
Asymptotically one-dimensional diffusions on the

Sierpinski gasket and the abc-gaskets.

Kumiko Hattori
Department of Pure and Applied Sciences, University of Tokyo,

Meguro-ku, Tokyo 153, Japan

e-mail address: kumiko@tansei.cc.u-tokyo.ac.jp

Tetsuya Hattori
Faculty of Engineering, Utsunomiya University,

Ishii-cho, Utsunomiya 321, Japan

e-mail address: hattori@tansei.cc.u-tokyo.ac.jp

Hiroshi Watanabe
Department of Mathematics, Nippon Medical School,

Nakahara-ku, Kawasaki 211, Japan

e-mail address: watmath@tansei.cc.u-tokyo.ac.jp

November 23, 2004

Abstract

Diffusion processes on the Sierpinski gasket and the abc-gaskets are
constructed as limits of random walks. In terms of the associated renor-
malization group, the present method uses the inverse trajectories which
converge to unstable fixed points corresponding to the random walks on
one-dimensional chains. In particular, non-degenerate fixed points are
unnecessary for the construction. A limit theorem related to the discrete-
time multi-type non-stationary branching processes is applied.

Mathematics Subject Classification: 60J60, 60J25, 60J85, 60J15

Running title: Asymptotically one-dimensional diffusions on gas-
kets

1 Introduction.

In this paper we construct what we call an ‘asymptotically one-dimensional’
diffusion process on the Sierpinski gasket.
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We begin with some standard notations. For n ∈ Z let Fn denote the (infi-
nite) pre-Sierpinski gasket composed of edges of length 2−n. Namely, consider

a x1–x2 plane and let O = (0, 0) , a0 = (1, 0) , b0 = (
1
2
,

√
3

2
) . Let F ′0 be the

set of vertices and edges of �Oa0b0 , and F ′n , n = 0, 1, 2, · · ·, be a sequence of
graphs defined inductively by

F ′n+1 = F ′n ∪ (F ′n + 2na0) ∪ (F ′n + 2nb0) , n = 0, 1, 2, . . . ,

where A+ a = {x+ a | x ∈ A}, and kA = {kx | x ∈ A} . Let F0 be the union of
∞⋃

n=0

F ′n and its reflection in the x2-axis. Then Fn = 2−nF0 , n ∈ Z .

Let Gn denote the set of vertices in Fn. Each vertex in Fn, or each element
of Gn (including O), has four n-neighbor points; by an n-neighbor point we

mean a vertex in Fn joined by an edge of Fn. G =
∞⋃

n=0

Gn is the Sierpinski

gasket.
For a process X taking values in G we define stopping times Tn,i(X) , n ∈ Z ,

by Tn,0(X) = inf {t ≥ 0 | X(t) ∈ Gn} , and

Tn,i+1(X) = inf {t > Tn,i(X) | X(t) ∈ Gn \ {X(Tn,i(X))}} , i = 0, 1, 2, · · · .

Tn,i(X) is the time that X hits Gn for the i + 1-th time, counting only once
if it hits the same point more than once in a row. Denote by Wn,i(X) =
Tn,i+1(X) − Tn,i(X) the time interval to hit two points in Gn.

Next we introduce notions of decimation and renormalization group. For an
integer n and a Markov process X on G or on GN for some N ≥ n, we call
a random walk (Markov chain) X ′ on Gn defined by X ′(i) = X(Tn,i(X)) an
n-decimated walk of X .

Put R+ = {x ∈ R | x ≥ 0}. For N ∈ Z and α = (α1, α2, α3) ∈ R3
+ \ (0, 0, 0) ,

we define a random walk Z = ZN,α on GN as follows. At each integer time, Z
jumps to one of the four N -neighbor points, and the relative rates of the jumps
are

(1) α1, for a jump in horizontal direction (parallel to x1 axis),

(2) α2, for a jump in 60◦ or −120◦ direction,

(3) α3, for a jump in 120◦ or −60◦ direction.

In the following, we call a jump of the last two types, a diagonal jump. We may
choose the parameter space P for the transition probabilities as

P =
{
α = (α1, α2, α3) ∈ R3

+ | α1 + α2 + α3 = 1
}
.
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Proposition 1.1. The (N − 1)-decimated walk of Z = ZN,α with the starting
point Z(0) = x ∈ GN−1 has the same law as Z ′ = ZN−1,Tα , with the starting
point Z ′(0) = x . Here, T : P → P is a map defined by

Tα = (C (α1 + α2α3/3) , C (α2 + α3α1/3) , C (α3 + α1α2/3)) ,

1/C = 1 + (α1α2 + α2α3 + α3α1)/3 .

Proof. The essential point is to calculate the transition probability of the N − 1-
decimated walk,

Prob[ Z(TN−1,i+1(Z)) = y | Z(TN−1,i(Z)) = x ] ,

which is a little arithmetic as in [7, Sections 4 and 5]. This gives the form of T .
(In fact, the quantity above is equal to gx,y(1, 1, 1, 1) of (2.10) with n replaced
by N − 1.) �

We call the dynamical system defined by T on the parameter space P the
renormalization group.

The set of transition probabilities, or the space of random walks, which we
consider, is characterized by the ‘local translational invariance’ (uniformity) and
the symmetry of the process. See Proposition A.1 in Appendix A. See [7, Section
5] for our motivation for considering such a space.

We choose a sequence of random walks ZN = {ZN,αN} in such a way that

αN−1 = TαN , N ∈ Z ,(1.1)

and lim
N→∞

αN = (1, 0, 0) ∈ P . Note that (1, 0, 0) is an unstable fixed point of T

corresponding to the random walk on a one-dimensional chain. This is possible
if and only if we put

αN = (αN,1, αN,2, αN,3)
def= (1 + 2wN )−1 (1, wN , wN ) ,(1.2)

where, 0 < w0 < 1 , and wN , N = 1, 2, 3, · · ·, are defined inductively by

wN+1 = (6 − wN )−1
(
−2 + 3wN +

(
4 + 6wN + 6w2

N

)1/2
)
,

and wN , N = −1,−2,−3, · · ·, are defined inductively by

wN−1 =
4wN + 6w2

N

3 + 6wN + w2
N

.(1.3)

(One way to see this is to calculate αN−1,2−αN−1,3 with (1.1) to see that unless
the difference is zero for some N , αN will not converge to (1, 0, 0). The rest is
easy.) {wN} is strictly decreasing, and lim

N→∞
wN = 0 and lim

N→∞
w−N = 1 . One
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sees that if n ≤ N , then Zn is a n-decimated walk of ZN . The above equation
(1.3) implies that the probabilities of diagonal jumps for ZN is of order O(3/4)N

(Proposition 2.3 (1)): The finer the structure is, the more the random walker
favors horizontal jumps. The decimation covariance (1.1) implies, on the other
hand, that in macroscopic scale (i.e. for fixed n) the probabilities of diagonal
‘macroscopic’ jumps are fixed to some non-zero values. Thus we expect a non-
trivial continuum limit process as N → ∞ which has a property that when
observed microscopically (short length scale), horizontal moves dominate.

We prove in this paper the following.

Theorem 1.2 (Proposition 3.7, Proposition 3.8, Proposition 3.9).
Let x ∈ G, and let xN ∈ GN , N ∈ Z, be a sequence of points satisfying
lim

N→∞
xN = x. Consider a sequence of random walks ZN , N ∈ Z, with transition

probability given by (1.2), and with starting point ZN (0) = xN , N ∈ Z. Then
the sequence of processes XN , N ∈ Z, defined by XN (t) = ZN ([6N t]), converges
weakly to a continuous, strong Markov G-valued process X as N → ∞, with
X(0) = x. The law of X is independent of {xN}.

Denote by Px the law of X with X(0) = x, and let Ex be the expectation with
respect to Px . Define the transition semigroup Tt by (Tt f)(x) = Ex[f(X(t))].
Then X is a Feller process, that is Tt maps the space of bounded continuous
functions Cb(G) into itself. Furthermore, X is symmetric with respect to the
Hausdorff measure µ on G defined by ([13, p.252], [3, p.54])∫

f dµ =
2
3

lim
N→∞

3−N
∑

x∈GN

f(x) .

From our standpoint, the previous pioneering works on the construction of
diffusion processes on finitely ramified fractals [13, 5, 3, 15, 11, 10] may be
regarded as the ‘fixed point theories’. Some points in our study compared to
the fixed point theories are:

(1) In our work, a set of renormalization group trajectories emerging from the
neighborhood of an unstable fixed point is used for construction. Non-
degenerate fixed points are unnecessary, in contrast to the fixed point
theories.

(2) In our work, a limit theorem related to non-stationary branching processes
is used to estimate the number of steps of random walks. The estimate
is more subtle than the fixed point theories, where a limit theorem for
stationary branching processes was sufficient.

(3) To ensure the continuity of the distributions of the number of steps of
random walks, we developed a method applicable to wider class of con-
structions than the conventional method which uses decimation invariance
of the fixed point theories.
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The advantage of our method is that we do not need non-degenerate fixed points
of the renormalization group for the construction. We will explain a little more
on these points.

As is seen from (1.1), the sequence of random walks {ZN} corresponds to the
(inverse) trajectory {αN} of the renormalization group T on P . Such a choice
is essential to assure decimation covariance Proposition 1.1. In these terms,
the works of [13, 5, 3] where the existence of diffusion process on Sierpinski
gasket was first established, use the sequence of random walks YN = ZN,p0

on GN , N ∈ Z, with p0
def= (1/3, 1/3, 1/3) ∈ P . p0 is a fixed point of the

renormalization group T . Therefore the corresponding renormalization group
trajectory in P is a trivial one that stays on the point p0. Let us call these
works the fixed point theories.

In the fixed point theories, the condition that the obtained diffusion process
spans the whole fractal implies that the associated random walks have positive
transition probabilities to all the neighbor points. This condition is equivalent
to the condition that every coordinate component of the fixed point is positive,
as in p0. We call such fixed points non-degenerate fixed points. In the fixed
point theories, the existence of non-degenerate fixed points is essential, but their
existence is non-trivial. Lindstrøm defined nested fractals in such a way that the
renormalization groups have non-degenerate fixed points [15, Sections IV and
V]. These works make extensive use of symmetries of fractal figures to assure
the existence of non-degenerate fixed points. This causes problem when trying
to extend these works to more general geometric objects.

In [7, Section 5.4] we introduced the abc-gaskets, which is a generalization
of Sierpinski gasket in a way that 111-gasket is the Sierpinski gasket. Taking
the parameter space to be P , we showed there that the non-degenerate fixed
points of the renormalization groups are absent, if the parameters a, b, c, satisfy
certain set of conditions. Thus there are examples of finitely ramified fractals
where the fixed point theories cannot be applied. In Theorem 1.2, we consider a
set of renormalization group trajectories which ‘asymptotically emerge’ from a
neighborhood of an unstable fixed point. Hence the name ‘asymptotically one-
dimensional’ diffusion. Our method can in principle be appplied to the cases
where the renormalization groups have unstable fixed points. In particular, we
have checked that our method is applicable to abc-gaskets in general. Unstable
degenerate fixed points corresponding to the random walk on one-dimensional
chains are common in fractals. They also exist in the infinitely ramified fractals
such as the Sierpinski carpets and their higher dimensional generalizations. We
also emphasize the notion of the renormalization group trajectories, which was
implicit in the fixed point theories.

In the case of the fixed point theories on Sierpinski gasket, the fact that
p0 is a fixed point implies that {Wn,i(YN )} , N = n + 1, n + 2, n + 3, · · ·, is
a one-type stationary branching process [3, Lemma2.5(b)]. A limit theorem
for a stationary branching process then gives a necessary estimate. Situation
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is similar also for the nested fractals, where a theory of multi-type stationary
branching processes can be employed for necessary estimates [11]. To be precise,
it is not the theory of branching processes but the recursive structures related
to branching processes, that is essential for the construction of diffusions. In
any case, it is important to notice that all the constructions are implicitly using
(an inverse) trajectory of a renormalization group, which, through decimation
covariance, leads to the recursive structures.

We will show in Section 2 (Theorem 2.5) that we can apply a limit theorem of
[8] which is related to multi-type non-stationary branching processes, to obtain
estimates on the asymptotic form of the distribution of Wn,i(ZN ) , the time
interval to hit two points in Gn for the random walk ZN . Since horizontal jumps
and diagonal jumps have different jump probabilities, we must consider more
than one variables together (see arguments following (2.2)). Non-stationarity is
essential, in that we have to compare the growth rate of the number of steps with
the rate of the approach of the starting point of the corresponding trajectory to
the fixed point. We have to handle a more singular limit than in the fixed point
theories. This results in quantitative differences in the behavior of distributions
for horizontal and diagonal jumps in Theorem 2.5 (The condition 2 	∈ I(x, y) in
Theorem 2.5 implies that the bond (x, y) is horizontal).

In Section 2 we also prove the continuity of the limit distribution (Qn,x,y

of Theorem 2.8) of the number of steps of the random walks. This is one of a
crucial properties when taking the continuum limit of ZN . In the fixed point
theories, the property is obtained through certain functional equations for the
characteristic functions of the distributions, which hold only if one is working
on the fixed point theories. We therefore developed a method applicable to
wider class of constructions than the functional equation method (Lemma 2.7).
The random walk representation [7, Section 2] which relates the distribution of
number of steps for different scales is the key starting point (Lemma 2.6). In
Section 3 we make full use of the estimates in Section 2 to prove the existence
of a diffusion process.

We announce here that we have proved that we can apply our methods to
abc-gaskets of [7]. Therefore we have diffusion processes on any abc-gaskets,
including those cases where non-degenerate fixed points are absent and hence
the fixed point diffusions are absent. This demonstrates how our method may
be powerful. We will, however, omit the proof for the abc-gaskets here, mainly
in order to shorten the paper. The arguments for the abc-gaskets in general are
the same in idea as the Sierpinski gasket, but rather lengthy in calculation, and
we used symbolic manipulation systems on computer to complete the proof in
those cases.

We would like to make a couple of remarks. First, let us see how much
possible choices of sequences of random walks ZN,αN , N = 1, 2, 3, · · ·, we have
for the construction of diffusion processes on the Sierpinski gasket. In our
framework this is equivalent to finding an infinite length of (inverse) trajectory,
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αN−1 = T αN , N = 1, 2, 3, · · ·, in the parameter space P . T has one non-
degenerate stable fixed point p0 = (1/3, 1/3, 1/3) and three degenerate unstable
fixed points (1, 0, 0), (0, 1, 0), and (0, 0, 1), corresponding to random walks on
chains. One possibility is to stay on the non-degenerate fixed point, which is the
choice in [13, 5, 3]. We can show that the only other possibilities to have inifinite
(inverse) trajectory of T in P is the one considered in Theorem 1.2, parametrized
by w0, and its ‘rotations’, the trajectories approaching (0, 1, 0) or (0, 0, 1) in a
similar manner. In this sense our ‘asymptotically one-dimensional’ diffusions
exhaust the possibilities. Note, however, that we have different processes on
the Sierpinski gasket if the conditions of symmetry [10] or local translational
invariance (uniformity) [9, 12, 16] are violated.

Secondly, we give open questions. Much of the properties of the diffusion
processes will be qualitatively similar to those of the fixed point theory. For
example, we expect existence of transition density pt(x, y) as in the case of fixed
point diffusion of [3]. However, due to the fact that the transition probabilities
are approaching degenerate fixed point, we expect ‘log corrections’, at least for
non-horizontal transition. Also the ‘exponents’ may have different values.

Since our diffusion is not a fixed point thoery, it will not be scale invariant:
For the process X of [13, 5, 3] starting at O, X(0) = O, it holds by construction
that 2−1X(5t) is equal in law to X(t), while for the process X of Theorem 1.2
starting at O, 2−1X(λt) will not be equal in law to X(t) for any positive number
λ. Then the following two scaling limits become of interest:

(1) (Infra Red scaling limit,) lim
N→∞

2−NX(λN t) .

(2) (Ultra Violet scaling limit,) lim
N→∞

2NX(λ−N t) .

From the analysis of the trajectory of the renormalization group, we conjecture
that the IR-limit with λ = 5 will be equal in law to the process of [13, 5, 3]. This
suggests an alternate construction method of the diffusion process of their works.
The UV limit seems pathological. From Theorem 1.2, the only sensible choice
of λ seems to be 6, but UV-scaling limit should be a one-dimensional process,
therefore the scaling factor should be 4 if the limit is a Brownian motion. It
may be that we do not have a sensible UV limit, but the question is open.

Acknowledgements.
The authors would like to thank Prof. M. T. Barlow, Prof. M. Fukushima, Prof.
J. Kigami, Prof. T. Kumagai, Prof. S. Kusuoka, Prof. H. Osada, and Prof.
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2 Hitting times for the Sierpinski gasket.

Let n ∈ Z , N ∈ Z , N ≥ n , and let ZN be as in Theorem 1.2. Put M (N)
1,n,(i)

def=

Wn,i(ZN ) , i ∈ Z+ . Let M (N)
2,n,(i) be the number of diagonal jumps (the jumps
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not parallel to x1-axis) in the time interval [Tn,i(ZN ) , Tn,i+1(ZN )) , and let
M

(N)
3,n,(i) be the number of times that the random walk hits those points from

which two horizontal lines emerge (those points which are images of O = (0, 0)
by the local translations of O, in terminology of Appendix A), in the same
time interval. Note that for each i, n, and N , Tn,i(ZN ) is finite, a.s.. Put
M

(N)
n,(i) = (M (N)

1,n,(i) , M
(N)
2,n,(i) , M

(N)
3,n,(i)) . By the strong Markov property of the

random walk ZN , we have the following.

Proposition 2.1. Fix n and N with N ≥ n, and xi ∈ Gn , i ∈ Z+. Then{
M

(N)
n,(i) , i ∈ Z+

}
are independent random variables under the conditional prob-

ability with conditions ZN(Tn,i(ZN)) = xi , i ∈ Z+ . If, for some i and j,
xi = xj and xi+1 = xj+1, then the laws of M (N)

n,(i) and M (N)
n,(j) under the condi-

tional probability are the same.

In view of this Proposition, we shall drop the suffix (i) in the following when no
confusion would occur.

Let (x, y) ∈ Gn ×Gn be an n-neighbor pair. For m ∈ Z3
+ put

P (N)
n,x,y(m) def= Prob[ M (N)

n = m |(2.1)
ZN (Tn,i(ZN )) = x , ZN(Tn,i+1(ZN )) = y ] ,

and define their generating functions by,

f (N)
n,x,y(z) def=

∑
m∈Z3

+

P (N)
n,x,y(m) zm1

1 zm2
2 zm3

3 ,(2.2)

z ∈ C3 , |zj | ≤ 1 , j = 1, 2, 3.

Note that Proposition 2.1 implies that P (N)
n,x,y and f (N)

n,x,y are independent of i.
Next observe that the transition probability of ZN as given in (1.2) does

not discriminate 60◦ and 120◦ jumps: αN,2 = αN,3. Therefore the transition
probabilities are invariant under reflection in lines parallel to the x2-axis. From
this symmetry and the local translational invariance defined in Appendix A, we
see that each P (N)

n,x,y is equal to one of the following 5 cases:

(x, y) = (A,C), (A,B), (B,D), (B,A), (B,E),(2.3)

where, A through E are the 5 vertices of Fn as in Figure 1. As will be
seen in the Theorem below, it turns out that f (N)

n,x,y are the same for (x, y) =
(B,A) and (x, y) = (B,E). Furthermore, due to the consistency condition
f

(N)
n,A,C(z) f (N)

n,B,A(z) = f
(N)
n,A,B(z) f (N)

n,B,D(z), which is also seen to hold below,

there are only 3 independent f (N)
n,x,y’s. In fact this is the reason why we started

8



with 3 component random variables M (N)
n . With this remark in mind, define

I(x, y) for each pair of n-neighbor points (x, y), by

I(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

{1, 3} , if (x, y) is of type (A,C),
{1, 2, 3} , if (x, y) is of type (A,B),

{1} , if (x, y) is of type (B,D),
{1, 2} , if (x, y) is of type (B,A) or (B,E).

(2.4)

Theorem 2.2. For each n ∈ Z, and N ∈ Z satisfying N ≥ n, and n-neighbor
pair (x, y), we have

f (N)
n,x,y(z) =

∏
j∈I(x,y)

z
(N)
n,j (z) .(2.5)

Here, z(N)
n are defined recursively by,

z(n)
n (z) = z ,

z(n+1)
n (z) = D−1

n F (Dn+1 z) ,

z(N)
n (z) = z(n+1)

n (z(N)
n+1(z)) , N > n .

DN are diagonal matrices defined by

DN = diag (DN,1, DN,2, DN,3)
def= diag

(
1

1 + 3wN
, wN ,

1 + 3wN

2 + 2wN

)
,(2.6)

with wN as in (1.2). F = (F1, F2, F3) is a C3 valued function in three variables
defined by:

F1 = y2/y4 , F2 = y1/y2 , F3 = y4/y3 ,(2.7)

with

y1(z) = z2
2z

2
1z3(1 + 2z1z3)(1 + z1) ,

y2(z) = (1 − z2
1)z

2
1z

2
3 + z2

2z
3
1z3(1 + 2z3 + 2z3z1) + z4

2z
4
1z

2
3 ,

y3(z) = (1 − z2
1)(1 − 2z2

1z
2
3) − 2z2

2z
2
1z3(2 + z1 + 2z1z3 + 2z3z2

1)
+ 2z4

2z
4
1z

2
3 ,

y4(z) = (1 − z2
1)(1 − z2

1z3)z3 − z2
2z

2
1z3(3 + 2z3 + 2z1 + 4z1z3 + 2z3z2

1)
+ z4

2z
4
1z

2
3 .

Proof. Since Tn,i(Zn) = i, we have,

M
(n)
1,n,(i) = Wn,i(Zn) = Tn,i+1(Zn) − Tn,i(Zn) = 1 .

M
(n)
j,n,(i) , j = 2, 3, is also counted easily, and with (2.1), we have the statement

for N = n.
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Let N > n. Classify each step of a sample path of ZN into 4 types (A′, C′),
(A′, B′), (B′, D′), (B′, A′), by the same symmetry consideration as done in (2.3)
with similar notations A′ through E′ for the vertices in FN as A through E for
the vertices in Fn, but with type (B′, E′) in the same class as (B′, A′). For
(x′, y′) ∈ {(A′, C′), (A′, B′), (B′, D′), (B′, A′)}, and for t ∈ Z+, denote the
number of steps of type (x′, y′) in the time interval [Tn,i(ZN ) , Tn,i(ZN ) + t) by
M
′(N)
n,x′,y′(t) (we suppress suffix i, because properties similar to Proposition 2.1

holds for M ′). Let (x, y) ∈ Gn ×Gn be an n-neighbor pair. Define

P ′(N)
n,x,y(m′) def= Prob[ M ′(N)

n (Wn,i(ZN )) = m′ |
ZN(Tn,i(ZN)) = x , ZN(Tn,i+1(ZN )) = y ] ,
m′ ∈ Z4

+ ,

where
M ′(N)

n = (M ′(N)
n,A′,C′ , M

′(N)
n,A′,B′ , M

′(N)
n,B′,D′ , M

′(N)
n,B′,A′) ,

and define their generating functions by,

f ′(N)
n,x,y(z′) def=

∑
m′∈Z4

+

P ′(N)
n,x,y(m′)

4∏
j=1

z
′m′

j

j , z′ ∈ C4, |z′j | ≤ 1, j = 1, 2, 3, 4.

Proposition 2.1 implies that P ′(N)
n,x,y and f ′(N)

n,x,y are independent of i. From Propo-
sition 1.1, (1.1), and the strong Markov property of ZN , we have

f (N)
n,x,y(z) = f ′(n+1)

n,x,y (f (N)
n+1(z)) , N > n ,(2.8)

where f
(N)
n = (f (N)

n,A,C , f
(N)
n,A,B, f

(N)
n,B,D, f

(N)
n,B,A). We can show that if z′ =

(z1z3, z1z2z3, z1, z2z3) for z = (z1, z2, z3) ∈ C3, then

f ′(n+1)
n,x,y (z′) =

∏
j∈I(x,y)

z
(n+1)
n,j (z) .(2.9)

We first prove the Theorem by induction inN−n, assuming (2.9). The Theorem
is already proved for N − n = 0, for all n ∈ Z. Assume that the Theorem holds
for an r = N − n ≥ 0 and for all n ∈ Z. Then (2.5) holds for f (n+r+1)

n+1 (z). The
formula (2.9) can be applied with z replaced by z

(n+r+1)
n+1 (z), and we see from

(2.9) and (2.8) that the Theorem holds for N − n = r + 1.
It only remains to prove (2.9). For x ∈ Gn and y′ ∈ Gn+1 define

gx,y′(z′) def=

∑
m′∈Z4

+

Prob[ M ′(n+1)
n (

4∑
j=1

m′j) = m′ ,
4∑

j=1

m′j ≤Wn,i(Zn+1) ,

Zn+1(Tn,i(Zn+1) +
4∑

j=1

m′j) = y′ | Zn+1(Tn,i(Zn+1)) = x ]
4∏

j=1

z
′m′

j

j .
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For each n ∈ Z , N ∈ Z with N ≥ n, and t ∈ Z+, we have

M
′(N)
n,A′,C′(t) +M

′(N)
n,A′,B′(t) +M

′(N)
n,B′,D′(t) +M

′(N)
n,B′,A′(t) = t .

Hence for n-neighbor pairs (x, y), the definition of Wn,i imply

gx,y(z′) =(2.10) ∑
m′∈Z4

+

Prob[ M ′(n+1)
n (Wn,i(Zn+1)) = m′ ,

Zn+1(Tn,i+1(Zn+1)) = y | Zn+1(Tn,i(Zn+1)) = x ]
4∏

j=1

z
′m′

j

j .

Therefore
f ′(n+1)

n,x,y (z′) = gx,y(z′)/gx,y(1, 1, 1, 1) .(2.11)

Put

ζ(z′) = (ζ1(z′), ζ2(z′), ζ3(z′), ζ4(z′))
def= (

z′1
2 + 2wn+1

,
z′2wn+1

2 + 2wn+1
,

z′3
1 + 3wn+1

,
z′4wn+1

1 + 3wn+1
) .

The Markov property of Zn+1 implies, for x ∈ Gn and y′ ∈ Gn+1 in the same
triangle (block) of side length 2−n:

gx,y′(z′) =
∑

v′:n+1-neighbor of y′

ζĨ(v′,y′)(z
′) gx,v′(z′) + δx,y′ ,

where δx,y′ = 1 if x = y′ and 0 otherwise, and where Ĩ(v′, y′) = 1, 2, 3, 4, if
(v′, y′) is of type (A′, C′), (A′, B′), (B′, D′), (B′, A′), respectively. Solving these
equations for x = A, using the symmetry with respect to the reflection in a
line parallel to x2-axis that passes A, and similarly for x = B, we obtain, using
z′ = (z1z3, z1z2z3, z1, z2z3),

gx,y(z′) =
∏

j∈I(x,y)

Fj(Dn+1z) ,

for each n-neighbor pair (x, y). In particular, using (2.6), (2.7), and (1.3), we
have

gx,y(1, 1, 1, 1) =
∏

j∈I(x,y)

Dn,j ,

for each n-neighbor pair (x, y). Substituting these results in (2.11) we have
(2.9). �

11



We need some estimates for later use. Put �1 def= t(1, · · · , 1) ∈ Cd. In the
following, ‖ · ‖ is the �2-norm for a vector and the operator norm for a matrix.

Proposition 2.3. (1) For every n0 ∈ Z there exist positive constants C1

and C2 such that wN in (2.6) satisfies

C1

(
3
4

)N

≤ wN ≤ min

{
C2

(
3
4

)N

, 1

}
, N ≥ n0 .

In particular, DN in (2.6) satisfies

sup
N≥n0,i

DN,i <∞, i = 1, 2, 3 ,

and

inf
N≥n0,i

DN,i > 0 , i = 1, 3 , and inf
N≥n0,i

(
4
3

)N

DN,2 > 0 .

(2) Let AN , N ∈ Z be 3 × 3 matrices defined by

ANij =
∂Fi

∂zj
(DN

�1) ,

with F in (2.7), and let A = P−1 diag
(

6,
8
3
,
4
3

)
P , with

P =

⎛
⎝ 1 2 1

1 −3 6
1 −12 −6

⎞
⎠ .

Then for every n0 ∈ Z there exists a positive constant C3 such that AN

satisfy

‖AN −A‖ ≤ C3

(
3
4

)N

, N ≥ n0 .

(3) For integers n and N satisfying n ≤ N , define Bn,N by

Bn,N
def= 6−N+nAn+1An+2 · · ·AN ,

if n < N , and Bn,n
def= I. Then Bn

def= lim
N→∞

Bn,N exists, and for every

n0 ∈ Z there exists a positive constant C4 such that

‖Bn −B‖ ≤ C4

(
3
4

)n

, n ≥ n0, .
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Here, B is a matrix defined by

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

6
7

12
7

6
7

4
35

8
35

4
35

−3
35

−6
35

−3
35

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Bn,N satisfy
‖Bn,N‖ ≤ C5 , N ≥ n ≥ n0 ,(2.12)

for some positive constant C5.

(4) Define F̃N , N ∈ Z, by

F̃N (t) = F (DN
�1 + t) −DN−1

�1 −AN t .

Then for every n0 ∈ Z there exist positive constants C6 and C7 such that

‖F̃N (t)‖ ≤ C6

(
4
3

)N

‖t‖2, ‖t‖ < C7

(
3
4

)N

, N ≥ n0 .

Proof. The first assertion is obvious from the definition (1.3).
Define a C3-valued function d(w) by

d(w) =
(

1
1 + 3w

, w ,
1 + 3w
2 + 2w

)
,(2.13)

and 3 × 3 matrix a(w) by

a(w)ij =
∂Fi

∂zj
(d(w)) , i = 1, 2, 3, j = 1, 2, 3.(2.14)

Then, by (2.6), we have AN = a(wN ). From (2.7), F (z) is a rational function
in z, hence a(w) is rational in w. By explicit calculations, we see that a(w)ij =
Aij +O(w). This with the first assertion imply the second assertion. The third
assertion follows from similar arguments as those in [8, Appendix].

To prove the last assertion, put

F̃w(t) def= F (d(w) + t) − F (d(w)) − a(d(w)) t ,

where the matrix a and the vector d are defined in (2.14) and (2.13), respectively.
From the first assertion, it is sufficient to prove

‖F̃w(w s)‖ ≤ C6 w‖s‖2, ‖s‖ < C7 , 0 < w ≤ 1,(2.15)
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for some positive constants C6 and C7 independent of w and s. There exist
polynomials yip, yiq, i = 1, 2, 3, 4, such that

ỹi(z)
def=

yi(z)
1 − z1

= yip(z) +
z2
2

1 − z1
yiq(z) , i = 1, 2, 3, 4.(2.16)

Then

ỹi(d(w) + ws) − ỹi(d(w)) =(2.17)
yip(d(w) + ws) − yip(d(w))

+ (1 + 3w)w
(

(1 + s2)2

3 − s1
yiq(d(w) + ws) − 1

3
yiq(d(w))

)
.

Therefore there exists a constant C8 independent of w and s such that for
i = 1, 2, 3, 4,

‖ỹi(d(w) + ws) − ỹi(d(w))‖ < C8 w ‖s‖ , 0 < w ≤ 1, ‖s‖ < 2 .

We then see that there exist positive constants C9 and C10 < 2 independent of
w and s such that

‖ỹi(d(w) + s)‖ > C9 , i = 2, 3, 4, 0 < w ≤ 1, ‖s‖ < C10 .(2.18)

This with (2.7) and (2.16) implies that the components of F̃w(ws) are analytic
functions of s for ‖s‖ < C10 whose Taylor expansions around s = 0 have O(w)
coefficients. Therefore (2.15) holds. �

Proposition 2.4. Let DN , N ∈ Z and F be as in (2.6) and (2.7), respec-
tively.

(1) For each n0 ∈ Z there exist positive constants C11 and C12 such that for
every n ≥ n0 and for every pair of n-neighbor points (x, y) ∈ Gn × Gn,
the sequence of generating functions

f (N)
n,x,y(exp(−6−ND−1

N s)) , N = n, n+ 1, · · · ,
defined in (2.2), converges uniformly to an analytic function ψn,x,y(s) as
N → ∞ on {s ∈ C3 | ‖s‖ < C11 (9/2)n}. ψn,x,y satisfies

ψn,x,y(s) =
∏

j∈I(x,y)

vn,j(s) ,(2.19)

where vn(s) = (vn,1, vn,2, vn,3) is an analytic function defined on {s ∈
C3 | ‖s‖ < C11 (9/2)n} by

vn(s) def= lim
N→∞

z(N)
n (exp(−6−ND−1

N s)) ,
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with z(N)
n as in Theorem 2.2. vn has the expression

vn(s) = �1 − 6−nD−1
n Bn s+D−1

n ṽn(s) ,

with the bound

‖ṽn(s)‖ ≤ C12

(
1
27

)n

‖s‖2 , s ∈ C3 , ‖s‖ < C11

(
9
2

)n

,

where Bn is defined in Proposition 2.3 (3).

(2) vn satisfies
vn(s) = D−1

n F (Dn+1 vn+1(s)) , n ∈ Z ,(2.20)

and Bn satisfies
Bn = 6−1An+1 Bn+1 , n ∈ Z .(2.21)

Proof. The first assertion follows from Theorem 2 in [8]. Proposition 2.3 implies
that the assumptions for this Theorem are satisfied with d = 3, � = 6, δ = 4/3,
DN and F as in (2.6) and (2.7), respectively. The second assertion is a conse-
quence of the first assertion and the definitions of z(N)

n and Bn in Theorem 2.2
and Proposition 2.3 (3), respectively. �

Proposition 2.4 implies the weak convergence of 6−NWn,i(ZN), the (properly
scaled) time interval for ZN to hit two points in Gn.

Theorem 2.5. (1) Let n ∈ Z, i ∈ Z+, and let (x, y) ∈ Gn ×Gn be a pair of
n-neighbor points. Under the conditional probability with the conditions

ZN(Tn,i(ZN )) = x , ZN(Tn,i+1(ZN )) = y , N = n, n+ 1, n+ 2, · · · ,

the sequence of the random variables {6−NWn,i(ZN )}, N = n, n+ 1, n+
2, · · ·, converges weakly as N → ∞. The limit distribution Qn,x,y is inde-
pendent of i ∈ Z+, and depends only on n and the type of the n-neighbor
pairs (x, y). It is supported on [0,∞) and satisfies∫

R

exp(−ω s)Qn,x,y(dω) = ψn,x,y(s, 0, 0) , |s| < C11 (9/2)n , s ∈ C ,

where ψn,x,y is as in (2.19).

(2) Denote by Xn,x,y a random variable whose distribution is equal to Qn,x,y.
Then the mean E[ Xn,x,y ] satisfies

E[ Xn,x,y ] = 6−n
∑

j∈I(x,y)

D−1
n,jBn,j,1 .
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Also, there exist n1 ∈ Z and positive constants C13 and C14, such that

C13 ≤ 6n E[ Xn,x,y ] =
∑

j∈I(x,y)

D−1
n,jBn,j,1 ,(2.22)

for any (x, y) and n ≥ n1, and∑
j∈I(x,y)

D−1
n,jBn,j,1 ≤ C14(2.23)

if 2 	∈ I(x, y) and n ≥ n1.

(3) Put
C3

+
def= {s ∈ C3 | �(si) ≥ 0 , i = 1, 2, 3} .

The function ψn,x,y(s) in (2.19) is analytically continued to the interior
of C3

+, and is uniquely exetended to a continuous function in C3
+. Denote

the extended function again by ψn,x,y(s). Then the characteristic function
of Xn,x,y;

φn,x,y(t) = E[ exp(
√−1Xn,x,y t) ]

=
∫
R

exp(
√−1ω t)Qn,x,y(dω) , t ∈ R ,

satisfies
φn,x,y(t) = ψn,x,y(−√−1 t, 0, 0) , t ∈ R .(2.24)

In particular, the real and the imaginary parts of φn,x,y(t), �(φn,x,y(t))
and �(φn,x,y(t)) satisfy

1 − C15 27−n t2 ≤ �(φn,x,y(t)) ≤ 1 ,(2.25)
C16 6−nt− C17 27−n t2 ≤ �(φn,x,y(t))(2.26)
≤ C18 6−nt+ C19 27−n t2 ,

for − C20

(
9
2

)n

< t < C20

(
9
2

)n

, n ≥ n1 , 2 	∈ I(x, y) ,

for some positive constants C15, C16, C17, C18, C19, and C20, independent
of t, n, and (x, y).

Proof. For each N ∈ Z+ satisfying N ≥ n, let Q̃(N)
n,x,y be the distribution of

6−N D−1
N M

(N)
n,(i) conditioned by ZN (Tn,i(ZN )) = x and ZN (Tn,i+1(ZN )) = y,

and let

ψ(N)
n,x,y(s) =

∫
R3

exp(−s · w) Q̃(N)
n,x,y(dw)

=
∫

[0,∞)3
exp(−s · w) Q̃(N)

n,x,y(dw) , s ∈ C3
+ ,
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be its Laplace transform (generating function). Proposition 2.1 implies that
Q̃

(N)
n,x,y is independent of i ∈ Z+. From (2.1) and (2.2),

ψ(N)
n,x,y(s) = f (N)

n,x,y(exp(−6−ND−1
N s)) .

Proposition 2.4 (1) then implies that {ψ(N)
n,x,y} converges, as N → ∞, uniformly

to the analytic function ψn,x,y(s) on ‖s‖ < C11 (9/2)n . By standard argu-
ments similar to those in [8, Section 1], we see that {Q̃(N)

n,x,y} converges weakly
to a probability measure as N → ∞. By definition, Wn,i(ZN ) = M

(N)
1,n,(i) and

lim
N→∞

DN,1 = 1. Hence {6−NWn,i(ZN )} converges weakly as N → ∞. The

uniqueness of the extension of ψn,x,y and (2.24) also follows. Note that Propo-
sition 2.3 (3) implies that for sufficiently large n, (Bn,1,1, Bn,2,1, Bn,3,1), is close
to (6/7, 4/35, −3/35). Then (2.22) and (2.23) follows from (2.4) and Propo-
sition 2.3 (1). The other statements follow from (2.24), Proposition 2.4 (1),
Proposition 2.3 (1), and Proposition 2.3 (3). �

We turn to the random walk representation. For a function F and a positive
integer N , let FN denote the N time iterated function of F . Let n ∈ Z, and let
N ∈ Z satisfying n ≤ N . Then Theorem 2.2 and (2.4) imply for any n-neighbor
pair (x, y) ∈ Gn ×Gn,

f (N)
n,x,y(z) =

∏
j∈I(x,y)

D−1
n,j(F

N−n)j(DNz) .(2.27)

Let W (N)
n,x,y denote the set of walks on GN from x to y that do not hit points in

Gn until they arrive at y:

W (N)
n,x,y = {(b1, b2, · · · , b�) | � ≥ 0 , for j = 1, 2, 3, · · · , �,
bj = (x′j−1, x

′
j) ∈ GN ×GN is a pair of N -neighbor points,

x′0 = x , x′� = y , xj 	∈ Gn , j = 1, 2, 3, · · · , �− 1} .

Lemma 2.6. Let n ∈ Z, and let N ∈ Z satisfying n ≤ N . For any n-neighbor
pair (x, y) ∈ Gn ×Gn, the following holds:

f (N)
n,x,y(z) =

∑
w∈W

(N)
n,x,y

P (w)
∏

(x′,y′)∈w

⎛
⎝ ∏

i∈I(x′,y′)

zi

⎞
⎠ .(2.28)

The convergence of the right hand side is absolute and uniform in z = (z1, z2,
z3) ∈ C3, for |zi| ≤ 1 , i = 1, 2, 3. P (w) is the probability of the walk w under the
conditional probability with conditions ZN(Tn,0(ZN )) = x and ZN(Tn,1(ZN )) =
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y:

P (w) =
∏

(x′,y′)∈w

Prob[ ZN(1) = y′ | ZN(0) = x′ ](2.29)

×Prob[ ZN (Tn,1(ZN)) = y | ZN (Tn,0(ZN )) = x ]−1 .

In particular,

φn,x,y(t) =
∑

w∈W
(N)
n,x,y

P (w)
∏

(x′,y′)∈w

φN,x′,y′(t) , t ∈ R .(2.30)

Proof. The arguments for the random walk representation (2.28) are standard [7,
Section 2]. From Theorem 2.2, (2.4), and (2.27) we have, for n ≤ N ≤ N + k,

f (N+k)
n,x,y (z) = f (N)

n,x,y(z(N+k)
N (z)) .

Therefore (2.28), Theorem 2.2, and (2.4) imply

f (N+k)
n,x,y (z) =

∑
w∈W

(N)
n,x,y

P (w)
∏

(x′,y′)∈w

f
(N+k)
N,x′,y′(z) .

Note that for fixed N , n, x, and y, the number of possible (x′, y′)’s in the right
hand side of the above equation is finite and independent of k. Put

z = (exp(−6−N−kD−1
N+k,1

√−1 t), 0, 0) , t ∈ R ,

and use Proposition 2.4 (1) and (2.24) to take the limit k → ∞. The uniform
convergence of the random walk representation implies (2.30). �

In the next Lemma, C1, C2, etc., denote some positive constants independent
of k and n.

Lemma 2.7. Let pn, qn, h(k)
n , and g(k)

n , n = 0, 1, 2, · · ·, k = 0, 1, 2, · · ·, satisfy

C1δ
−n ≤ pn ≤ C2δ

−n ,(2.31)
C3δ

−n ≤ qn ≤ C4δ
−n ,(2.32)

for n = 1, 2, · · ·, and

0 ≤ h(k)
n ≤ h

(k)
n+1

α
+ pn+1 (g(k)

n+1 − h
(k)
n+1

α
) ,(2.33)

0 ≤ g(k)
n ≤ qn+1 g

(k)
n+1 + (1 − qn+1)h

(k)
n+1 ,(2.34)

0 ≤ h
(k)
n+k ≤ 1 − C5θ

nδ−k ,(2.35)

0 ≤ g
(k)
n+k ≤ 1 ,(2.36)
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hold for n = 0, 1, 2, · · ·, and k = 0, 1, 2, · · ·, where α, δ, and θ, are constants
satisfying α ≥ 2, 1 < δ < α, and 0 < θ < 1. Then, there exist integers n0, and
k0(n), C(n), n ≥ n0, such that

0 ≤ h(k)
n ≤ exp(−C6(k − C(n))2) , n > n0 , k > k0(n) ,(2.37)

0 ≤ g(k)
n ≤ exp(−C7(k − C(n))2) , n > n0 , k > k0(n) .(2.38)

Proof. For sufficiently large n, we have 0 < pn+m < 1 and 0 < qn+m < 1, hence
h

(k)
n+m ≤ 1 and g(k)

n+m ≤ 1, for m = k, k − 1, · · · , 1, 0.
Define a sequence h̄n+m, m = k, k − 1, · · · , 1, 0, by

h̄n+m = h̄α
n+m+1 + pn+m+1 (1 − h̄α

n+m+1) , m = 0, 1, 2, · · · , k − 1,

h̄n+k = 1 − C5θ
nδ−k .

Obviously, h(k)
n+m ≤ h̄n+m ≤ 1, holds. Put h̄n+m = exp(−xn+m). While the

condition 0 ≤ xn+m+1 ≤ 1 is satisfied, we have

αxn+m+1 ≥ xn+m ≥ (α− C8pn+m+1)xn+m+1 .

This implies that

1
2
C9α

k−mθnδ−k ≤ xn+m ≤ C9α
k−mθnδ−k ,(2.39)

for a sufficiently large n and for m’s such that

C9α
k−m−1θnδ−k < 1 .

Let
k1 = [(1 − logα δ)k + n logα θ + logα C9] ,(2.40)

where [x] denotes the largest integer bounded by x. Note that 0 < k1 < k, if k
is sufficiently large for fixed n. Then from (2.39) and (2.40) we have

h
(k)
n+k1

≤ e−1/2 .(2.41)

Define a sequence h̃n+m, m = k1, k1 − 1, · · · , 1, 0, by

h̃n+m = h̃2
n+m+1 + C2δ

−(n+m+1) , m = k1 − 1, · · · , 2, 1, 0,
h̃n+k1 = e−1/2 .

Then, h(k)
n+m ≤ h̃n+m holds for m = k1, · · · , 2, 1, 0. Put

h̃n+m = exp(−2k1−m−1) + δ−n−mrn+m , m = k1, · · · , 2, 1, 0.
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Then if n is sufficiently large, we have rn+m ≤ C10 , m = k1, · · · , 2, 1, 0. Putting
k2 = [k1/2], we have, if k is sufficiently large,

h
(k)
n+m ≤ C11δ

−n−m , 0 ≤ m ≤ k2 .(2.42)

The assumptions (2.33) and (2.34), together with (2.42) yield

h
(k)
n+m ≤ C11δ

−n−m(h(k)
n+m+1 + g

(k)
n+m+1) ,(2.43)

g
(k)
n+m ≤ h

(k)
n+m+1 + C4δ

−n−mg
(k)
n+m+1 ,(2.44)

for m = k2 − 1, · · · , 2, 1, 0. Put

Rn+m = max(h(k)
n+m, g

(k)
n+m) .

Then, (2.43) and (2.44) implies

Rn ≤
∏

0≤2µ≤k2−2

δ−2µ ≤ δ−(k2−3)2/4 ,

if k2 ≥ 3 and n is sufficiently large. �

Theorem 2.8. For each integer n and each n-neighbor pair (x, y), Qn,x,y is
continuous: Prob[ Xn,x,y = t ] = Qn,x,y{t} = 0 , t ∈ R.

Proof. First we prove that there exists an integer n0 and a positive constant C12

such that

max
(x,y)∈Gn+k×Gn+k: horizontal bond

|φn+k,x,y(6kt)| ≤ 1 − C1227−n

(
3
4

)k

,(2.45)

(
3
4

)k

< |t| < 5
(

3
4

)k

, t ∈ R , n ≥ n0, k ∈ Z+ .

Let n ∈ Z, k ∈ Z+, and t ∈ R. Let (x, y) be a pair of n + k-neighbor
points which, when joined, forms a horizontal bond. Denote by x1 the diagonal
n+ k + 1-neighbor of x which is in the n+ k-triangle containing both x and y.
Classify the walks w ∈ W

(n+k+1)
n+k,x,y by whether it hits x1 or not, and define

W1 = {w ∈ W
(n+k+1)
n+k,x,y | w hits x1} .

Also denote by y1 the horizontal n+ k + 1-neighbor of x1, and define a subset
of W1 by

W2 = {w ∈W1 | w does not jump to y1 directly after the first hit at x1} .
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Applying (2.30) to φn+k,x,y(6kt), we have

φn+k,x,y(6kt)

=
∑

w∈W1

P (w)
∏

(x′,y′)∈w

φn+k+1,x′,y′(6kt)

+
∑

w∈W
(n+k+1)
n+k,x,y

\W1

P (w)
∏

(x′,y′)∈w

φn+k+1,x′,y′(6kt)

=
∑

w∈W2

P (w)
∏

(x′,y′)∈w

φn+k+1,x′,y′(6kt)

× (1 − (1 + 3wn+k+1)−2φn+k+1,x1,y1(6
kt)φn+k+1,y1,x1(6

kt)
)−1

+
∑

w∈W
(n+k+1)
n+k,x,y

\W1

P (w)
∏

(x′,y′)∈w

φn+k+1,x′,y′(6kt) .

The factor(
1 − (1 + 3wn+k+1)−2φn+k+1,x1,y1(6

kt)φn+k+1,y1,x1(6
kt)
)−1

comes from the contribution of walks jumping between x1 and y1, to and fro.
Put for simplicity of notation, p =

∑
w∈W2

P (w), C′ = (1 + 3wn+k+1)−2, and

φ = φn+k+1,x1,y1(6
kt)φn+k+1,y1,x1(6

kt). Then we have

|φn+k,x,y(6kt)| ≤ 1 − pC′−1
(
(C′−1 − 1)−1 − |C′−1 − φ|−1

)
.(2.46)

Each walk w in W2 has at least 2 diagonal jumps; to x1 and back to the baseline
xy, and the whole walk w is a horizontal jump in n+ k-scale; the jump from x
to y. From Proposition 2.3 (1), (1.2), and (2.29), we therefore see that for any
n0 ∈ Z there exists a positive constant C13 such that

p > C13

(
3
4

)2(n+k)

, n ≥ n0 , k ∈ Z+ .(2.47)

Also for any n0 ∈ Z there exist positive constants C14 and C15 such that

C14

(
3
4

)n+k

< C′−1 − 1 < C15

(
3
4

)n+k

, n ≥ n0 , k ∈ Z+ .(2.48)

The estimates (2.48), (2.25), and (2.26) together with |φ| ≤ 1, imply that there
exists a positive constant C16 such that

(C′−1 − 1)−1 − |C′−1 − φ|−1 > C16
2

(
16
243

)n (4
3

)k

,
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for sufficiently large n, k ∈ Z+, (3/4)k < |t| < 5 (3/4)k . This with (2.46), (2.47),
and (2.48), implies (2.45).

Let C be a positive constant satisfying 1 < C < 5, and put

h(k)
n = max

(x,y): horizontal bond
|φn,x,y(C (9/2)k)| ,(2.49)

g(k)
n = max

(x,y): diagonal bond
|φn,x,y(C (9/2)k)| .(2.50)

Then (2.45) implies (2.35) for n ≥ n0 and k ∈ Z+ with C5 = C12, θ = 1/27,
and δ = 4/3. Since φn,x,y is a characteristic function, (2.36) also holds.

Define pn+1 to be the probability that the random walker Zn+1 jumps diag-
onaly at least once, under the condition that

(Zn+1(Tn,i(Zn+1)), Zn+1(Tn,i+1(Zn+1)) = (x, y) ,

where (x, y) is a horizontal bond which attains maximum in (2.49). Similarly,
define qn+1 to be the probability that the random walker Zn+1 passes only
diagonal bonds (i.e. does not jump horizontally) under the condition that

(Zn+1(Tn,i(Zn+1)), Zn+1(Tn,i+1(Zn+1)) = (x, y) ,

where (x, y) is a diagonal bond which attains maximum in (2.50). Then from
(2.30) with N = n + 1 and a graphical consideration, we also see that (2.33)
and (2.34) hold with α = 2. The estimates (2.31) and (2.32) with δ = 4/3
are obtained by estimating P (w) in (2.30), which is a consequence of (1.2),
Proposition 2.3 (1), and graphical considerations. Hence Lemma 2.7 can be
applied and we have

|φn,x,y(C (9/2)k)| ≤ exp(−min{C6, C7}(k − C(n))2) ,
n > n0 , k > k0(n) ,

for each (x, y). This implies the exponential decay of the characteristic functions
φn,x,y for all n-neighbor pairs (x, y) and for sufficiently large n. Then (2.33) and
(2.34) imply, inductively, the exponential decays of the characteristic functions
for all n ∈ Z, which implies the continuity of the measures Qn,x,y. �

3 Convergence of path measures.

Let G =
∞⋃

n=0

Gn be the Sierpinski gasket as in Section 1, and D def= D([0,∞);G).

For n ∈ Z and x ∈ Gn we define a family of probability measures {P (N)
x },

N ∈ Z+, N ≥ n, on D, as follows:

P (N)
x [ w(0) = x ] = 1 ,
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P (N)
x [ w(ti) = xi, i = 1, . . . , r ] = Prob[ ZN (x, [6N ti]) = xi, i = 1, . . . , r ] ,

where ZN (x, ·) is a random walk on GN starting from x we studied in Section 2.
We use abbreviated notations such as

P (N)
x [ w(0) = x ] def= P (N)

x [ {w ∈ D | w(0) = x} ] .

We write E(N)
x [ · ] for the expectations with respect to P (N)

x .
For w ∈ D and n ∈ Z+, let us define

Tn,0(w) = inf {t ≥ 0| w(t) ∈ Gn} ,

Tn,i+1(w) = inf {t > Tn,i(w) | w(t) ∈ Gn \ {w(Tn,i(w))}} ,
Wn,i

def= Tn,i+1(w) − Tn,i(w), i = 0, 1, 2, · · · .
Let N ≥ n, x ∈ GN , and i ∈ Z+. Assume that (xj , xj+1), j = 0, 1, · · · , i, are n-
neighbor pairs and that |x0 − x| < 2−n. Consider the distribution of Wn,j , j =
0, 1, · · · , i, under the conditional probability P

(N)
x [ · | w(Tn,j(w)) = xj , j =

0, 1, · · · , i+ 1 ]. As we saw in Section 2, for fixed N and n, the distribution of
each Wn,i, i = 0, 1, · · ·, coincides to one of the four distributions corresponding
to the types of neighboring points (A,C), (A,B), (B,D), and (B,A). Here we
denote these distributions by Q

(N)
n,I , I = 1, 2, 3, 4, respectively, and their limit

distributions as N → ∞ by Qn,I , I = 1, 2, 3, 4. In the following, we will often
use Theorem 2.5 combined with Theorem 2.8 in the form that

lim
N→∞

Q
(N)
n,I [{s|a < s < b}] = Qn,I [{s|a < s < b}],(3.1)

for any a and b with 0 ≤ a < b ≤ ∞.

Proposition 3.1. Let N ′ and n be non-negative integers satisfying N ′ ≥ n,
and let x ∈ GN ′ and y ∈ Gn with |x− y| < 2−n.

(1) There exists a positive constant A1 independent of x, y, n, and N ′, such
that

E(N ′)
x [ Tn,0(w) | w(Tn,0) = y ] ≤ A1

(
8
27

)n

.

(2) The distribution of Tn,0 under the conditional probability

P (N)
x [ · | w(Tn,0) = y ] ,

converges weakly as N → ∞ to a probability measure on R with a contin-
uous distribution function.
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Proof. We start with defining some functions related to the random walk Zm(x′)
starting from x′ ∈ Gm \Gm−1. Let M1(x′), · · · ,M4(x′) be the numbers of steps
of types (A,C), (A,B), (B,D), and (B,A), respectively, that Zm(x′) takes in
the time interval [0, Tm−1,0(Zm)]. Let y′ ∈ Gm−1, |x′ − y′| < 2−(m−1). For
z = (z1, z2, z3, z4) ∈ C4, define

hm,x′,y′(z)

def=
∑
�n

Prob[ (M1(x′), · · · ,M4(x′)) = �n | Zm(x′, Tm−1,0(Zm)) = y′ ]
4∏

i=1

zni

i ,

where the summation is taken over �n = (n1, n2, n3, n4) ∈ Z+. For each m,
hm,x′,y′ corresponds to one of the following five functions, according to the
relative position of (x′, y′).

hm,B,E(z) =
2wm + 3
wm + 1

· wm(wm + 1)z4
gm,1(z)

,

hm,A,E(z) =
2wm + 3
wm

· w
2
mz2z4
gm,1(z)

,

hm,A,C(z)

=
2(2wm + 3)
wm + 3

×
(3wm + 1)2z1 + w2

mz2z3z4 + w2
m(3wm + 1)z2z4 − z1z

2
3

gm,2(z)
,

hm,B,C(z)

=
2(3wm + 2)(2wm + 3)

5w2
m + 11wm + 4

×
2wm(wm + 1)(3wm + 1)z4 + wmz1z3z4 + wm(3wm + 1)z1z4 − w3

mz2z
2
4

gm,2(z)
,

hm,D,C(z)

=
2(3wm + 2)(2wm + 3)

(wm + 1)(wm + 4)
×

2wm(wm + 1)z3z4 + wmz1z3z4 + wm(3wm + 1)z1z4 + w3
mz2z

2
4

gm,2(z)
,

where
gm,1(z) = 3w2

m + 4wm + 1 − (wm + 1)z3 − w2
mz2z4,

and

gm,2(z) = 2{(wm +1)(3wm +1)2−w2
mz2z3z4−w2

m(3wm +1)z2z4− (wm +1)z2
3}.
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These functions are obtained using the Markov property as in Section 2. They
are analytic in {z ∈ C4||zi| < 1, i = 1, 2, 3, 4}.

From these functions we see that there exist positive constants B1 and B2

such that

E[ Tm−1,0(Zm(x′)) | Zm(x′, Tm−1,0(Zm(x′))) = y′ ](3.2)

=
d

dt
hm,x′,y′((t, t, t, t))|t=1

≤ B1 +
B2

wm
,

for all m ∈ Z+, x′ ∈ Gm \Gm−1, and y′ ∈ Gm−1 , satisfying |x′−y′| < 2−(m−1).
From the definition of Bm,N in Proposition 2.3 (3) together with Theorem 2.2
we have, for an m-neighbor pair (u, v),

E[ Wm,i(ZN ) | ZN(Tm,i) = u, ZN (Tm,i+1) = v ](3.3)

= 6N−m
∑

j∈I(u,v)

D−1
m,j(Bm,N )j,1DN,1.

Combining (2.6), Proposition 2.3 (1), and (2.12), together with (3.3), we see
that

6−NE[ Wm,i(ZN ) | ZN(Tm,i) = u, ZN(Tm,i+1) = v ] ≤ B3

(
2
9

)m

,(3.4)

where B3 is a positive constant independent of m, N , u′ and v′. Applying (3.2)
and (3.4) to our process,

E
(N)
x′ [ Tm−1,0(w) | w(Tm−1,0(w)) = y′ ] ≤ B4

(
8
27

)m

,(3.5)

for all m ∈ Z+, N ≥ m, x′ ∈ Gm \Gm−1, and y′ ∈ Gm−1 , satisfying |x′− y′| <
2−(m−1). The estimate (3.5), combined with the strong Markov property of the
random walks, implies for any x ∈ GM , y ∈ Gn, N ≥M > n, and |x−y| < 2−n;

E(N)
x [ Tn,0(w) | w(Tn,0(w)) = y ]

=
∑
{yi}

(
E(N)

x [ TM−1,0(w) | w(TM−1,0) = yM−1 ]

+ E(N)
yM−1

[ TM−2,0(w) | w(TM−2,0) = yM−2 ] + · · ·
+ E(N)

yn+1
[ Tn,0(w) | w(Tn,0) = y ]

)
× P (N)

x [ w(Ti,0(w)) = yi, n+ 1 ≤ i ≤M − 1 | w(Tn,0) = y ]

≤ A1

(
8
27

)n

,
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where the summation is taken over {yi} = (yn, yn+1, · · · , yM ) with yi ∈ Gi,
yn = y, yM = x, |yi − yi−1| < 2−(i−1), i = n + 1, · · · ,M . Thus we have (1).
To prove (2), let us consider the characteristic functions for the hitting times of
Gn. First let us define

φ(N)
m (t) = (φ(N)

m,A,C(t), φ(N)
m,A,B(t), φ(N)

m,B,D(t), φ(N)
m,B,A(t)),

φ
(N)
m,X,Y (t)
def= E[ exp(

√−1t6−NWm,i(ZN ) |
(ZN (Tm,i), ZN(Tm,i+1)) are m-neighbor points of type (X,Y ) ] ,

where t ∈ R, and (X,Y ) ∈ {(A,C), (A,B), (B,D), (B,A)}. Then we have,

E(N)
x [ exp(

√−1Tn,0(w)t) | w(Tn,0) = y ]

=
∑
{yi}

(
n+1∏

m=M

hm,ym,ym−1(φ
(N)
m (t))

)
×

P (N)
x [ w(Ti,0(w)) = yi, n+ 1 ≤ i ≤M − 1 | w(Tn,0) = y ] .

Since Theorem 2.5 implies that φ(N)
m (t) converges as N → ∞, the characteristic

functions also converge as N → ∞ and we have (2). �

Proposition 3.2. There is a constant ρ, 0 < ρ < 1, such that

|P (N)
x [ w(Tk,0(w)) = z ] − P (N)

y [ w(Tk,0(w)) = z ]| < 2ρm−k−1,

for all N ≥ m ≥ k ≥ 0, x, y ∈ GN , |x− y| < 2−m, and z ∈ Gk.

Proof. By straightforward calculation we see that for any m and any m-neighbor
points (x, y), there exists z′ ∈ Gm−1 such that

P (N)
x [ w(Tm−1,0) = z′ ] ∧ P (N)

y [ w(Tm−1,0) = z′ ] ≥ α,

where α is a positive constant independent of x, y, m, and N . In this particular
case, we have α = 1

3 . First, consider the case that x and y are contained in
the same m-triangle. By an m-triangle we mean a closed equilateral triangle of
side length 2−m, with its vertices and edges lying in Fm. For n ≤ m, denote
the three vertices of the n-triangle containing both x and y, by x(n)

1 , x
(n)
2 , x

(n)
3 .

The property mentioned above implies that for any k ≤ n ≤ N , r = 1, 2, 3, any
non-negative numbers ai, bi, i = 1, 2, 3, and γ, satisfying

∑3
i=1 ai =

∑3
i=1 bi =
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γ, there exist non-negative numbers a′i and b′i, i = 1, 2, 3, with
∑3

i=1 a
′
i =∑3

i=1 b
′
i = (1 − α)γ, such that

|
3∑

i=1

aiP
(N)

x
(n)
i

[ w(Tk,0) = x(k)
r ] −

3∑
i=1

biP
(N)

x
(n)
i

[ w(Tk,0) = x(k)
r ]|(3.6)

= |
3∑

i=1

a′iP
(N)

x
(n−1)
i

[ w(Tk,0) = x(k)
r ] −

3∑
i=1

b′iP
(N)

x
(n−1)
i

[ w(Tk,0) = x(k)
r ]| .

Note that there exist non-negative numbers pi, p′i, i = 1, 2, 3, satisfying

3∑
i=1

pi =
3∑

i=1

p′i = 1 ,

P (N)
x [ w(Tk,0) = x(k)

r ] =
3∑

i=1

piP
(N)

x
(m)
i

[ w(Tk,0) = x(k)
r ] ,

and

P (N)
y [ w(Tk,0) = x(k)

r ] =
3∑

i=1

p′iP
(N)

x
(m)
i

[ w(Tk,0) = x(k)
r ] .

Using (3.6) iteratively (m−k−1) times, starting with ai = pi, bi = p′i, i = 1, 2, 3,
we have

|P (N)
x [ w(Tk,0) = x(k)

r ] − P (N)
y [ w(Tk,0) = x(k)

r ]| < (1 − α)m−k−1.

If x and y lie in the neighboring m-triangles, then take the common vertex of
these two triangles, z and use (3.6) between x and z, and between y and z,
respectively. Put ρ = 1 − α. �

Let π[0,M ] be the projection of D([0,∞);G) onto D([0,M ];G). P
(N)
x,M

def=

P
(N)
x ◦ π−1

[0,M ] is a probability measure on D([0,M ];G).
In the following, for x ∈ G, assume {xN} is a sequence satisfying xN ∈ GN ,

N = 1, 2, · · ·, and lim
N→∞

xN = x.

Proposition 3.3. {P (N)
xN ,M}, N = 1, 2, · · · , is tight for any M > 0. If Px,M is

the weak limit of a subsequence {P (N ′)
xN′ ,M}, then

Px,M [ C([0,M ];G) ] = 1 .

Proof. To prove this proposition, it is sufficient to prove the following [4],
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(1) For any η > 0 , there exists an a > 0, such that

P
(N)
xN ,M [ |w(0)| > a ] ≤ η ,

for all N = 1, 2, · · ·.
(2) For any ε > 0 and η > 0 , there exists a δ > 0 and N ′ ∈ Z such that

P
(N)
xN ,M [ sup

|s−t|<δ

|w(s) − w(t)| ≥ ε ] ≤ η,

for N ≥ N ′.

(1) is obvious. We prove (2) by using (3.1) and the fact that for any k and η,
there exist a δ and an N1 such that

P (N)
xN

[ Wk,i(w) < δ ] < η ,

for all i ∈ Z+, N > N1 and x ∈ G. Since it goes in a similar way to the proof
of Proposition 5.4 in [6], we omit the rest of the proof here. �

In the following part of this section, let m ∈ N and assume h : Gm −→ C
is an arbitrary bounded Lipschitz continuous function. The assumption implies
that there are positive constants A and H such that

|h(x1, · · · , xm) − h(y1, · · · , ym)| ≤ A max
1≤i≤m

|xi − yi|,

|h(x1, · · · , xm)| ≤ H,

for (x1, · · · , xm), (y1, · · · , ym) ∈ Gm. Assume also ti ∈ [0,∞], i = 1, · · · ,m,
t1 ≤ t2 ≤ · · · ≤ tm.

Lemma 3.4. For any ε > 0 , there exists integers k and N0 with k < N0 such
that

|E(N)
xN

[ h(w(t1), · · · , w(tm)) ]

−
∑

y∈Gk

P (N)
xN

[ w(T k
0 ) = y ]E(N)

y [ h(w(t1), · · · , w(tm)) ]|

< ε ,

for all x ∈ G and N ≥ N0.

Proof. For an arbitrary ε > 0, let k0 be an integer satisfying

3 · 2−k0A <
ε

3
.(3.7)
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Let ε1 be a positive number satisfying,

ε1 < t1,

Qk0,I [{s|s < ε1}] < ε

6mH
, I = 1, · · · , 4 .

(3.1) implies there exists an integer N1 such that

Q
(N)
k0,I [{s|s < ε1}] < ε

3mH
, I = 1, · · · , 4 ,(3.8)

for N ≥ N1 . Proposition 3.1 (1) together with Chebyshev’s inequality implies
that there exist integers k and N2 > max(N1, k) such that

P (N)
xN

[ Tk,0 > ε1 | w(Tk,0) = y ] <
ε

6H
,(3.9)

for any y ∈ Gk satisfying |xN −y| < 2−k, and N ≥ N2. From the strong Markov
property of the random walks {ZN}, we have

E(N)
xN

[ h(w(t1), · · · , w(tm)) ]

= E(N)
xN

[ h(w(t1), · · · , w(tm)), Tk,0 ≤ ε1 ]

+ E(N)
xN

[ h(w(t1), · · · , w(tm)), Tk,0 > ε1 ]

=
∑

y∈Gk

P (N)
xN

[ w(Tk,0) = y ]P (N)
xN

[ Tk,0 < ε1 | w(Tk,0) = y ]

× E(N)
xN

[ E(N)
y [ h(w′(t1 − Tk,0(w)), · · · , w′(tm − Tk,0(w))) ] |

Tk,0 < ε1, w(Tk,0) = y ]

+ E(N)
xN

[ h(w(t1), · · · , w(tm)), Tk,0 > ε1 ] ,

where the expectation E
(N)
xN is taken over w and E

(N)
y is taken over w′. Thus

from (3.9), we have

|E(N)
xN

[ h(w(t1), · · · , w(tm)) ](3.10)

−
∑

y∈Gk

P (N)
xN

[ w(Tk,0) = y ]

× E(N)
xN

[ E(N)
y [ h(w′(t1 − Tk,0(w)), · · · , w′(tm − Tk,0(w))) ] |

Tk,0 < ε1, w(Tk,0) = y ]|
<

ε

3
,

for N ≥ N2. For positive constants ηj < ε1, j = 1, · · · ,m, and for w′ ∈ D,
define

rj
def= min{i ∈ Z+ | Tk0,i(w′) ≥ tj − ηj},
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and
W ∗j

def= Tk0,rj+1(w′) − Tk0,rj (w
′), j = 1, · · · ,m.

From (3.8), it follows

P (N)
y [ |w′(tj) − w′(tj − ηj)| > 3 · 2−k0 for some j, j = 1, · · · ,m ](3.11)

≤ P (N)
y [ W ∗j (w′) < ε1 for some j, j = 1, · · · ,m ]

≤ ε

3H
.

This inequality combined with (3.7) implies that for w with Tk,0(w) ≤ ε1,

|E(N)
y [ h(w′(t1 − Tk,0(w)), · · · , w′(tm − Tk,0(w))) ](3.12)

− E(N)
y [ h(w′(t1), · · · , w′(tm)) ]|

<
2ε
3
.

Noting that E(N)
y [ h(w′(t1), · · · , w′(tm)) ] no longer involves w, and combining

(3.10) and (3.12), we have the statement. �

Proposition 3.5. (1) For any n ∈ Z+, the sequence

E(N)
x [ h(w(t1), · · · , w(tm)) ] , N = n, n+ 1, · · · ,

converges as N → ∞ uniformly in x ∈ Gn.

(2) For x ∈ G and {xN} converging to x, E(N)
xN [ h(w(t1), · · · , w(tm)) ] con-

verges as N → ∞ and the limit is independent of the choice of {xN}.
Furthermore, if {xN} satisfies |xN − x| < 2−N , the convergence is uni-
form in x ∈ G.

Proof. First we will prove (1). For any ε > 0, choose k ∈ Z+, k > n, satisfying

2−kA <
ε

6
.(3.13)

From the strong Markov property of {ZN} and from (3.1), it is possible to
choose positive integers L and N1, independent of x ∈ Gn, such that

P (N)
x [ Tk,L(w) < tm ] <

ε

6H
(3.14)

for N > N1. For (x1, · · · , xL) ∈ (Gk)L and (�1, · · · , �m) ∈ {0, · · · , L}m, define a
subset of D,

B({xi}, {�j})
def= {w ∈ D | w(Tk,i) = xi, i = 1, · · · , L, Tk,�j ≤ tj < Tk,�j+1 , j = 1, · · · ,m}.
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We have,

|E(N)
x [ h(w(t1), · · · , w(tm)) ] − E(N ′)

x [ h(w(t1), · · · , w(tm)) ]|
≤ |E(N)

x [ h(w(t1), · · · , w(tm)), Tk,L(w) > tm ]

− E(N ′)
x [ h(w(t1), · · · , w(tm)), Tk,L(w) > tm ]|

+
ε

3
≤ |

∑
E(N)

x [ h(w(t1), · · · , w(tm)) | B({xi}, {�j}) ]P (N)
x [ B({xi}, {�j}) ]

−
∑

E(N ′)
x [ h(w(t1), · · · , w(tm)) | B({xi}, {�j}) ]P (N ′)

x [ B({xi}, {�j}) ]|
+
ε

3
≤ |

∑
h(x�1 , · · · , x�m)(P (N)

x [ B({xi}, {�j}) ] − P (N ′)
x [ B({xi}, {�j}) ])|

+
2ε
3

≤ H
∑

P (N)
x [ w(Tk,i(w)) = xi, 1 ≤ i ≤ L ]

× |P (N)
x [ Tk,�j ≤ tj ≤ Tk,�j+1 , 1 ≤ j ≤ m | w(Tk,i(w)) = xi, 1 ≤ i ≤ L ]

− P (N ′)
x [ Tk,�j ≤ tj ≤ Tk,�j+1 , 1 ≤ j ≤ m | w(Tk,i(w)) = xi, 1 ≤ i ≤ L ]|

+
2ε
3

≤ ε,

for large enough N and N ′, where the summation is taken over (x1, · · · , xL) ∈
(Gk)L and (�1, · · · , �m) ∈ {0, · · · , L}m, �1 ≤ �2 ≤ · · · ≤ �m. We used (3.13),
(3.14) and the fact that

P (N)
x [ w(Tk,i) = xi, i = 1, · · · , L ] = P (N ′)

x [ w(Tk,i) = xi, i = 1, · · · , L ]

for N,N ′ ≥ k. The last inequality comes from Theorem 2.8. Note that
there are only finite kind of the factors P (N)

x [ Tk,�j ≤ tj ≤ Tk,�j+1 , 1 ≤ j ≤
m | w(Tk,i(w)) = xi, 1 ≤ i ≤ L ] because of the local translational invariance,
and they converge as N → ∞.

To prove the assertion (2), note first that by Lemma 3.4 we can take k and
N0, such that

|E(N)
xN

[ h(w(t1), · · · , w(tm)) ]

−
∑

y∈Gk

P (N)
xN

[ w(T k
0 ) = y ]E(N)

y [ h(w(t1), · · · , w(tm)) ]|

<
ε

6
, N ≥ N0 .

Next choose N ′1 and N1 such that 2ρN ′
1−k−1 <

ε

3
and |xN − x′N | < 2−N ′

1 for

N > N1 and N ′ > N1, where ρ is as in Proposition 3.2. From these and the
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decimation covariance of {ZN}, we have,

|P (N)
xN

[ w(T k
0 ) = y ] − P

(N ′)
x′

N
[ w(T k

0 ) = y ]| < ε

3
,

for N,N ′ > N1. The assertion (1) implies that we can take N2 such that

|E(N)
y [ h(w(t1), · · · , w(tm)) ] − E(N ′)

y [ h(w(t1), · · · , w(tm)) ]| < ε

3
,

for all y ∈ Gk and N,N ′ > N2. Combining these together, we have

|E(N)
xN

[ h(w(t1), · · · , w(tm)) ] − E(N ′)
xN′ [ h(w(t1), · · · , w(tm)) ]|

≤ |
∑

y∈Gk

(
P (N)

xN
[ w(T k

0 ) = y ]E(N)
y [ h(w(t1), · · · , w(tm)) ]

− P (N ′)
xN′ [ w(T k

0 ) = y ]E(N ′)
y [ h(w(t1), · · · , w(tm)) ]

)
| + ε

3
< ε,

for N,N ′ ≥ max{N0, N1, N2}. If {xN} satisfies |xN − x| < 2−N , then we can
take N1 = N ′1 + 1, from which the uniformity of convergence follows. �

We denote the limit in Proposition 3.5 as Ex[h(w(t1), · · · , w(tm))]. The uni-
formity in convergence stated in Proposition 3.5 leads to the following Proposi-
tion.

Proposition 3.6. Ex[h(w(t1), · · · , w(tm))] is continuous in x ∈ G.

Proposition 3.7. If xN ∈ GN , N = 1, 2, · · ·, x ∈ G and xN → x as N →
∞, then P

(N)
xN converges weakly as N → ∞ to a probability measure Px on

D([0,∞);G) concentrated on C([0,∞);G).

Proof. Take

h(x1, · · · , xm) = exp(
√−1

m∑
j=1

sjxj) , (s1, · · · , sm) ∈ Rm, m = 1, 2, · · · .

The convergence of E(N)
xN [ h(w(t1), · · · , w(tm)) ] as N → ∞ together with Propo-

sition 3.3 leads to the weak convergence of {P (N)
xN ,M}, for all M > 0, with the

limit measure concentrated on C([0,M ];G), and thus P (N)
xN converges weakly as

N → ∞ to a probability measure Px, with Px[ C([0,∞);G) ] = 1. �

Proposition 3.7 implies that Ex[h(w(t1), · · · , w(tm))] actually is the expec-
tation of h(w(t1), · · · , w(tm)) under Px.
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Proposition 3.8. {Px; x ∈ G} is a Feller process.

Proof. First we show the Markov property. Let f : G→ C be another bounded
Lipschitz continuous function with |f(x)− f(y)| ≤ B|x− y| and |f(x)| ≤ F for
all x ∈ G and y ∈ G. From the Markov property of the random walks {ZN},
we have

E(N)
xN

[ h(w(t1), · · · , w(tm)) f(w(tm+1 + s)) ](3.15)

= E(N)
xN

[ h(w(t1), · · · , w(tm))E(N)
w(tm+1)[ f(w′(s)) ] ] .

Using and Proposition 3.7, we see that the left-hand side converges as N → ∞
to

Ex[h(w(t1), · · · , w(tm)) f(w(tm+1 + s))] .

The convergence of the right-hand side to

Ex[ h(w(t1), · · · , w(tm))Ew(tm+1)[f(w′(s))] ]

is obtained from Proposition 3.5, Proposition 3.6, and Proposition 3.7. The
Feller property comes from Proposition 3.6. �

Proposition 3.9. {Px; x ∈ G} is a µ-symmetric process, i.e.∫
(Ttf)(x)g(x) dµ(x) =

∫
f(x)(Ttg)(x)dµ(x)

for any continuous functions f and g with compact support. Here, µ and Tt are
as in Theorem 1.2.

Proof. It is sufficient to assume that f and g are Lipfschitz continuous. From the
symmetry of the random walk ZN with respect to µN (see the remarks after the
proof of Proposition A.1), we have, for any t ≥ 0,∫

E(N)
x [ f(w(t)) ]g(x) dµN (x) =

∫
f(x)E(N)

x [ g(w(t)) ] dµN (x) .(3.16)

Let x ∈ G, and for each N ∈ Z+, let xN be the nearest vertex of GN . Then
Proposition 3.5 implies

(Ttf)(x)g(x) = lim
N→∞

E(N)
xN

[ f(w(t)) ]g(xN )

uniformly in x. This with Proposition 3.6 and Proposition A.2 implies that
(3.16) converges to the equation in the statement. �

Appendix
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A Random walks and Haussdorff measures.

We first prove (Proposition A.1) that the ‘local translational invariance’ and
the symmetry characterizes the set of transition probabilities which we consider.
Then we show (Proposition A.2) that the Hausdorff measure µ of Theorem 1.2
is compatible with our choice of ZN .

Both of the proofs are easily seen to apply to any abc-gaskets, but for nota-
tional simplicity we will stick to the Sierpinski gasket.

Fix N ∈ Z and consider a pre-Sierpinski gasket FN . Let x ∈ GN , and let

E : (x1, x2) ∈ R2 → E (x1, x2) = (x1 + a, x2 + b) ∈ R2

be a translation operator in Euclid x1-x2 plane. We call E a local translation
of FN at x if the following holds:

(1) E x ∈ GN ,

(2) E y is an N -neighbor of E x if and only if y is an N -neighbor of x.

We prove the following.

Proposition A.1. Let

px,y = Prob[ Z(�+ 1) = y | Z(�) = x ] , x ∈ GN , y ∈ GN ,

be a transition probability of a random walk Z on GN . Suppose it satisfies the
following:

(1) (Walk on FN .) px,y = 0 if x and y are not N -neighbor points.

(2) (Symmetric process.) There exists a measure µ on GN such that µ {x} >
0 , x ∈ GN , and

µ {x} px,y = µ {y} py,x , x ∈ GN , y ∈ GN .

(3) (Local translational invariance.) For all x ∈ GN and for all local trans-
lation E of FN at x, we have µ {x} = µ {E x} and pEx,Ey = px,y , where
y ∈ GN is any N -neighbor point of x.

Then the transition probability is in the class considered in Section 1; namely,
there exists α = (α1, α2, α3) ∈ R3

+ \ (0, 0, 0) , such that pxy’s at x ∈ GN is
non-zero only if y is an N -neighbor of x, and is proportional to:

(1) α1, if −→xy is parallel to x1-axis,

(2) α2, if −→xy is in 60◦ or −120◦ direction,

(3) α3, if −→xy is in 120◦ or −60◦ direction.
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Proof. There are three types of points in GN with respect to its neighbor struc-
ture:

(1) There are two horizontal edges of FN attached to the point,

(2) there are two edges in 60◦ directions,

(3) there are two edges in −60◦ directions.

From the local translational invariance, the set {pxy | y ∈ GN} depends only on
the type of the point x. Denote the transition probabilities from the type 1
point to its four neighbors by p1→, p1↗, p1↖, and p1←, with obvious meaning
of notations. Likewise we define p2↙, p2↘, p2→, p2↗, p3↖, p3←, p3↙, p3↘. Also
denote by µa the measure µ {x} of the point x of type a , a = 1, 2, 3.

Let x = (0, 0) ∈ GN and y = (2−N , 0) ∈ GN . Then x and y are type 1 points
and N -neighbors. From symmetry property we have p1→ = p1←. Considering
other pairs of N -neighbor points, one finds another eleven similar relations, from
which it is easy to conclude p2↙ = p2↗ and p3↘ = p3↖ , and eventually,

α1
def= µ1 p1→ = µ2 p2→ = µ3 p3← ,

α2
def= µ1 p1↗ = µ2 p2↗ = µ3 p3↙ ,

α3
def= µ1 p1↖ = µ2 p2↘ = µ3 p3↘ .

Then

p1→ : p1↗ : p1↖ = p2→ : p2↗ : p2↘ = p3← : p3↙ : p3↘ = α1 : α2 : α3 ,

together with

µ1 : µ2 : µ3 = 2α1 + α2 + α3 : α1 + 2α2 + α3 : α1 + α2 + 2α3 .

�

From the above proof it is clear that the random walk ZN defined in Section 1
is symmetric with respect to a measure µN on GN defined by,∫

GN

f dµN = 2−13−N
∑

x∈GN

rN (x)f(x) ,

where the weight rN (x) is

(1) 2αN,1 + αN,2 + αN,3, if x is of type 1,

(2) αN,1 + 2αN,2 + αN,3, if x is of type 2,

(3) αN,1 + αN,2 + 2αN,3, if x is of type 3.
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The following shows that µ of Theorem 1.2 is compatible with our choice of ZN .

Proposition A.2. µN converges as N → ∞ to µ of Theorem 1.2 in vague
topology, namely, for every continuous function f supported on a compact set

of G, lim
N→∞

∫
f dµN =

∫
f dµ . (The function f on left hand side is meant to

be restricted on GN .)

Proof. Consider a subset of G lying inside or on the boundary of an upright
triangle of side length 2−N in FN . The measure µ obviously has a property that
the µ-measure of this subset is 3−N [3, Lemma 1.1]. Distribute this mass to the
three vertices of the triangle in such a way that the down-left vertex has mass
2−13−NαN,1 + αN,2 , and the down-right vertex has mass 2−13−NαN,3 + αN,1 ,
and the top vertex has mass 2−13−NαN,2 +αN,3 . Since αN,1 +αN,2 +αN,3 = 1
the total mass is unchanged. This replacement reproduces the measure µN

(embedded in G.) The replacement was moving weights by length of 2−N .
Since the total mass of a compact subset of G is finite, we have the statement.
�
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