, Cor. 1(i) to Theorem 2] . Let X be a real random variable satisfying
Prob[ X > a ] > 0 for any a > 0, φ(x) be a regularly varying function with index 1−σ,
ψ(x) be an asymptotic inverse of

x

φ(x)
. Then

lim
x→∞

1

x
log Prob[ X > φ(x) ] = −G < 0

holds if and only if

lim
λ→∞

1

ψ(λ)
log E[ exp(λX) ] = σ

(
1 − σ

G

)(1−σ)/σ

.

Remark. The original result in [9] is written in terms of µ(·) = Prob[ X ∈ · ]. There it
is assumed that µ is a finite measure on (0,∞). In terms of X, this implies X > 0.
However, it is easy to see in [9] that this assumption can be removed. Our notation is
consistent with that of [9] if we put σ = 1 − α and G = A in Lemma 3.
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Proof of Theorem 2. First we show the almost sure convergence of X. The regularly
varying property of {rn} implies that for any ε > 0 there exists a constant C > 0 such

that rn ≤ C n−σ+ε, n ∈ N [16, §1.5]. Hence it follows that
∑
n≥1

r2
n < ∞ for σ >

1

2
,

which, with E[ X1 ] = 0 and the Kolmogorov’s theorem, implies that X converges
almost surely. (Note that σ < 1 implies

∑
n≥1

rn = ∞, which further implies that X is

not absolutely convergent.)
Let Bx =

∑
n≤x

rn. Applying [8] [16, Theorem 2.1, Exercise 2.1], we have

Bx =
∫ x

0
r[u] du =

1

1 − σ
x r[x] (1 + o(1)) ,(4)

hence Bx is a regularly varying function with index 1 − σ. Therefore we can apply
Lemma 3 with φ(x) = Bx. Note that the definitions of X and I(x) imply

log E[ exp(xX) ] =
∑
n≥1

log I(x rn) .

Using this relation and (3), we see from Lemma 3 that it is sufficient to prove

lim
λ→∞

(1 − σ)−1/σ ψ(λ)−1
∑
n≥1

log I(λ rn) =
∫ ∞

0
log I(y−σ) dy ,(5)

where ψ(x) is an asymptotic inverse of
x

Bx
. Using (4) we have

1 = lim
x→∞x

−1 ψ
(
x

Bx

)
= lim

x→∞x
−1 ψ((1 − σ) r[x]

−1) .

Note that ψ(x) is a regularly varying function with index 1/σ. It is known [16, Theorem
1.1] that the convergence in the defining equation (1) is in fact a uniform convergence
for λ in any finite closed interval of (0,∞). Hence,

(1 − σ)1/σ lim
x→∞x

−1 ψ(r[x]
−1) = lim

x→∞ x−1 ψ((1 − σ) r[x]
−1) = 1 .(6)

This implies that the function (1 − σ)1/σ ψ(xσ) is an asymptotic inverse of r[x]
−1/σ.

It is now easy to see that (5) is a consequence of the following Lemma 4, with
f(y) = log I(y−σ), q(x) = r[x]

−1/σ, and ρ(x) = (1 − σ)1/σ ψ(xσ). �

Lemma 4. Let f(y) be a continuous, non-negative, decreasing function on y > 0,
satisfying f(y) = O(y−σ), y → 0, and f(y) = O(y−2σ), y → ∞, where σ is a constant

satisfying
1

2
< σ < 1. Let q(x) be a positive function defined for x ≥ 1, regularly

varying with index 1, and ρ(x) be one of its asymptotic inverse. Then

lim
x→∞

1

ρ(x)

∑
n≥1

f

(
q(n)

x

)
=
∫ ∞

0
f(y) dy .
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Remark. The assumptions imply that f is Riemann integrable at (0,∞).

Proof of Lemma 4. The function q(x) is a regularly varying function with index 1, hence
has a representation [16, Theorem 1.2] for sufficiently large x, say x ≥ x0, of a form

q(x) = x exp{η(x) +
∫ x

x0

ε(u)

u
du} , x ≥ x0,(7)

where η(x) is a function which converges as x→ ∞, and ε(x) is a continuous function
which converges to 0 as x → ∞. Put c = lim

x→∞ η(x), and define a continuous function

Q(x) on x ≥ x0 by

Q(x) = x exp{c+
∫ x

x0

ε(u)

u
du} .(8)

In particular, Q(x) is strictly increasing for sufficiently large x, and lim
x→∞Q(x) = ∞.

Using the uniform convergence of (1) as in the argument for (6) in the proof of Theo-
rem 2, we have

lim
x→∞x

−1 ρ(Q(x)) = 1 .

Therefore it is sufficient to prove

lim
x→∞

1

x

∑
n≥1

f

(
q(n)

Q(x)

)
=
∫ ∞

0
f(y) dy .(9)

The assumptions on f imply∫ ∞

1
f(y1−ε0) dy <∞ , if 0 < ε0 < 1 − (2σ)−1.

Fix such an ε0. The properties of η(x) and ε(x) imply that there exists a constant
x1 ≥ x0 such that if x ≥ x1 then exp(η(x) − c) ≥ 2−1 and |ε(x)| ≤ ε0. Assume b ≥ 1,
x ≥ x1 and n > b x (≥ x1). It then follows from (7) and (8) that

q(n)

Q(x)
≥ 1

2

(
n

x

)1−ε0

.

Monotonicity and non-negativity of f therefore imply that

0 ≤ 1

x

∑
n>b x

f

(
q(n)

Q(x)

)
≤ 1

x

∑
n>b x

f

(
1

2

(
n

x

)1−ε0
)
≤
∫ ∞

b−1
f
(

1

2
y1−ε0

)
dy (<∞) .

The right hand side of this inequality converges to 0 as b → ∞ uniformly in x. Hence,

lim
b→∞

1

x

∑
n>b x

f

(
q(n)

Q(x)

)
= 0 , uniformly in x ≥ x1.(10)
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By assumption, there exists a positive constant C such that

f(y) ≤ C
1

yσ
, 0 < y ≤ 1.(11)

Let ε1 be a constant satisfying

0 < ε1 < σ−1 − 1 .(12)

The assumptions on f imply
∫ 1

0
f(y1+ε1) dy < ∞. In a similar way as the arguments

following (9), it follows from (7), (8), and the properties of η(x) and ε(x) that there
exist constants x2 and C ′ > 0 such that

q(n)

Q(x)
≥ 1

2

(
n

x

)1+ε1

, x2 ≤ n ≤ x,(13)

and

Q(x) ≤ C ′ x1+ε1 , x ≥ x2 .(14)

Put Cq = min
1≤n≤x2

q(n) > 0. As noted above, Q(x) is increasing for sufficiently large x

and lim
x→∞Q(x) = ∞. Therefore, there exists a constant x3 ≥ x2 such that

Q(y) ≥ Cq and sup
0<x≤y

Q(x) ≤ Q(y) , y ≥ x3 .

With monotonicity of f and (11), it then follows that if 1 ≤ n ≤ x2 and 0 < x ≤ y for
some y ≥ x3, then

f

(
q(n)

Q(x)

)
≤ f

(
Cq

Q(y)

)
≤ C

(
Q(y)

Cq

)σ

.

With (14), we see that there exists a positive constant C ′′ such that if y ≥ x3,

f

(
q(n)

Q(x)

)
≤ C ′′ y(1+ε1) σ , 1 ≤ n ≤ x2, 0 < x ≤ y.(15)

Let a be a small positive number. We now prove

lim
a→0

1

x

∑
1≤n<a x

f

(
q(n)

Q(x)

)
= 0 , uniformly in x ≥ x3.(16)

We consider two cases x3 ≤ x < x2

a
and x ≥ max{x2

a
, x3} separately.

(i) The case x3 ≤ x < x2

a
. This occurs only when x2

a
> x3. Then, using (15) with

y = x2/a, we see that

1

x

∑
1≤n<ax

f

(
q(n)

Q(x)

)
≤ C ′′ x2

(1+ε1) σ a1−(1+ε1) σ .(17)

(ii) The case x ≥ max{x2

a
, x3}. In this case we use (15) with y = x to see that

1

x

∑
1≤n<x2

f

(
q(n)

Q(x)

)
≤ x2C

′′ x(1+ε1) σ−1 ≤ C ′′ x2
(1+ε1) σ a1−(1+ε1) σ ,(18)
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where we used (12), which implies (1 + ε1) σ − 1 < 0, in the last inequality. On the
other hand, monotonicity of f implies, with (13),

1

x

∑
x2≤n<a x

f

(
q(n)

Q(x)

)
≤
∫ a

0
f
(

1

2
y1+ε1

)
dy (<∞).(19)

Combining (18) and (19), we have,

1

x

∑
1≤n<ax

f

(
q(n)

Q(x)

)
≤ C ′′ x2

(1+ε1) σ a1−(1+ε1) σ +
∫ a

0
f
(

1

2
y1+ε1

)
dy ,(20)

for x ≥ max{x2

a
, x3}.

The results of the two cases (17) and (20), together with non-negativity of f , imply
our claim (16).

The three equations (9), (16), and (10) imply that it is sufficient to prove

lim
x→∞

1

x

∑
n; a x≤n≤b x

f

(
q(n)

Q(x)

)
=
∫ b

a
f(y) dy , 0 < a < b <∞ .(21)

Fix a > 0 and b > a. The properties of η(x) and ε(x) in (7) imply that |η(n) − c +∫ n

x

ε(u)

u
du| can be made arbitrarily small as x is increased, if a x ≤ n ≤ b x. Therefore,

(8) and (7) imply that for any δ > 0 there exists x4 = x4(δ) such that∣∣∣∣∣ q(n)

Q(x)
− n

x

∣∣∣∣∣ ≤ δ , x ≥ x4 , a x ≤ n ≤ b x .(22)

On the other hand, the continuity of f implies that it is in fact uniformly continuous
on a closed interval [a/2, 2b]. Namely, for any ε > 0 there exists δ = δ(ε) > 0 such that

|f(y)− f(y′)| ≤ ε , |y − y′| ≤ δ ,
a

2
≤ y, y′ ≤ 2b.(23)

With (22) and (23) we have

1

x

∑
a x≤n≤b x

∣∣∣∣∣f
(
q(n)

Q(x)

)
− f

(
n

x

)∣∣∣∣∣ ≤ ε (b− a+ 1) ,

for sufficiently large x. Therefore,∣∣∣∣∣∣
1

x

∑
n; a x≤n≤b x

f

(
q(n)

Q(x)

)
−
∫ b

a
f(y) dy

∣∣∣∣∣∣
≤ 1

x

∑
n; a x≤n≤b x

∣∣∣∣∣f
(
q(n)

Q(x)

)
− f

(
n

x

)∣∣∣∣∣+
∣∣∣∣∣∣
1

x

∑
n; a x≤n≤b x

f
(
n

x

)
−
∫ b

a
f(y) dy

∣∣∣∣∣∣
→ 0, x→ ∞,

where we also used the integrability of f . This proves (21), hence the Lemma. �
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3 Proof of Theorem 1.

For n = 1, 2, 3, · · ·, let pn be the n-th prime number. The prime number theorem

lim
x→∞

log x

x

∑
n; pn≤x

1 = 1 ,

implies lim
n→∞n pn

−1 log pn = 1, from which we see

lim
n→∞ pn (n logn)−1 = 1 .(24)

In particular, this implies that p[x] is a regularly varying function with index 1.

Let θn, n ∈ N, be i.i.d. random variables each with uniform distribution on [0, 1),
and put

X =
∑
n≥1

pn
−σ cos(2πθn) ,(25)

Y =
∑
n≥1

pn
−σ sin(2πθn) .(26)

Theorem 2 with Xn = cos(2πθn) and rn = pn
−σ implies, for

1

2
< σ < 1,

lim
N→∞

1

N
log Prob[ X > BN ] = −

{
1 − σ

σ
J(σ)

} −σ
1−σ

, J(σ) =
∫ ∞

0
log I0(y

−σ) dy,(27)

where BN =
∑
n≤N

pn
−σ and I0(x) is the zeroth modified Bessel function.

We here recall a fact [12, §4 ] (notations are changed; see the remark below) that
there exists a constant A (independent of �) such that,

W (C \R(�), σ, ζ) ≤ Prob[ |X | > �−A ] + Prob[ |Y | > �− A ] ,(28)

and

W (C \R(�), σ, ζ) ≥ Prob[ |X | > �+ A ] ,(29)

for � > A.
Define N = N(�) by

BN < �−A ≤ BN+1 .(30)

As noted in the proof of Theorem 2 (see (4)), BN is a regularly varying function with
index 1−σ > 0, which implies lim

N→∞
BN = ∞, hence N(�) is well-defined for sufficiently

large �. Furthermore, (4) (with rn = pn
−σ) and (24) imply lim

x→∞Bx (x log x)σx−1 =

(1 − σ)−1, which, with (30), implies lim
�→∞

�N(�)σ−1(logN(�))σ = (1 − σ)−1, hence we

have,

N(�) = (1 − σ) �
1

1−σ (log �)
σ

1−σ (1 + o(1)) .
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This and (27) imply

lim
�→∞

�
−1
1−σ (log �)

−σ
1−σ log Prob[ |X | > BN ] = −(1 − σ)

{
1 − σ

σ
J(σ)

}−σ/(1−σ)

.(31)

where we also used Prob[ X < −BN ] = Prob[ X > BN ]. Note also that

Y =
∑
n≥1

pn
−σ sin(2πθn) =

∑
n≥1

pn
−σ cos(2π(θn − 1

4
))

implies

Prob[ |Y | > BN ] = Prob[ |X | > BN ] .(32)

Substituting (31) and (32) in (28), we obtain

lim sup
�→∞

�
−1
1−σ (log �)

−σ
1−σ logW (C \R(�), σ, ζ) ≤ −(1 − σ)

{
1 − σ

σ
J(σ)

}−σ/(1−σ)

.(33)

Similarly, if we define N ′ = N ′(�) by BN ′−1 ≤ �+ A < BN ′, we have, with (29),

lim inf
�→∞

�
−1
1−σ (log �)

−σ
1−σ logW (C \R(�), σ, ζ) ≥ −(1 − σ)

{
1 − σ

σ
J(σ)

}−σ/(1−σ)

.(34)

The two bounds (33) and (34) prove Theorem 1. �

Remark. Our notations BN , �, A are written as
N∑

n=1

|Bn|, r, A + η in [12]. The value of

η is specified in [12], but the results quoted here are valid for any η > 0.

4 Dedekind zeta-functions of Galois number fields.

Let F be a Galois extension of the rational number field Q, d = [F : Q] ≥ 2, and ζF (s)
the corresponding Dedekind zeta-function. The existence of the limit

W (C \R(�), σ, ζF ) = lim
T→∞

(2T )−1µ1({t ∈ [−T, T ] | log ζF (σ + t
√−1) ∈ C \R(�)})

for σ > 1− d−1 was proved in Matsumoto [11] or [13], and Joyner’s type inequality for
W (C \ R(�), σ, ζF ) was given in Matsumoto [12]. In this section, as a generalization
of Theorem 1, we prove the following theorem, which implies that the asymptotic
behavior of W (C \R(�), σ, ζF ) is ruled only by σ and the degree d.

Theorem 5. Let F be a Galois extension of Q, and d = [F : Q] ≥ 2. Then, for
1 − d−1 < σ < 1 it holds that

lim
�→∞

{� (log �)σ}− 1
1−σ logW (C \R(�), σ, ζF ) = −1

d
A(σ) ,

where A(σ) is given in Theorem 1.
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Proof. Let pk be the k-th prime number, and ℘
(j)
k (1 ≤ j ≤ g(k)) be all prime divisors

of pk in F . Define the integers e(k) and f(k) by

pk =
g(k)∏
j=1

(℘
(j)
k )e(k), N℘

(j)
k = p

f(k)
k ,

where N℘
(j)
k is the norm of ℘

(j)
k . Let

βk =

{
g(k) pk

−σ if f(k) = 1,
0 otherwise.

In the case of ζF (s), instead of (25) and (26), we should consider

XF =
∑
k≥1

βk cos(2πθk) =
∑
n≥1

βm(n) cos(2πθm(n)) ,

YF =
∑
k≥1

βk sin(2πθk) =
∑
n≥1

βm(n) sin(2πθm(n))

(see (4.1) and (5.1) in [12]), where m(1), m(2), · · · is the monotonically increasing
sequence of all k’s such that f(k) = 1.

We claim that βm([x]) is a regularly varying function with index −σ. In fact, since
there exist only finitely many k’s such that e(k) > 1, we can find an N0 for which
e(m(n)) = 1, hence g(m(n)) = d, holds for any n > N0. For such an n we see that

n =
∑

pk ≤ pm(n)

g(k) = d

1 +O(1) =
1

d

pm(n)

log pm(n)

(1 + o(1))

by virtue of the prime ideal theorem. Hence it follows that

pm(n) = d n log n (1 + o(1)),

from which our claim follows easily.
Therefore we can apply Theorem 2 with Xn = cos(2πθm(n)) and rn = βm(n) to

obtain

lim
N→∞

1

N
log Prob[ XF > BN,F ] = −

(
1 − σ

σ
J(σ)

) −σ
1−σ

,

where BN,F =
∑
n≤N

βm(n) .

The rest of the proof proceeds along the lines of that of Theorem 1. The inequalities
(28) and (29) are valid with the replacements, ζ , X, Y , by ζF , XF , YF , respectively.
The integer N = N(�, F ) is defined by BN,F < �− A ≤ BN+1,F . Then, since

BN,F =
1

1 − σ
m(N)1−σ(logm(N))−σ(1 + o(1)),

m(N) = dN (1 + o(1)),

BN+1,F = BN,F (1 + o(1)),
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we obtain

N(�, F ) =
1 − σ

d
�

1
1−σ (log �)

σ
1−σ (1 + o(1)),

from which it follows that the upper-bound corresponding to (33), with ζ replaced
by ζF and the right-hand side divided by d. The lower-bound part is similar (the
rearrangement argument in [12] causes no problem here), hence the proof of Theorem 5
is completed. �

Joyner’s type inequalities are known for some other cases such as Dedekind zeta-
functions of non-Galois number fields [12] and zeta-functions attached to certain cusp
forms ([3] [12] [14]). Moreover, similar inequalities can be shown on the line σ = 1
([12]). It is an interesting problem to generalize our asymptotic results to these cases.
However, since our proofs in the present paper heavily depend on the properties of
regularly varying functions with positive exponent, some new idea seems to be required
to challenge this problem.

Appendix

Here we shall give Bombieri’s proof of the asymptotic behavior of A(σ) mentioned
directly after the statement of Theorem 1.

Put F (x) =
I ′0(x)
I0(x)

. After a change of variables x = y−σ and an integration by parts,

we have∫ ∞

0
log I0(y

−σ) dy =
∫ ∞

0
F (x)x−1/σ dx .

Note that F (x) = 1 +O(x−1) as x→ ∞ and F (x) = 1
2
x+O(x3) as x→ 0. This shows

that ∫ ∞

0
F (x)x−1/σ dx =

σ

1 − σ
− logK + o(1)

as σ → 1−, with

− logK =
∫ 1

0
F (x) x−1 dx+

∫ ∞

1
(F (x) − 1) x−1 dx.

It then follows that A(σ) ∼ K (1 − σ) as σ → 1−. Also, as σ → 1
2
+, we have

∫ ∞

0
F (x) x−1/σ dx =

∫ 1

0
F (x) x−1/σ dx+O(1) ∼

∫ 1

0

1

2
x1−1/σ dx ∼ 1

4(2σ − 1)
.

It therefore follows that A(σ) ∼ 2(2σ − 1) as σ → 1
2
+.
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