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Abstract

We study self-avoiding paths on the three-dimensional pre-Sierpinski
gasket. We prove the existence of the limit distribution of the scaled
path length, the exponent for the mean square displacement, and the
continuum limit. We also prove that the continuum-limit process is a
self-avoiding process on the three-dimensional Sierpinski gasket, and that
a path almost surely has infinitely fine creases.

1 Introduction

The three-dimensional pre-Sierpinski gasket is a pre-fractal which we intro-
duce as a three-dimensional analog of the pre-Sierpinski gasket. Let O =
(0,0,0), ap = (3, ?, @), bo = (3, @,0), co = (1,0,0), and let Fy be the set of
vertices and edges of the tetrahedron Oagbgcy. We define a sequence of graphs
Fy, Iy, Fs, ..., inductively by

Fn+1:FTLU(Fn+2na0)U(Fn+2nb0)U(Fn+2nco)a n:05172a"'7

where, A+a={z+a|lzec A}, and kA= {kz|z € A}. Wecall F = U F,

n=0
the three-dimensional pre-Sierpinski gasket. We denote the set of vertices in F'
by G, and put a,, = 2"ag, b, = 2"bg, ¢, = 2" ¢p.
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Let Z, ={0,1,2,...} and define the set of self-avoiding paths Wy on G to
be the set of mappings w : Z, — G such that there exists L(w) € Z4 U {o0}
for which

w(i) = w(L(w)), iz L{w),
’LU(Zl) 75’11}(7;2)7 0<141 <19 SL(’LU)7
lw(@) —w(i+1)| =1, 0<i<L(w)—1, and
w(i)w(i+1) C F, 0<i<L(w)-1.

We call L(w) the length of the path w.

In previous papers [2, 3, 4], we studied the self-avoiding paths on the (two-
dimensional) Sierpinski gasket. Here, we study the self-avoiding paths on the
three-dimensional Sierpinski gasket. In the case of the two-dimensional Sierpin-
ski gasket, a self-avoiding path is allowed to pass through a unit triangle at most
once, while in the case of the three-dimensional Sierpinski gasket, it is allowed
to pass through a unit tetrahedron more than once. One might suspect that this
fact affects properties that enabled the detailed analyses in the two-dimensional
case. We will show in this paper that despite such complexties, we can carry on
our analyses in the three-dimensional case.

Define W*(") ¢ Wy by

W = {w e Wy | w(0) =0, w(L(w)) =a,, w(Zi) C F,},

and let
ZyB)= > exp(-BL(w)), BER, ne€Zy.

weW*(n)

In Section 3 we prove the following.

Theorem 1.1. There exists a constant (. such that

Jim Z3(8)=0, B>p,
Jim Z3(8) = o0, B<fe,

This theorem suggests that in terms of statistical mechanics, 5 > 3. is the
low temperature regime, 3 < (. is the high temperature regime, and . is the
critical point.

The asymptotic behavior of the partition function Z is related to the asymp-
totic distribution of the path length L. In fact, in Section 4 we prove the fol-
lowing. Let ¥ be a probability measure on W*(™ defined by

i w] = Z5(8.) 7t exp(—BeL(w)), we W*™.



Theorem 1.2. There exists a constant A satisfying 2 < A < 3 such that the
distribution of ‘scaled path length’ \™"L under u} converges to a probability
measure p* on R as n — oo. The measure p* has a C* density p, which
satisfies p(x) =0, © <0, and p(z) >0, x> 0.

Numerically, A = 2.7965 ..., to be compared with the corresponding con-

~ V5

7
stant Agq, for the (two-dimensional) Sierpinski gasket, Asq, = = 2.381966 ... .

In Section 5, we study the continuum limit construction of self-avoiding
process. _
Let F,, = 27"F,, n = 0,1,2,..., and define the finite three-dimensional

oo

Sierpinski gasket F by F= U F,.Fisa graph obtained by giving a substruc-
n=0

ture to a unit tetrahedron Oagbgcy. Let

C ={we C([0,00) = F)| w(0) =0, tlim w(t) =ap}.
C' is a complete separable metric space with the metric

d(u,v) = sup |u(t) —o(t)], u,veC.
te[0,00)

Define v : UW*(") — C as follows: For u € W*"™ | qu(j) = 27"u(j) for

j€Zy,andfort € Z, , u(t) is defined by linear interpolation. Also define time-
scale transformation U,(A\) : C — C, n € N, by (U,(Mw)(t) = w(A™t), w €
C.

Denote by P, the image measure of p induced by U, () o .

Theorem 1.3. P,, converges to a probability measure P on C' weakly as n —
00. The stochastic process defined by P is almost surely self-avoiding, and the
Hausdorff dimension of the trajectory, {w(t)| 0 < t < oo}, is almost surely
greater than one.

See Theorem 5.5, Theorem 5.15, and Theorem 5.16 in Section 5 for the proof.

Since P,, is supported on piecewise linear curves, the Hausdorff dimension of
a curve is almost surely 1 with respect to P, . The statement on the Hausdorff
dimension in Theorem 1.3 implies that the continuum limit n — oo, is a non-
trivial limit, and that with P-probability one, we have self-avoiding paths with
infinitely fine creases.

The two ingredients for the proof of the results are the convergence of the
distribution of crossing times of tetrahedrons, obtained from the results in Sec-
tion 4, and the considerations about the distribution of the shape of the paths.
See Proposition 5.2 for more properties on the crossing time distributions, and
Theorem 5.11 and Proposition 5.14 for more on the distribution of the shape of
the paths.



In Section 6 we consider a set of paths on the pre-Sierpinski gasket with
a fixed length, instead of paths with fixed end points. Let W = {w €
Wy | w(0) = O}, and for each k € Z, , let N(k) be the number of elements
in {w e WO | L(w) = k}. Let P, k € Z , be probability mesures on W)
defined by,

Py(A)=Nk) we A| L(w) =k}, Acw,

For w € WO let ||w|| = max{|w(k)|; k = 1,2,...,L(w)}, where | - | is the
(Euclidean) length in R3. Put x = log A\/log 2, where \ is as in Theorem 1.2.

Theorem 1.4. (1) klim k™t log N(k) = f..
(2) There exists a positive constant « such that

klim Pyl ||wl|| < (logk)=*kY* or |Jw]|| > (logk)*k'/*] exp((logk)?) =0.

(3)
lim (log k)" log EP(lw(k)*] =5, s € R.

This theorem says that the exponent for the mean square displacemlent of
og?2
log A~

The starting point for the analyses in this paper is the study of renormal-
ization group, which is a dynamical system in a certain parameter space which
specifies the path ensemble. Such dynamical system is derived as the response
in the parameter space to the change in n. In Section 2, we study the behaviors
of this dynamical system. A certain graphical property of the three-dimensional
Sierpinski gasket implies that the renormalization group is a finite dimensional
dynamical system. (We prefer to call this property the finite ramification of the
fractal.)

self-avoiding random walk on the three-dimensional Sierpinski gasket is

We would like to mention some previous works in the physics literature. The
two-dimensional mapping defined by eq. (2.3) and eq. (2.4) in Proposition 2.1
is given in [1, 7]. In [1], a set of self-avoiding paths on a slightly different fractal
is considered, where this mapping is an exact renormalization group recursion
relation. In [7], self-avoiding paths on the three-dimensional Sierpinski gasket
is studied, where the authors state (without explicit discussion or proof,) that
the same mapping becomes ‘relevant’ (i.e. determines the asymptotic behavior)
of the present problem. Numerical estimates of the fixed point ((z.,y.) in
Proposition 3.1) and the derivative (p, ¢, and r in Proposition 3.7) of this
mapping together with the exponent for mean square displacement are also
given in these references. However, their results are based on the assumption
(based on numerical studies) of the existence of these quantities and the good



limiting behaviors. We believe that this is the first time to give mathematically
rigorous proofs. A well-defined statement on the exponent (Theorem 1.4) seems
also to have been lacking. We also believe that the limit theorems for path
length distribution (Theorem 1.2) and the continuum limit (Theorem 1.3) are
new.

We would also like to take this opportunity to note that the reference [1]
should also have been included in the reference of [3].

We would like to thank Professor N. Asano and Professor H. Nakajima for
bringing our attention to the references on dynamical systems.

2 Recursion relations for the generating func-
tions

Let T denote the set of subgraphs in F' which are the translations of Fy. T is
a set of the unit tetrahedrons that compose F. For each w € Wy, let w C F
be the curve defined by joining each pair of points w(i) and w(i + 1) with an
edge of F, for all i = 0,1,2,---, L(w) — 1. For each tetrahedron A € T, the
intersection w N A is either empty or one of the following four possibilities:
case 1) one edge, case 2) two disjoint edges, case 3) two edges connected at a
vertex, and case 4) three edges that constitute a chain. Correspondingly, define
Si(w), i =1,2,3,4, w € Wy, as: Si(w) = {A € T| wN A isof case i).}. For
each i = 1,2,3,4, let s;(w) be the number of the elements of S;(w). Note that
Ss1+ 289 4+ 2583 + 3s4 = L.
Forne€Z, andp € G, q € G, define WP9) c W, by

WP = Loy € Wy | w(0) = p, w(L(w)) = q, w(Zy) C Fy},

and let WZ—("), i=1,2,3,4,n € Z4, be as follows:

W = {we WO | w(Zy) N {ba,en} = 03,

W2(n) — {(/Z,U17w2) e W(n,O,an) X W(’I’L,bn,Cn) ‘ wl(z+) m w2(Z+) = @}’
Wi = {we WO | w(Zy) 0 {by, en} = {ba}},

Wi”) = {we W (.05an) | there exist two positive integers ¢ and j

such that ¢ < j, w(i) =b,, and w(j) = ¢, },
For a subset W of Wy, let X (W) be the generating function for W defined
by
4
1) xW@ =Y [[«" 7= (@000 cCh
weW i=1

To extend the definition of s; to W2(n), note that if w = (w',w") € W2(n) and
AeT, (@ Uw”)NA is either empty or one of the four possibilities mentioned



above. Therefore, the definition of S;(w) given above has a natural extension to

we W™, si(w), we Wi, is again defined to be the number of the elements
Let X, (%) = X(W\")(&), i =1,2,3,4.

Proposition 2.1. The following recursion relation holds:

—

(2.2) X1 (@) =X, (2), neZy,

where X, (2) = (X10(Z), Xon(Z), X3.0(2), Xan(Z)), and Xo(Z) = 7. & =
(P, Dy, @3, Dy) satisfies the following:

(1) FEach function ®;, i =1,2,3,4, is a polynomial of degree 4 in 4 variables
with positive coefficients. FEach term in ®;,1 = 1,2,3,4, is at least of
degree 2, 4, 3, 4, respectively.

(2) Let Zg = {meR4|xz>O 1=1,2,3,4, xlzxg}a dZ={f e R*|z; >

0,i=1,2,3,4, 22 > z2}. Then <I>(H0) 2y and B(E) C B.

(3)

(2.3) ¢y (z,9,0,0) = 22 4 223 + 22* + 423y + 622>
(2.4) s (z,9,0,0) = 2t + 4ady + 22y%.

(4) There exist polynomials @41, a2, and Pz, with positive coeffients, sat-
isfying the following:
(2.5) Py (T) = Py 1 (D)3 + Pyo(T)wa,
(2.6) D3(7) = 2(Pu1 (T)a1 + 5Pu2(T)a3) + P30(7).

Moreover, ®3 (%) has terms z3zs + 22323.

(5) There exist polynomials @31, P32, and P o, with positive coeffients, sat-
isfying the following:

(27) 0] (ﬂ) = ‘1)3 1( )333 +‘I’3 2( )$4,
(28) (b ( ) @3 1( ).231+ q’g 2( )333—0—‘1)170(3?).

Moreover, ®1 (%) has terms z%, 23, and z3.

(6) ©1(Z) has terms .’El.’Eg and w124, ®2(T) has terms xixs and x3zy, and

®4(Z) has a term x3x3 . Furthermore, all the terms in ®4(F) are at least
of degree 2 in x3 and x4 .









Proof. The methods of obtaining the recursion relations eq. (2.2) are quite
similar to the case of the (two-dimensional) Sierpinski gasket[3], so that the
explanations will be brief. Note that F;,41 is composed of 4 tetrahedrons f k, k=
1,2, 3,4, say, each congruent to F,,. These 4 tetrahedrons assemble to form F, 41,
in the same way as 4 unit tetrahedrons, congruent to Fy, assemble to form F.
This similarity of the composition leads to a natural mapping 7 : Wi(”ﬂ) —
Wi(l). For each k = 1,2, 3,4, and for each w € Wi(”ﬂ), consider the intersection

4
wh f¥Nw(Z,). Under the identification of f* and F,, w* € U Wj("). If
=1
one classifies the summation of w in eq. (2.1) for X, ,,11(Z) by 7r(ujz)7 one finds
that eq. (2.2) holds with ® = X;. Sincce there are 4 unit tetrahedrons in Fy,
®,(¥) = X;1(%), 7 = 1,2,3,4, are polynomials of degree 4. Since w € Wl(l)
passes O and a1, each term in @4 (%) = X1,1(%) is at least of degree 2. Similar
arguments hold for ®;(%), ¢ = 2, 3,4, by which the assertion (1) is proved.
Let ¥ € 2 (¥ € Ty, respectively). From the assertion (1) it is clear that
B, (&) > 0 (;(Z) > 0, respectively). Let & = B(Z).

2 —
l‘ll = X171(.13)2

_ Z Z ﬁxsl (w")+si(w')

w’EWl(l) w”EWl(l) i=1

=D ﬁ adr (WD)

wew D i=1
— /
> Xo1(%) =3,

where the last inequality comes from 2% > 2. Therefore the assertion (2) holds.

The two formulas eq. (2.3) and eq. (2.4) are obtained through the explicit
calculations of q;(x,y, 0,0) = Xl(x, ¥,0,0). An example of the paths w € Wl(l)
which contribute to the z2y? term in ®;(z,y,0,0) = X1 1(z,y,0,0) is given in
Figure 1(a) (the slim lines in the figure represent F; = Oayby1c1 projected onto
the Oa1by plane, and w is represented by the bold lines), and a path w € Wz(l)
for the y* term in ®2(z,y,0,0) = X2.1(x,y,0,0) is given in Figure 1(b).

Denote by A, the tetrahedron Fy + cg, which is the unit tetrahedron in Fj
that has ¢; as one of its vertices. To obtain eq. (2.5), classify the summation
over w in eq. (2.1) for ®4(¥) = X(Wf))(f) by the shape of the intersection
w(Z4) N Ac. Only case 3) or case 4) is possible for the intersection, which gives
the contribution of factor 3 or x4 to each term in ®4(Z), respectively, which in
turn gives contribution of the first and the second term in the right hand side
of eq. (2.5), respectively.

Consider now the relation between ®4 and ®3. Denote the four vertices of A,
by p, q,r,c1. Note that the paths contributing to ®4(#) = X4 1(Z) must pass the



vertex c¢;. One can obtain a path contributing to ®3 from such a path, by short
cutting ¢; such as (...,p,q,...) instead of (..., p,c1,q,...). Denote the mapping
induced by such operation by p : W4(1) — Wg(l). For the paths contibuting to
Dy o(T)xa in Py(¥), p is a two-to-one mapping, since p((...,p,c1,7,q,...)) =
(...,p,7yq,...) and p((...,p,7,¢1,4,...)) = (...,p,7,q,...). Therefore such
paths, mapped by p, give contribution of %@4’2(:?);53 to ®3(&). Similarly, the
paths contributing to ®41(Z)xs are mapped one-to-one onto the paths con-
tributing to the term ®41(Z)z1 in P3(&). Let

W’Eln) = {w e W) | there exist two positive integers i and j
such that ¢ < j, w(i) = ¢,, and w(j) = b, }.

Then it is easy to see that Wg(l) D p(W’fll)) and p(W4(1)) N p(W’fll)) = (. The
paths in p(W’S)) give the same contribution to ®3(Z) as the paths in p(W4(1)).
Hence the factor 2 in the right hand side of eq. (2.6). There are paths w € Wg(l)

which are not in the image of p, namely, those paths that do not pass through
Ac. Such contribution are denoted by ®30(Z). In particular, there is a path

in Wg(l) which starts at O, moves in a straight line to b;, and then moves in
a straight line to a1, which gives a contribution zfzs to ®30(Z). This proves
eq. (2.6). The formulas eq. (2.7) and eq. (2.8) are derived by similar arguments.
The assertion (6) is straightforward. This completes the proof. O

Remark. By aid of computers, it is not difficult to obtain the full forms of the
recursion relations ®. The full explicit forms of ® are given in Appendix A.
They are, howerver, unnecessary for the analyses of the limit n — oo in this

paper.

Let Zo be as defined in Proposition 2.1 (2). For A € Z, let A be the closure
of Ain 5p, A°=Ep\ A, 0A=ANAc, and A° = A\ OA. Let

D = {Ze€Zy| sup (X1,(Z)+ X2,,(F)) < oo},
neZy
D' = {Ze€Z)| max sup X;,(Z) <1},

i€{1,234}nez,

)
|

reZy| li X n(Z) =0}
{7e 0|nggoie{rﬁg,}§,4} on(@) =0}

Proposition 2.2. (1) D = D’. In particular, D is a closed set in =.

(2) Let £ € D and &' € Zy. If x, < a; for all i with z; >0, and x, = 0 for all
1 with x; =0, then 2’ € D.

(3) D= De.



(4)
(2.9) $(D°) c D°,  ®(@OD) C D, and B(D°) C D-.

Proof. Note that by Proposition 2.1 (5) and eq. (2.2), X1 n41(Z) > X1771(9?)27
Xini1 (@) > Xgn(*)% and X1 ,11(Z) > Xu.(Z)° hold. Also by eq. (2.4),
Xoni1(Z) > Xon(Z)" follows. Therefore, if Z € D'°, then lim X;,(Z) =
oo or lim X5, (%) = oo hold, which proves that D' C D¢. By definition,

D’ C D, hence D' = D. Since by definition D’ is a closed set in Zp, D is a
closed set in =g.

Let ¥ € D, ﬂeEo,andx4<xiforallz’withxi>0 and z} = 0 for all 4
!

with z; = 0. If 2/ = 0, then #/ € D. Assume z/ £ 0. Put r = ma;co%. By

assumption, 0 < r < 1, and 0 < 2} < ra;, i = 1,2, 3,4. By Proposition 2.1 (1),

®,;(2') < r?2®,(Z), i = 1,2,3,4, hence by induction X; (&) < 72" X, , (), and

0 < limsup max X; (@) < (lim 7"2”) sup max X;,(Z) = 0, which
n—oo i€{1,2,3,4} n—00 nez,ie{1,2,3,4}

proves the assertion (2).

For e > 0, define D, by D, = {Z € 29| max z; < €¢}. By Proposi-
i€{1,2,3,4}

tion 2.1 (1) there exists a positive constant M such that if 0 < ¢ < 1 and & € D,
then ®;(Z) < Me (v1 + x2 + @3 +24)/4, i € {1,2,3,4} . Put e = min{517, 3}
Then for all Z € D, and for all i, ®;(Z¥) < €/2 holds, which further implies
q)( £) € D, and ®1(Z) + P2(Z) + P3(Z) + P4(Z) < (a4 +x2+x3+x4)/2. By
induction, X1 (%) + X2 n(Z) + X330 (%) + Xan(Z) < 27"(x1 + x2 + 23 + 24).
Hence, there exists a positive constant € such that

(2.10) D.c D.

Fix such an € and let 7 € D. By definition, there exists a positive integer n
such that X,,(Z) € D, holds. Since X,,(Z) is continuous Wlth respect to &, there
exists an open set U in Zy such that for all / € U, X, (x ) € D, holds. Then

by eq. (2.10), lim {r{lgug 4}XZ »(Z) = 0. Therefore, U C D. This proves that
n—o0 i€

D is an open set in Zy. By deﬁnition,ND C D and also D° is the largest open
set that is included in D. Therefore, D C D°.

Now let 2/ € D°. Since D° is an open set in Ho, there exists a ¥ € D such
that @} < z;, i = 1,2, 3,4. From the assertion (2), 2’ € D. Hence, D° C D, and
the assertion (3) is proved.

By definition, ®(D) ¢ D, ®(D°) C D, and ®(D) C D. From the asser-
tion (3), the assertion (4) follows. This completes the proof. a

Monotonicity properties similar to but slightly different from the Proposi-
tion 2.2 (2) hold, which shall be listed here.



Proposition 2.3. (1) If ¥ € D, 7 € Eo, and =, < m;, i = 1,2,3,4, then
2 e D.

(2) If € 0D, o € By, and x, > x;, i = 1,2,3,4, then 2/ € D°.

(8) Let Z be as defined in Proposition 2.1 (2). If £ € 0DNE, 7 €=, 7' #+ T,
and =}, < x;, i =1,2,3,4, then o’ € D°.

(4) If £ € 0D N =, 7' € Zy, 5’7&5, and z}, > x;,1=1,2,3,4, then &' € D°.

Proof. Assume ¥ € D, 7' € Zg, and xf <x;,0=1,2,3,4. Since ;, i =1,2,3,4
are polynomials with positive coefficients, X; ,(Z') < X, (%), n € Zy, i =
1,2,3,4. Therefore, 2’ € D follows.

Next assume Z € 8D, z/ € Zp, and x> m, 1 = 1,2,3,4. If ¥ €D
then by Proposition 2.2 (2) and Proposition 2.2 (3) # € D = D°, which is a
contradiction. . B

Next assume & € D NE, 2/ € Ey, 2/ # &, and z} < xz;,¢ = 1,2,3,4.
Since o/ # &, ) < x; holds for at least one i. If 2j < x4, then by eq. (2.7),
Bs(2) < ®3(Z). If 24 < w3, then by eq. (2.8), 1 (z') < &1(T). If 2 < x5
or zj < x1, then by eq. (2.3), ®1(z/) < ®1(F). Therefore, for every case,
X10(T') < X1,0(Z), n > 2, which, with eq. (2.3), eq. (2.4), eq. (2.6), eq. (2.5),
implies that X; ,, (&) < X; (%), 1 =1,2,3,4,n > 4. ¥ € D and eq. (2.9) imply
that X,,(Z) € dD C D, n > 4. From Proposition 2.2 (2) and Proposition 2.2 (3),
X,.(z') € D°, hence ' € D°.

Finally assume ¥ € 9D N E, T € =g, 2 # %, and a > x;,1=1,2,3,4. By
the same argument as above, it follows that X; ,, (') > X, (%), i = 1,2,3,4, n >
4. By the assertion (2), &' € D¢ follows. This completes the proof. a

Define a function R : = — R by

T3 27
R(Z) = max{=2, =2},
T X3

and let .
R, (%) = R(X,(2)), re=, neZy.
Here, = is defined in Proposition 2.1 (2). Proposition 2.1 (2) implies that R,, is
well-defined.
Proposition 2.4. (1) For each & € E, R,(Z) is non-increasing in n. In
particular,
Roo(@) ¥ lim R, ()

exists and is non-negative.

(2) If £ € DN E, then Roo(¥) = 0.

10



(8) There exists a constant v satisfying 0 < v < 1 such that for every ¥ €
DNE,
2.11 lim su 15 )
(2.11) THOOp R@ =)

(4) If £ € D°NE, then limsup 27 "log X; ,(Z) <0, j=1,2.
Proof. From Proposition 2.1 ( ) and Proposition 2.1 (5) it follows that <I>3( ) <
R(Z) (®1(Z) — ®1,0(%)), ¥ € E, and 204(Z) < R(Z) (P3(Z) — P30(%)), ¥ € E,
from which follows

D D3(X,(T)) 204(X,(Z))
(212) Frta(8) = ma {@1<Xn<f>>’ &3 (%,(7) }
< R,(D) {l—mln{ O(izn(f)) @370({(‘”(5))}}
- 1(Xn(@) T a(Xn(@))

In particular, R, (%) is non-increasing in n.

Assume that © € Z. From Proposition 2.1 (5) and Proposition 2.1 (4),
B 0(Xn(Z) > X1 (2)° and @3 (X, () > X1.0(Z)* X3, (T). Therefore eq. (2.12)
implies

(2.13) Rn41(%) < Ry (7) {1 _min{ X10(2)°  X10(@)X3.,(2) }}

D1 (X (D) 03(Xn(@))

On the other hand, if ¥ € =, ®1(%) < ®;(z1, 2%, 23,74), so that with Proposi-
tion 2.1 (1) it follows that there exists a polynomlal Py of 5 variables and with
constant positive coefficients, such that zi 29, (%) < Pi(z1, 23, T4, ;—i’, i—;‘), and
similarly, there exists a polynomlal P, of 5 variables and with constant posi-
tlve coefficients, such that (rz3)" <I>3( ) < Pa(21, 73,24, 32, $2). Note that if

Z € DNE, then by Proposition 2.1 (2) and Proposition 2.2 (4) it follows that
)?n(f) € DNE, n € Z,. Also, by Proposition 2.2 (1) it follows that if & € D,
then z; < 1,4 =1,2,3,4. Therefore, from eq. (2.13) it follows that there exists
a polynomial P of 1 variable and with constant positive coefficients, such that

(2.14) Ro1(%) < R, (%) (1 — P(R,(%))™Y), #€DNE.

From the assertion (1), P(R, (%)) < P(Ry(%)) = P(R(Z)), so that 1—P(R,(Z)) "
is bounded from above by a constant 1 — P(R(Z))~! less than 1. The asser-
tion (2) is thus proved.

From the assertion (2) it follows that there exists a positive constant M > 1
independent of Z such that

limsup P(R, (%)) <M, € DNE.

n—oo
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The assertion (3) therefore follows from eq. (2.14).

Next let Z € D°NZ. From Proposition 2.1 (1) and Proposition 2.1 (3), there
exists a polynomoial P; of three variables with positive coefficients and without
constant terms (i.e. P5(0,0,0) = 0), satisfying

@1 (%) < 27 (1 + Ps(w1, 20, R(T))).
This with eq. (2.2) implies
(2.15) log X1, n+1(Z) < 2 log X1,,(Z) + log(1l + P3(X1,n(Z), Xon(Z), Rn(Z))) .

This and Proposition 2.2 (3) and assertion (2) imply
tim sup (10 X1,011(7) — 5 log X1,,(#)) = oo,
which, with Proposition 2.2 (3) implies
liisolip ((%)" log X1 (%)) < 0.
This and eq. (2.15) with Proposition 2.2 (3) and assertion (2) imply
liTrLrLsolip (log X1 nt1(%) — (2 — (;)n) log X1,»(%)) < 0.

Therefore for sufficiently large N,

. 12 . .
[Ta- §(§)k+N71)71 27" log X1,n4+n (%) < log X1, n(%).
k=1

This with Proposition 2.2 (3) implies assertion (4) for j = 1. The case j = 2
follows because X3 (%) < Xl)n(f)2 . This completes the proof. O

3 Fixed points of the renormalization group flows

Let ¢+ : R?2 — R* be a natural embedding of the z;-xo plane: ((x1,72) =
(z1,22,0,0). From eq. (2.5) and eq. (2.7), 122 plane is an invariant subman-
ifold of the mapping ®; ®(.(R2?)) C 1(R2). Therefore, the restriction of ® onto

the x1—x2 plane,

2 def _ =
=,/ 1odor: RZ—-R2,

is well-defined. Let 52 (41, ¢2). From eq. (2.3) and eq. (2.4),

(3.1) b1(z,y) = 2® 4223 + 221 + 423y + 62797
(3.2) bo(z,y) = a* + 423y + 224%.

12



Proposition 3.1. The fized points of the mapping (E in the first quadrant
def _1

Ri = {(z,y) € R%| 2 >0, y > 0} are (0,0), (0,227 3), (%,%), and (Te,Ye),
where x. and y. are positive constants. They satisfy % <z < % and 0 < y. <
%, in particular, x.2 > y..

Proof. Assume that (z,y) is a fixed point: ¢1(z,y) = = and ¢o(z,y) = y. If
r=0theny=0o0ry= 22*%, and if y = 0 then z = 0. Assume in the following
that £ > 0 and y > 0. Then,

(3.3) 1 = 6xy® + 422y + 223 + 222 +

(3.4) ot 443y 4+ 220 —y=0.
From eq. (3.3) follows 1 > 223 + 222 + . The right hand side of this inequality
is increasing in z, and 2(%)3 + 2(%)2 + % = % > 1. Therefore, z < % From
eq. (3.4) follows y > 22y*, from which follows y < 227173 < % Then from
eq. (3.3), 1 < 32z 4 182% 4 223, The right hand side of this inequality is
increasing in z, and its value at x = % is % < 1. Therefore, z > %. Let
I=(%3). If (z,y) is a fixed point, then z € 1.
Let
gi(z,y) =y + 227 (4ady —y +at),
and )
ga(m,y) = y* + 3%Y + (62) " (22 + 222 + 1 —1).

Then the set of fixed point conditions eq. (3.3) and eq. (3.4) is, for > 0 and
y > 0, equivalent to a set of conditions g1 (x,y) = g2(z,y) = 0. Note that

2 4 _
g1(z,y) = g2(2,y) x {y? — Say + —a® — (62) 7' (22 + 227 + 2 — 1)} + h(z,y),

3 9
where,
h(z,y) = 5947 hy(z)y+ 1188 1z %hy(x),
hi(z) = —159 + 132z + 26422 + 19623,
ha(z) = 33— 66z —992° + 88z” + 1762 + 882" + 102°.

hi(z) is increasing in x and hy(3) = —3, so that hy(z) # 0 for z € I = (1, 3).

Therefore, the set of conditions ¢g1(x,y) = g2(x,y) = 0 is equivalent to a set of
conditions, g2(z,y) = 0 and

(3.5) y=—2""2"2hy(z) "ha(x).

Substituting eq. (3.5) into g2(z,y) = 0 and noting that z > 0 and hq(z) # 0 for
the fixed points, one sees that the condition gs(z,y) = 0 is equivalent to



where

f(z) = 19239 — 35211z — 1121672% — 411792 + 5184402 + 7254922°
+ 212425 — 209694427 — 31681642% — 1048100z + 332082021°
+ 5564268z 4 4315264212 + 1787888z + 3535842 .

A computer calculation was used here (and also in the following) to handle large
coefficients. If z = %, then it follows from eq. (3.5) that y = 1. Therefore (3, 1)
is a fixed point.

From the preceding arguments, a necessary and sufficient condition for (z,y)
to be a fixed point satisfying x > 0, y > 0, and © # %, is f(x) =0 and eq. (3.5).
It has also been proved above that if (z,y) is a fixed point satisfying z > 0,y > 0,
then z € I = (4, 3), and that hy(z) # 0. Assume that z € I in the following.
Denote by f(™, the n-th derivative of f. Since

FO(2) = —262025+ 8302050z + 7650868522 + 2373395202
+ 319584980z + 17696879225 ,

f©(x) is increasing for z € I. This with f(®(1/4) = 1500788509/128 > 0
implies 9 (z) >0, z € I, hence f®(z) is increasing for z € I.
Similarly, since f(®)(1/4) = 51984265459/128 > 0, and f(7)(1/4) = 6064495535/512 >

0, f©(z) is increasing for x € I. f(®)(1/4) = —17104786191/16384 < 0 and
f©)(1/2) = 2781099317/64 > 0. Therefore there exists an x; € I such that
fO)(z) is decreasing for x < x; and increasing for = > z;. fO)(1/4) =
—148288007935/32768 < 0 and f®)(1/2) = 2507283275/32 > 0. Therefore
there exists an o € I such that f(*(z) is decreasing for z < 3 and in-
creasing for © > xy. f(¥(1/4) = —25860012481/262144 < 0 and £V (1/2) =
742821129/256 > 0. Therefore there exists an x3 € I such that f)(z) is de-
creasing for x < x3 and increasing for z > x3. f©®)(1/4) = 96806613501/32768 >
0, f®)(1/2) = 81366081/32 > 0, and £3)(3/8) = —124154731777731/67108864 <
0. Therefore there exist x4 € I and x5 € I such that x4 < 3/8 < x5 and
that f(®)(z) is increasing for < x4, decreasing for 4, < x < x5, and in-
creasing for x > 5. f)(1/4) = 106573809241/524288 > 0 and f(?)(1/2) =
—2264445/128 < 0. Therefore there exists an ¢ € I such that f()(x) is increas-
ing for # < xg and decreasing for > zg. f(V)(1/4) = —120599934157 /2097152 <
0 and fM)(1/2) = 14625/256 > 0. Therefore there exists an 27 € I such that
f(z) is decreasing for © < x7 and increasing for x > z7. Finally, f(1/4) =
89607188671/16777216 > 0 and f(1/2) = —125/1024 < 0. Therefore there

exists one and only one z. € I such that f(z) =0.

From eq. (3.5), v o —2712.72hy (2.) "he(x.) is uniquely determined.

Since f(3/7) = 216853862622/96889010407 > 0, the above arguments imply
3 <. < 3. From 2 < z. and eq. (3.3), it follows that
8

21 2,2
Ye 7yc 41 )
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which imply y. < % < (%)2 < z.2. This completes the proof. O

Remark.

(1) By the same arguments as the proof of % <z, and y. < \/371_3, it is not

difficult to obtain (z.,y.) to an arbitrary precision. For example, one can
prove 0.4294449 < x, < 0.42944491 and 0.0499839 < y. < 0.049984.

(2) z. is not a rational number. This may be proved by standard arguments
using the explicit form of f(x).

Define (xn(z,v),y,,(z,y)), n =0, 3, ..., inductively by (zo(z,¥), yo(x,y))
n(z,

(@n (2,
(z,y) and (2n41(2,9), Yy 41 (2,9)) = ) Yn(z,y)). From eq. (2.2), it fol-
lows that (z,(z,y),y,(z, y)) is X, (Z) with & restricted to the z1-x5 plane:
(@n(z,9), yn(ﬂf y)) (7t o Xy 00)(,y).
Let D@ = {(z,y) € R2| sup (zn(z,y) + y,(z,y)) < oo}. Define also

ne€Zy
D®@ ¢ D@e and 9DP, to be the exterior, interior, and boundary, of D)
in Ri, respectively. Notice the slight difference in the previous definition of
D. The condition 2 > y is dropped here and the whole first quadrant is

considered. Let = "(2) = {(z,y) € R2| 2? > y}. Then from the definition

of D, D® N Hg) is the restriction of D to the x; xg plane D@ n 582) =
t~Y(D). Note also that Proposition 2.1 (2) implies QS(_O ) C :82) Define also

D' = {(2,y) € RZ | sup max{w,(z,9), yn(2,y)} < 1}, and D@ = {(z,y) €
TLGZ+

L2,
(x

Proposition 3.2. (1) D@ is a closed set in R2 satisfying D® = p'®,
The interior of D@ satsifies D) ° = D2, They are invariant sets of qi?

d(D@oyc D@e  FODP)cID?P, and H(DP¢€)c DPe

(2) There exist a positive constant ¢ and a continuous strictly decreasing
function p : [0,c] — R such that 9D® = {(z,p(z))| = € [0,c]}. For
(z,y) € R_%_ it holds that (z,y) € D@ if and only if y < p(x).

Proof. The assertion (1) may be proved in exactly the same way as Proposi-
tion 2.2, if one notes the explicit formula eq. (3.1) and eq. (3.2). Let (z,y) € R
in the following. From eq. (3.1) and eq. (3.2) it follows that (0,y) € 9D if
and only if y = 2271/3,

Assume that 2 > 0 and (z,y) € 9D®). If ¢/ > y, then eq. (3.1) and eq. (3.2)
imply ¢1(z,y') > ¢1(x,y) and ¢a(x,y') > ¢2(x,y). Let

— g d 218 e2(z.y)
" {¢1($,y)’ ¢2($’y)}>1'
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Then from eq. (3.1) and eq. (3.2), it follows by induction that
xn(‘rvy/) > T2n_lxn(‘r7y) y = ]-7 2a 37 cee

and »
yn(x7y/)2r2 yn(xay)7 n:172)37""

which imply (x,7') € D@ ¢. If y/ < y, then just in the same way as in the above
argument, it follows that (z,y’) € D °. Therefore for each x > 0, there exists
at most one y > 0 such that (z,y) € D).

Let J = {z > 0] there exists y > 0 such that (z,y) € dD?}, and define a
function p : J — R by (z,p(z)) € 9DP. The above arguments prove that p
is well-defined, and that if y < p(z) then (z,y) € D®°, while if y > p(z) then
(z,y) € D@e,

Let z € J, 2’ € J,and 2’ > z. Put y = p(z) and ¢ = p(). I ¢ > vy,
then from eq. (3.1) and eq. (3.2) ¢1(2',y’") > ¢1(x,y) and ga(2',y") > do(x, ),
hence as in the previous arguments, (z,y') € D¢ follows. Therefore y/ < y,
which proves that the function p is strictly decreasing.

Now D@ is a closed set in R? and eq. (3.1) implies that if 2 > % andy >0
then (z,y) € D@ ¢ hence D intersects the z-axis. Therefore, there exists
a positive constant ¢ such that p(c) = 0. If z > ¢ and y > 0, then ¢ (z,y) >
$1(c,0) and ¢a(z,y) > ¢2(c,0), so that (x,y) € DP e, Therefore if x > ¢ then
x ¢ J. If < c then the same argument as before implies (x,0) € D) °, while
(z,1) € D@ ¢, Therefore there exists a y such that (z,y) € 9D, hence = € J.
This proves that J = [0, ¢]. Since by construction 9D = {(z,p(x))| z € [0, ]},
the continuity of p follows from the fact that 9D is the boundary of D).
This completes the proof. O

A numerically obtained shape of D(®) together with the fixed points of qi? is given
in Figure 2 (the black dots in the figure represent the fixed points).

If (z,y) € D®¢°, then Proposition 3.2 (1) implies lim z,(z,y) = 0 and
lim y,, (x,y) = 0. If (z,y) € D@ ¢, then from Proposition 3.2 (1) and the ex-
plicit recursion formula eq. (3.1) and eq. (3.2) it easily follows that lim y,,(z,y) =
00, and lim z,(z,y) = 0if 2 = 0 and lim x,(x,y) = oo if  # 0. The con-

n—oo

vergence of the sequence {(z,(z,y),y,(x,y))}, n = 1,2,3,..., for the case
(z,y) € dD®) | is not obvious from previous arguments alone, because the se-
quence may either converge to one of the fixed points, or approach a non-trivial
attractor. However, the next two propositions show that the latter is not the
case.

Proposition 3.3. Let (z1,91) € 9D® and (zo,y2) € 9D . If x1 < x5, then
P1(z1, 1) < d1(x2,92)
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Proof. The mapping ¢ is a C® mapping. Its differential J is, from eq. (3.1)
and eq. (3.2),

- _ braz(r,y) d1y(z,y)
(3:6) J(.y) ( $2,2(z,Yy) ¢2,y(93’y) )

. 22 + 622 + 823 + 1222y + 122y? 423 + 1222y
- 423 + 1222y 423 + 88y ) -

Therefore the Jacobian is,

det J(z,y) = 8x(22°+3z* + 2° — 62ty — 1225y
+132y° + 132xy* + 8822y> + 662> + 22y°)
= 8z(3z" + 2% + 132y° + 882%y® + 66xy> + 224

87
—axy').

21 5.,
y)+4

+ 2 (z — 3y)* + 2 (2? — 5

Since (0,0) € D@ and dD® is a closed set, it follows that there exists a
positive constant ¢; such that

(3.7 det J(z,y) > €1, (z,y) € dDP .

Denote by Ue(x,y) the e-neighborhood of (z,y) in R2. The mapping disa
C°° mapping on R2, and det J(z,y) > 0 if (x,y) € 9D?. Therefore for each

(z,y) € D there exists a positive number €(z, %) such that gz?, when restricted
to Uﬁ(x v) (z,y), is a diffeomorphism of class C®. Let P = (xg,10) € 0D

and € = €(xo,yo). By Proposition 3.2 (2), p(z¢) = yo. The line segment of the
line x = xo inside U = Ue(xo,yo) is mapped onto a smooth curve which cuts
the domain 5(21) into two pieces. By Proposition 3.2 (1), this curve intersects
dD®@ at one point ¢(P). Put Uy = U N{z < xo}, which is the left half of U,
and Uy =UN{z > 70}, the right half of . Likewise denote by U} the piece of
g(U) which contains the points of D) which satisfy = < ¢1(x0,%0), and the
other piece by U,. Then U, is mapped by ¢ onto either U} or U}, and Us is
mapped onto the other piece.

Let 0 < € < € and put Q@ = (xg + €,y0), R = (x0,y0 + €’). Denote
by P, Q', R, the images of P, Q, R, by ¢, respectively. Put ¢ = PQ,
€5 = P?%, 671 = PFQ’, and 672 = P'R'. Define €1 X €3 def €1,0€2,y — €1,y€2.2-
Proposition 3.2 (1) implies that if (zg,50) € D@, then 2o < 1 and yo <
1. Therefore from eq. (3.1) and eq. (3.2), there exists a positive constant M
independent of (x,y) and € such that

\671 X 672 — (det J (x0,y0))€1 x €3
= |(¢1(z0 + €, y0) — d1(x0,y0))(P2(20, yo + €') — P2 (0, Y0))
— (p2(z0 + €, y0) — P20, ¥0)) (D1 (20, yo + €') — P10, o))
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— (det T (0, y0)) )|
< Me'3 .

By eq. (3.7) det J(xo0,y0) > €1. Therefore for sufficiently small e; it follows
that if 0 < € < €3 then

(det J (w0, y0))€1 x €5 = (det J(xo,yo))e’2 > Me’g,

which implies that if ¢ < ez then 671 X e_’; and €] x €3 have the same sign. On
the other hand, by Proposition 3.2 (2) R € D® ¢, and by Proposition 3.2 (1)
R’ € D@ ¢ 5o that R’ is above the curve y = p(z). Therefore Q' is contained
in the piece that contains the points in D) with 2 > ¢ (0, 10), that is the
piece UY. Therefore, ¢(U;) = U}, i = 1,2. In particular, for (z,y) € D@ NU,
if & > xy then ¢1(x,y) > ¢1(x0,y0), and if z < xo then ¢1(z,y) < ¢d1(x0,Y0)-

Therefore, for each point (z,y) € dD?) | there exists an e-neighborhood
U(z) such that if (z/,y) € 9D NU(x), then the order of z and 2’ is conserved
by the map d_;

Now assume that (z1,91) € 0D® | (2o,12) € 9D® | and x; < x5 . Since
{U(z)] 1 < x < 22} is an open ball covering of the closed set D N {z1 <
x < x2}, one can choose a finite number of U(x)s’, say U1, Us, ..., U, , that
covers the set D@ N {z1 <z < x3}. Tt is further possible to choose them in
such a way that none of the U; is included in some other ¢/; . Arrange the balls
in a way that the xz-coordinates xy, x2, x3,..., x, of the centers of the balls
are in increasing order. For each i =1,2,...,n—1, take z} € U; N\U; 11 NnoD®@ .
Then the order of the points

T <Ty<wp<TH<...<xh_ | <TH

is conserved by 5 Since (x1,y1) € U1 and (x2,y2) € U, , it follows that the
order of x; and xs is conserved by ¢, that is, ¢1(x1,y1) < ¢1(22,y2). This
completes the proof. |

Proposition 3.4. If (z,y) € dD®, then (z,(x,y),y,(z,y)) converges to one
of the fized points of the mapping ¢ as n — oo. In particular, if (x,y) €
oD® n Egz)} then lim (z,(z,9),y,(z,v)) = (e, Ye), where (xc,yc) is as given

in Proposition 3.1.

Proof. Assume that (z,y) € 9D and that the sequence {(z,(x,y), ¥, (z,¥))},
n =1,2,3,..., has an accumulation point (z1,y1) which is not a fixed point.
Put (z2,y2) = $(x1,y1). Since (x1,¥1) is not a fixed point, 1 # .

Assume first that zo > x7. The continuity of 5 implies that for any pos-
itive number ¢ there exists a positive number € such that the e-neighborhood

Ue(r1,y1) is mapped into the Us(xa,y2). In particular, there exists € > 0
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such that if (z,y) € Ue(x1,y1), then ¢i(z,y) > x;. But if (z,y) € 9D
and x > x1, then Proposition 3.3 implies ¢ (xz,y) > x2 > x1. By induction,
if (z,y) € Ue(z1,y1), then ¢1(q_5n(x,y)) > xo, n = 1,2,3,..., where q_;n is
the n-th iteration of gz? By assumption, the sequence {(z,(z,v),y, (z,y))},n =
1,2,3,..., accumulates at (z1,y1), therefore there exists an integer N such that
(xN(x7 y)7 yN(x’ y)) € UG(l‘l, 311)- Therefore if n > N then ¢1 (xn(x7 y)7 yn(l‘, y)) >
X9 > x1, which says that (z1,y1) cannot be an accumulation point, which is a
contradiction. The case x3 < 1 can be handled in the same way. The con-
clusion is that if (z,y) € 9D® then every accumulation point of the sequence
{(xn(z,y),y,(z,y))}, n=1,2,3,..., is a fixed point.

If (z,y) € 9D® N 582), then from $(Eé2)) C 582) it follows that the se-
quence (z,(x,y),y,(x,y)) accumulates at a fixed pont in E((f). Proposition 3.1
therefore implies nlirr;o(xn(x, Y),Yn(z,y)) = (z¢, ye), where (z.,y.) is as given in

Proposition 3.1. This completes the proof. O

The original problem of four dimensional parameter space is now considered.

Theorem 3.5.

lim X, (Z) = (0,0,0,0), FeED°NE,
lim X, (Z) = (00,00,00,00), Ze€DNE,
lim X, (Z) = (ze,9c,0,0), Ze€dDNE.

Here, . and y. are as given in Proposition 3.1.

Proof. The first two cases are direct consequences of Proposition 2.2 and Propo-
sition 2.1. Consider the case ¥ € dD N Z. Since 9D is a closed set, the se-
quence {X,(#)} has an accumulation point in dD. From Proposition 2.4 (2)
and Proposition 2.2 (1) follows nlirrgonn(f) =0, ¢ = 3,4. Therefore every accu-
mulation point of {X,(Z)} is in «(dD® N E((f)). Denote an accumulation point
of the sequence by (%), 7 € dD® N 582). Let {)?kl(n)(f)}, n=123,...,
be a subsequence of {X, (&)} that converges to (). By the same reason-
ing, every accumulation point of {Xkl(n)_l(f)} is in (D@ N 582)). Denote
one of the points by (%), 1 € dD® N E(()2), and let {)?kl(k2(n)),1(f)}, n =
1,2,3,..., be a subsequence of {)?kl(n),l(f)} that converges to ¢(z1). By defi-
nition )?kl(kZ(n))(f) = i(fkl(b(n)),l(f)), and ® is a continuous map, therefore
it follows that ¢ = 5(51), where 5 is defined at the beginning of the section.
By induction, one obtains a sequence of points {Z;}, £ =1,2,3,..., such that
7€0DPNEP, £=1,2,3,..,and §= §(%1), Zr = ¢(Zre1), £=1,2,3,....
Since 9D N 582) is a closed set, every accumulation point of the sequence
{Z), ¢ = 1,2,3,..., is in 9D® N 582). Let W € 9D® n 582) be one of
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the accumulation points. Assume that @ is not a fixed point of the map q;:

< (E(ﬂ)’) # . Since $ is a continuous map, @’ is an accumulation point of
{#(Ze)} = {Ze-1}, £ =2,3,.... Assume that wy > w}, where @ = (wy,w2).

Proposition 3.3 implies that if there exists an ¢ such that z,; > w], then
Ze411 = qﬁfl(z}) > w; > w, and consequently, Zpyn = ¢7 " (Zk) > wi >
w), n € Zy . This contradicts the fact that @’ is an accumulation point. Thus
z1 < wj for all £ € Z . But this contradicts the fact that @ is also an accu-
mulation point. The case w; < w) may be handled in a similar manner and a
contradiction occurs. Therefore w; = w} , hence @ = ' .

Therefore every accumulation point @ of the sequence {Z;}, ¢ =1,2,3,...,
is a fixed point of the map ¢ in 9D® N EP). By Proposition 3.1 the only
fixed point in 9D 582) is (2, y.). Hence the sequence {Z;}, £ =1,2,3,...,
converges to (z.,y.) as £ — 0.

It is proved that there is a sequence zp, ¢ = 1,2,3,..., satisfying 2, €
oD@ NEP ¢ =1,23,.., and § = ¢(Z), Z = ¢(F1), £ = 1,2,3,...,
and zlirgo Zp = (c,ye). On the other hand, Proposition 3.3 implies that for

(¢,9) € ID@), if & > ¢1(,y) then ¢1(z,y) > ¢1(¢(x,y)), and if & < ¢1(w,y)
then ¢1(z,y) < ¢1(¢(x,y)). This with Proposition 3.4 implies that ¢1(<;n(a:, y))
approaches x. monotonically as n — oco. If ¥ # (x.,y.), this is a contradic-
tion. Therefore § = (x.,y.), which implies that the only accumulation point
of {Xn(Z)} is (#e,ye). Therfore X, (&) converges as n — 0o to (2, ). This

completes the proof. O
Let
(38) Zin(B)= > exp(-fL(w)), BER,i=1,234, neZ;.
wve")

Then Z,(8) = X,(exp(—0), exp(—23), exp(—24), exp(—30)) .
Corollary 3.6. There exists a constant 3. such that

HILH;OZn(ﬂ) = (Oa 0; 07 0) ) ﬂ > ﬂc’
nlLH;OZn(ﬂ) = (-Tm Yes 07 0) 5 ﬂ = ﬂcv
Jim Z,(8) = (00,00,00,00), < f.

The proof of Theorem 1.1 is as follows. Note that
W —w™ uwm uwM uw' Y uwY

where Wi(”), 1=1,2,3,4, is defined at the beginning of Section 2, and W' 51") in
the proof of Proposition 2.1, and

WS = {w e W) | w(Zy) N {ba, cn} = {en}} -
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Therefore, 27 = Z1 n + 2235+ 224, follows, which, with Corollary 3.6, implies
Theorem 1.1.

The first derivatives of ® are used to study the distributions of path lengths.
Let @ = (a1, a2,a3,a4) = (¢, Ye,0,0) and

(3.9) B:(g—;j(ﬁ),...,g%(d’)).

Proposition 3.7. (1) The matriz B has a form

p q Biz DBu
p—| ar B3z Bay
0 O Bss Bsa |’
00 O 0
with
p= 8x§ + GxE + 2x. + 12:533/6 + 12xcyg ,
q= 4xi + 12x3yc,
and

r=4x3 +88y3.

Every element is non-negative, and the four elements By;, i = 1,2, j =
3,4, are positive.

(2) Denote the four eigenvalues of B by A\;, i = 1,2,3,4. Then one can
arrange the order of the eigenvalues so that they satisfy

AM>1I>X>A3>M0=0,

and Bss = Ao In particular, B is diagonalizable by an invertible matrix
P: P7'BP = diag(\1, M2, A3,0).

Proof. The four elements B;;, ¢ = 1,2, j = 1,2, are obtained from Propo-
sition 2.1 (3). Proposition 2.1 (6) implies By; > z. > 0, j = 3,4, and
By; > 22 >0, 7 = 3,4, and By; = 0, j = 1,2,3,4. The non-negativity
of elements are obvious.

1
It is easy to see that the four eigenvalues are i{p +r++/(p—r)2+4¢%} =

1
2.7965 ..., 5{;0—1— r—+/(p—7r)2+4¢*>} =0.2537..., Bsz, and 0. The numer-

ical values are derived by the estimates for x. and y. given in the remark after
Proposition 3.1.

From Proposition 2.1 (5) one has Bss = ®3 (@) . From Proposition 2.1 (5)
and the fact that @ is a fixed point it follows that ®3,(d) <1 — 2. < 1. From
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Proposition 2.1 (4) one has B3z > z.2 + 2x.2 = 0.3428 .... This completes the
proof. O

Remark. The explicit form of B obtained using the explicit form of the recursion
relations, is shown in Appendix B.

Let ot
(3.10) 2 YzuuE?) cE.
Proposition 3.4 and Theorem 3.5 imply that if ¥ € 9D NE; , then lim X, (&) =

n—oo
(e, Ye, 0,0) . ~
The following proposition states how X,,(Z) converges to (x., y.,0,0) as n —
0o. Though the proof is similar to that for the case of diffeomorphisms in [5],
we give a proof here for readers’ convenience.

Proposition 3.8. Assume & € 0D N=Zy. Then there are positive constants C
and p, 0 < p <1, such that

| X n(@) —a;] <Cp™, i=1,2,3,4, n€Z,.
Proof. ®(Z) can be expressed as
'3(%) =ta+ B (T —a) +0(z — a),
where §: R* — R satisfies, for & € Rtand |Z — @) < 1,
(3.11) 0(z — a)| < Cy|7 — a)?,
with a positive constant C;. R? splits into $ -invariant stable and unstable

subspaces
R'=V.PV.,

where V; is spanned by the eigenvectors corresponding to A2, A3 and 0, and V,
by that corresponding to A;, where \;s’ are as in Proposition 3.7. Denote the
restrictions of B to V, and V,, by B, and B,, respectively. For & € R* define
norms ot
@ p-a),

— def Sk | |k

|Zlo = max{|Zs|", |Tu]"},
and for an 4 x 4 matrix A,

A]* < sup |AZ".
|Z|*=1

Let def
e * —L*
a = max{||B|", || B ']"} < 1.
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Take x > 0 such that o + k < 1. Then by eq. (3.11) there is a §, 0 < § < 1,
such that .
|0(Z — a@)|o < K|T — dlo,

for
|7 — dl, <.

Assume that ¥ € 9D N=; . Then there is an ng such that
X, (%) — @, < 0,

for n > ng. Let Ty = X, ().
Consider B B )
B(fo) — = ($(7) — @) + (B(%0) — D)
Then

|(8(70) — a@)sl” [|Bs|[*(Zo — @)s|* + &[0 — dlo

<
< (a+k)|Zy — do-

Suppose that |Zy — d@|, = |(Zo — @)|*. Then
(8(Z0) —@)ul” = (a7 —r)|T0 —dl
> (a+ k)T — dlo.
By induction,
| X0 (%) — dlo > (a4 K)™"|Zo — dlo-

Since (a+k)™™ — 00 as n — 00, this leads to a contradiction. Thus, |Zy—d|, =
(o — ). " ) ) ]

A similar argument shows that |®(Zy) —d, = [(P(Zp) —a@)s|* . Thus |®(Zy) —
dlo < (a+ K)|Zo — d|o . By induction it follows that

|Xn(f0) —d|o < p"|To — dlo,

where p = a4+ k, 0 < p < 1. Thus for each £ € 9D N E; there is a positive
constant C’ such that B
‘Xn(f) - 5‘0 < c’ nv

for all n € Z,. This completes the proof. o
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4 Limit Theorem for distribution of path lengths

First we define probability measures j,, (), pt1,,(Z), and vy, (&) on W*") | Wl(n) ,
and Wi™ | respectively. W*(™ is defined in Section 1, and W™ and W{" in
Section 2. Each measure is parametrized by & = (x1, x2,x3,z4) taking values
in R4\ {(0,0,0,0)}. To each w € W*(™) we assign the weight

4
()] E {X 00 () + 2X30(2) + 2Xa 0 ()} [T 25,
=1

to each w € W™,
def 4
@l & (50 [t
i=1

and to each w € W™,

4

V(@) w] E (X0 (@)} [,

i=1

where s;(w) and X; (%), i=1,...,4, n € Zy are defined in Section 2.

Our objective in this section is to study the asymptotic distribution of path
lengths L(w) under py, (%), p1,n(Z) and v, (Z), respectively, as n tends to infinity.
Each element of Wz(n) consists of two path segments. Since we want to deal with
these segments separately, we define, for w = (w1, ws) € W2(n),

Sg(w) = sa(w) — sa(wy) — s2(we),

52(w) = sa(w1),
83(w) = sz(w1),
84(w) = sa(wr),

S6(w) = s2(w2),
S7(w) = s3(w2),
58(11}) = 84(11)2).
Note that
(41) L(w1) =35 (U}) + 252(1,0) + 253(1,0) + 354(11}) + §g(w),
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Let Y,, be another generating function for W2(”) defined by

where

2?1 = ($1,$2,l‘3,l‘4)7
2?2 - (x5,$6,x77x8)-

Y,, satisfies the following recursion relation.

—

Vir1(2) = Yi( (Xn(21), Xn(22), Ya(2)) ).

We also have
(4.3) Yi( (21,21, 22) ) = ®a(w1, 72, 73, 74).

We start out with
HW() = (H"(),....H"(2))
L (Xu(3), Xn(2), Ya(2)-
Let OH ™) (2) be an 9 x 9 matrix defined by

0

0
OH™ (2) & (g™ (2), ... —tH™M(2)).
() (G HO @), 5 HO ()
Since the recursion relations imply,
(4.4) HO(2) = HO(H(2)),

we have
(4.5)  OH™(2) = 0HO(H" Y (2)) sHD(H"D(2)) ... 0HD(2).

Throughout this section, we write,

def
a = (a'lv s 7@9) = ('/'UC’ y(2707 0) ZeyYes 0) 07 yC)

We have, in particular,
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Proposition 4.1. (1) All the eigenvalues of 9DH™ (a) are non-negative. The
largest of them, X, is a double eigenvalue with corresponding left eigenvec-
tors (a1, o, ag, a4, 0, 0, 0, 0, 0) and (0, 0, 0, 0, a1, az, as, ag, 0),
satisfying a; > 0, i =1,2,3,4. Any other eigenvalue is less than 1.

(2)
lim A" (OHM (a))" = A(a)

n—oo

exists. The (i,j)-element of A(a) , Aij(a), is non-negative fori =1,...,9, j =
1,...,9. In particular, A11(a) > 0 and Ag1(a) > 0.

Proof. Tt is easy to see that 9H) (a) has the form

B O

(4.6) 9HW (a) =

O B

SO oo oo oo

q Ba3 By B2z Bag _
5 O 3 2 G 3 5t =207 |

Nl

where C; is a constant satisfying 0 < Cy < g The 4 x 4 matrix B and the

positive constant r are defined in Proposition 3.7. dH™)(a) has four double

eigenvalues A1, A2, A3, 0, and a single enenvalue » — 2C . Note that A\ > r =

0.3277... > r —2C . It is also easy to show that the right and left eigenvectors

of B corresponding to A; can be chosen as *(a1, as, 0, 0) and (a1, az, asz, a4),

with a; >0, i =1,2,3,4, o + a2 = 1. The assertion (1) follows with A = \; .
There is an invertible matrix P such that

P7roHW (a)P = diag(\, A2, A3, 0, A, Ao, A3, 0,7 — 201) ,

and that the first and the fifth columns of P are taq, ag, 0,--+, 0, Co) and
t~(0, 0, 0, 0, a1, g, 0, 0, C2), Co > 0, respectively, and that the first row of
P~ lis (a1, ag, as, ag, 0,---, 0). Combining these with

lim PN\ (0HW (a))"P = diag(1,0,0,0,1,0,0,0,0),

one has the assertion (2). In particular, Aj1(a) = of and Ag;(a) = Caay . This

completes the proof. |

From the proof of Proposition 3.7, we have A = 2.7965 - - -.
In studying the limit of A="(0H ™) (z))" for more general z, we make use of
the following lemma. It can be proved in a similar fashion to Lemma(3.1) in [3].
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Lemma 4.2. Let A, A,, n=1,2,..., be N x N matrices. Assume that there
is an invertible N x N matriz P such that P~1AP = diag(\1,...,An), A >
0, i=1,...,N, Apaz = max ); > 0. Assume further that

> [1An — All < o
n=1
Then
(4.7) lim limsup ||\, 0, (AnymAntm—1- Amy1) — Q| =0,
where P~1QP = diag(qi, . ...qn) with ¢ = 1 if \i = Amaz and g; = 0 otherwise.
Moreover, lim A" A, --- Ay exists.

Let E1 be as in eq. (3.10) and
I'= {Z - (.’,1317x2,x3,$4,$1,$27x37x4,$2) ‘ (xla'r27x37x4) S aDmEfl} .

Proposition 4.3. Let z = (21,...,29) € I. Then lim A\""0H™ (2) = A(z)

exists, and Aij(z) >0 fori=1,...,9, j=1,...,9. In particular, A11(z) >0
and Ag1(z) > 0.

Proof. By the mean-value theorem,

9
0
(4.8) OHis () = OHij(a) = 3 (5 —0Hiy)(w) - (2 — o),
k=1
where
u=a+6(z—a), 0<0 <1
Since I is a bounded region in R? and a%aHij(z) is a polynomial in z1, ..., 29,

there is a positive constant M such that

0

(4.9) |8—zk

aHij (u)\ <M

forallu=a+60(z—a), 0<8<1, z€T, 4,j5,k=1,...,9. On the other hand,
by Proposition 3.8, for each & € 0D N =4, there are positive constants C' and
p, p <1, such that

(4.10) | Xin(T) —ai| <Cp™, i=1,...,4.

From eq. (4.8), eq. (4.9), and eq. (4.10), it follows that there is a constant Cy
such that
(4.11) 10H (H™ (2)) — 8H (a)|| < C1p".
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Now let A, = OH(H™ (z)) and A = 0H(a). From eq. (4.11),

(oo}

> [1An — All < o

n=1

Lemma 4.2 implies the existence of lim A""9H ™ (z). Since Q@ = A(a) in this

case, eq. (4.7) implies that for sufficiently large m, the (1,1) and the (9,1)-
elements of lim A=" 9H(H™t™)(2)) --- 9H(H™Y(2)) are positive. From

Proposition 2.1 (3), X1 1(Z) includes 22 , and X3 1(¥) includes x{ , which implies
that OH(H™®(2)), k =1,...,m, has positive (1,1) and (9, 1)-elements for Z €
0D N =1 . Therefore, A;j(z) > 0 for (i,j) = (1,1) and (¢,5) = (9,1). This
completes the proof. o

Proposition 4.4. Assume z € T'. Let
Hi(n)(zexnt) def Hi(n)(zlexntl,zQexntz, oy zee ) i=1,...,9.

(1) There are entire functions HY : C° — C, such that H™ (ze*™"t) — H*(t),
as n — oo uniformly in {t = (t1,...,t9) € C?| |t;| <R, i=1,...,9} for
all R > 0. In particular, H(t) =0, fori=3,4,7,8.

(2) Let H*(t) = (H;(t), H3(t),0,0, HE(t), HE (t),0,0, Hi (). Then H*(t) sat-
isfies,
(4.12) H*(\t) = HO(H*(t)),

for any t € C°. Moreover,

9
%Hi (0) = 2zjAij(2).
J
Proof. Let
ol 2 0y B o a2 Bl o)y g, Bl lorl o Bl el
2 2 2 2
for 2 = (21,...,29) € C°. |- | satisfies the conditions for a norm. From Propo-

sition 4.1, (a1, a2, as, a4, 0, 0, 0, 0, 0) and (0, 0, 0, 0, a1, a9, as, a4, 0)
are the left eigenvectors of 9H ) (a) corresponding to \. It follows that

(4.13) OHM (a) Tz, < X |2]s.
Now fix a z € I' and let w € R?. Put

(4.14) H™ (2 +w) = a+ vy + wy,
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n 2 H™(2) — a,
CH (2 4 w) — H™(2).

From the mean-value theorem combined with eq. (4.13), it follows that there is
a positive constant C; such that

(4.15)[HY (a + vy, +w) — HY (a4 vp)]w < A1+ Chlog]s) (1 + C1lwly)|w].

for |wl. <1 and n € Z;. By Proposition 3.8, there are positive constants Cy
and p such that,
(4.16) [un]« < Cap™.

Take a positive number b such that

H l-l-Cgp 1+C1>\7k) <1,

where C3 = C1Cy. Then by eq. (4.15) and induction,

k—1

(4.17) wile < Mwl, [T+ Csp/)(1+ CrA~79)
j=0
< Ml /b,

fork € Zi, 0<k<n,and w € R?, |w|. <bA™". Thus the estimates eq. (4.16)
and eq. (4.17) together with eq. (4.14) show that there is a 6 > 0 and a C4y > 0
such that

(4.18) [H™ (2 X )] < Cu,

for t € R, |t|. < §. Since each Hi(n) is a polynomial with positive coefficients,
we see that eq. (4.18) holds also in Q o {t € C°| [t|« < 6}. Therefore, for each
i,

{Hz( Nz e " HY n=1,2,...
forms a normal family of holomorphic functions in 2. Let

(4.19) H™(z ™) Za(”) Jehrghe ke

k= (ki,... ko)eZ.°
By Theorem 3.5,
(4.20) al(»n) (0) — a;, n — oco.

Define ¥ € Z,? by eé»i) = 0;;. By Proposition 4.3,

(4.21) agn)(g(j)) - Zinj(Z), n — oQ.
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Substitute eq. (4.19) into eq. (4.4) and let n — oco. By induction starting with

-

eq. (4.20) and eq. (4.21), we see that there are a} (k) ’s such that
al(»n)(lg) — af(k), n — oo.
Therefore there are holomorphic functions H; : 2 — C, such that Hi(n) (zer ") —

H?(t), as n — oo uniformly in {t € C°| [t|. < §/2}, satisfying eq. (4.12). For
any R > 0, take an m € N such that A™™R < 6/2. Then

Hi(n+m)(z e/\_(""'m)t) _ Hz(m)(H(n)(z e)\_”()\_mt)))
—  H™(HF (A1),

as n — oo uniformly in {t € C%| |t|. < R}. This shows that H* can be extended
to an entire function in C?, satisfying eq. (4.12).

Let z A "0 = (27 A" 29 X)) 2 = (21,...,20) = (T, 7, 12) €

I', and (t1,...,t9) € R?. Since Xén) is a polynomial with positive coefficients,
[HV (= X)) < [H (2)] = %57 (@)
Therefore, by Theorem 3.5,
Hén)(z Y 50, n— .

This and the fact that H3 is an entire function leads to

H;(t)=0
on C?. In the same way, we have
H'(t)=0
on C?, for i = 4,7,8. This completes the proof. a

Note that H* has an #-dependence, though we do not write explicitly.

Let p,(Z) and p;(Z) denote the law of A™"L(w) under p,(Z) and under
p1,n(Z), respectively. Let ¢, (%), ¢, (), and ¢ (&) be the law of (A™™ L(wy), A\™" L(wy)),
A7 (L(w1) + L(we)), and A~™ L(w1 ), respectively, under v, (Z). Note that the
law of A™" L(ws) under v, (&) is also equal to ¢ (Z). We often omit writing the
dependence on &, when no confusion occurs.

We define -
(4.22) g™ (1) / ¢ po(de), t € C,
0
(4.23) ﬁ%wg/fﬁmmmmc,
0
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and
(4.24) A (ty,ty) déf/ e8It g (d6ydsy), (t,ta) € CP
R+><R+

Note that o
B (8, 1) = / et g (de),
0

B (L,0) = / et g (o).
0

From the relation, L(w) = s1(w) + 2s2(w) + 2s3(w) + 3s4(w), w € W*),
and eq. (4.1) and eq. (4.2), it follows that

9" (1)
= {Xl,n(f) + 2X3,n(-f) + 2X4,n(f)}71{X1,n(fn,t) + 2X3,n(fn,t) + 2X4,n(fn,t)}7
9" (0) = {X1.0 (@)} X1 (Fa),

where
def

Tnt = (1€

—n
A t,l‘

227"t 227"t 3AT"t
2€ , L3€ , g€ )a

and
h(n)(t17t2) = {XQJL(I?)}?IFTL( (fn7t17fn,t2ax2 e/\_"(t1+t2)) )

Theorem 3.5 and Proposition 4.4 imply that for ¥ € 0D NE; ,

1

n 1
0" () = —H{( (1,26,26,30)),

1
]’L(n)(t1,t2) — —H;((t1,2t1,2t1,3t1,t2,2t2,2t2,3t2,t1 + t2)),

Ye

asn — oo uniformly in {t € C| [t| < R} and {(¢t1,t2) € C?| |t;| < R, i=1,2},
respectively, for all R > 0. This leads to

Proposition 4.5. Assume & = (z1,22,23,24) € 0D NE;. There are entire
functions g : C — C and h : C?> — C such that

M) — g(1),

9" (1) = g(t),
as n — oo uniformly in {t € C| |t| < R}, and

R (1, t2) — hty, ta),
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as n — oo uniformly in {(t1,t2) € C*| |t;| <R, i =1,2 }, for all R > 0. g(t)
and h(t1,t2) are the unique solution to;

(4.25) 2eg(Mt) = ¢1(2eg(t), yeh(t, ),
(4.26) yeh(Atr, At2) = f(zeg(tr), yeh(ty, tr), zeg(t2), yeh(ta, t2), yeh(te, t2)),
where ¢1 is defined in eq. (3.1) and

def
FW1, 92, Y3, Y4, y5) = Yi(y1,92,0,0,93,4,0,0,y5)
= Y3 +2(yiys + y1u3)ys + 6(y5 + u3)vs + 42 + ya)ys + 2.

(427) a%—(t()) = %(3}11\11(2’) =+ 2x2A12(z) =+ 2x3A13(z) + 333‘41\14(2’)),
gy OO0 0R0.0)

oty Oty
1
= y—($1A91(Z) + 2!172./\92(2) + 2!173./\93(2) + 3$4A94(Z) + £U2A99(Z))7

C
where z = (¥, %, x2).
Proposition 4.6. Assume & = (x1,22,23,24) € ODNE; . There are probabil-

ity measures, p(Z), ¢ (Z) and ¢*(¥) on R, and a probability measure q(Z) on
R? such that

pn(T) = p(T),
Py (%) = p(7),
0, (7) = ¢ (7),
4, (T) = " (2),

and
n(T) = q(),
as n — 0o, where = denotes weak convergence.
(1) The Laplace transforms of the limit measures are given by,

/ e p(@)(de) = g,

— 00

/ e g (@)(de) = it ),

— 00

/ T g (@)(de) = h(1,0),

—0o0

and

/R M (i) (dydEa) = (. ).
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2)
/wgmmw@>a

/waqﬂmu®>m

[%sq%@w®>0.

(3) None of p(Z), ¢ (%) and ¢*(Z) is concentrated on a single point.

The assertion (2) follows from Proposition 4.3, eq. (4.27), and eq. (4.28).
The assertion (2) combined with eq. (4.25) and eq. (4.26) leads to assertion (3).

Proposition 4.7. There are positive constants C1 and Cy such that
lg(it)] < Cye= A",

h(it,it)| < Coe~ 1"
\h(it,0)| = |h(0,it)| < Coe 1t
fort € R, where k = log2/log \.

Proof. By Proposition 4.5 and eq. (4.3),

(4.29) g(iMt) = xiqh(xcg(it), yeh(it, it)),
(4.30) h(iM, iM) = quﬁg(xcg(it)wch(it,it)).
Define et
G(t) = —[t|~"log |g(it)],
and

H(t) % —t| " log |h(it, it)|.

Substituting these in eq. (4.29) and eq. (4.30), and using the fact that |g(it)| < 1
and |h(it, it)| < 1, we have, from eq. (3.1) and eq. (3.2),

log |g(iAt)| < 2log|g(it)],

log |h(iAt,ixt)| < 2(log |g(it)| V |h(it, it)]) .

From these it follows that
(4.31) G(Mt) > G(t),

(4.32) H(\) > G(t) AH(L) .
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By Proposition 4.6 (3), there is a constant 6 > 0 and a constant C, 0 < C < 1
such that
0<|g(it)| < C,

0 < |h(it,it)| < C,
for any t € R, A7 < [t| < §. Therefore, eq. (4.31) and eq. (4.32) lead to
G(t) > Cy,
H(t) > Cy,
for any t > § with C; = = "log C' > 0. This implies

lg(it)] < e= ",

\h(it,it)] < e=Clt",

for t > §. Take Cy > ¢©19". Then we have
g(it)] < Coe=IH"

|h(it, it)| < Coe=C1IH"

for t € R. The estimate for |h(it,0)| is obtained similarly. This completes the
proof. a

We use the following property in later sections.

Proposition 4.8. p, ¢", and ¢* have C* densities. In particular, p, the
density of p, satisfies

p(§) =0, <0, and p(§) >0, £>0.

Proof. Proposition 4.7 and the fact that g and h are entire functions imply that
g(it), h(it,it), and h(it,0) with ¢ € R are rapidly decreading functions. From
this, the existence of the C>° densities for p, ¢, and ¢* follows. Let p™ be the
density of ¢t . Then eq. (4.25) and eq. (3.1) imply that

(433)  Ap(A )

= xepx p(&) + 222 px px p(€) + 22 px px px p(€)

+ Axtyepx prpxpt(€) + 6yl px pxpt xpT(E).
Let A be the support of p. It is clear that A € [0,00). From eq. (4.33) it
follows that if z, y, 2 € A, then A} (z +y), A" (z +y + 2) € A. Note that
2 < A < 3. By Proposition 4.6 (2), there is an 29 € A such that o > 0.

Then (2A71)"z9 € A, n > 1. Since A is a closed set, this leads to 0 € A.
Therefore, 0, A"'zg, 2A" 'z, 3A"'xy € A, and by induction, it follows that
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mA"xg € A, m =0,1,---,3". This implies A = [0, 00). This completes the
proof. O

Note that g in Section 1 is equal to pu, (%) with

Te = (exp(—fe), exp(=20.), exp(=20.), exp(=35.)).

The definition of 3, implies #. € I'. Therefore Theorem 1.2 in Section 1 follows
from Proposition 4.6 and Proposition 4.8.

5 Continuum limit of self-avoiding paths

Let F,, n=0,1,2,...be the graphs defined in Section 1. Let F,, = 2~ "F,, n =
0,1,2,... . Each F, is a finite graph obtained by giving a substructure to a
unit tetrahedron Oagbgcy. Let us define the finite three-dimensional Sierpinski
Gasket by

F=|]JF,.

1C3

We define G, to be the set of vertices in Fnj and T, to be the set of closed
tetrahedrons in R® whose vertices belong to G, and whose edges are of length
27",
Let ~
C={weC(0,00) = F)| w(0) =0, tlim w(t) = ao}.

C is a complete separable metric space with the metric

d(u,v) = sup |u(t) —v(¢)],
t€[0,00)

u,v € C .
We define a mapping ~ : UW*(”) — C as follows. For u € W*(™),

(1) yu(s) = 27" u(j), for j € Zy.

(2) yu(®) < (G4 1= 1) yuli) + (t =) u(G +1), for j <t <j+1, j€Zy.
Note that v is an injection. We denote

W*(n) déf ,yw*(n)
w € W*™ is self-avoiding in the sense that w(t;) # w(ty) if 0 < ¢ < tp <
L(y~1w).
Let ji,(¥) be the image measures of i, (¥) induced by 7. fi,(¥) is a proba-
bility measure on C supported on W*(™ . Throughout this section we consider
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the case ¥ € 9DNZE;. Our objective in this section is to study the limit of i, (%)
as n tends to infinity.

Let us begin with some definitions we use in this section. First we define
“hitting times”, TF : C — Ry, k,i € Zy. Let T¥(w) = 0, and by induction,
fori>1,

TH(w) = inf{t > T (w) [ w(t) € Gi \ {w(T{; (w))}},
if the right hand side is finite, otherwise, T (w) = co. T} is the time when w hits
the elements of G, for the i-th time on condition that if w hits the same element
of G}, more than twice on end, we consider it “once”. Writing w(o0) = ap, and
noting that w(t) — ag as t — oo, we obtain a finite sequence {T};—1,._ a such
that w(Th, (w)) = ag, w(TF(w)) #ag, i=1,...,M — 1.

Next we define the “exit times”, {Ti*k(w)}i:o,._,N(wy and the “k-skeletons”,
the sequence of tetrahedrons a path passes through, ox(w) = (A1,..., An(w))-
Let {TF(w)}izo,.. m be the finite sequence obtained above. Let TyF(w) =
TF(w) = 0. A is defined to be the element of T} that contains O = (0,0).
For i > 1 we proceed by induction. Define

exit(i) € min{j € Z | j < M, TF(w) > T/% (w), w(TE,) & A}

As long as the right-hand side exists, we define T;**(w) = Te’;it(i) and Ajyq
to be the element of T} that contains both w(T;*(w)) and w(Teiit(i)H(w)).
N = N(w) denotes the number of the elements of oy (w) defined in this way.
Let T3F(w) = T¥ (w). We write SF(w) = Tr*(w) — T;*,(w) and call it the
crossing time of A;. In the following we denote an ordered set of tetrahedrons
like (A1,...,An) and an unordered set like {Aq,...,An}. Let w € C, k €
Z. , and ox(w) = (Aq,...,An). The following properties are straightforward
consequences of the definition.

1. 0O e Al,ao € An.

2. A; N A;11is equal to neither () nor A;.

IfweW* ™ nkeZy n>k, o w) further satisfies,

3. Each element of T}, appears at most twice in (Aq,...,An).

4{A;, Aia} #{A;,Aj11},1 # j as unordered sets.

Let us denote 7y def {A = (Ay,...,AN)| A; €Ty, i =1,...,N, N =

1,2,..., A satisfies 1. through 4.}, and 7,"? o {A = (A1,...,AN)| A; €

Tp, i=1,...,N, N=1,2,..., A satisfies 1. and 2.},
For n € Z,, we define a “decimation” map @,, : C' — C by

(Qnw)(i) = w(T} (w)),
fori=0,1,2,..., M, with w(T}, (w)) = ao,

(@nw)(t) = (i +1 = 1) (Quw)(i) + (t — i) (Qnw)(z +1),
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fori<t<i+1,i=0,1,2,...,M —1, and

(Qnw)(t) = ag

for t > M. Note that if £ < n, we have Q0 Q,, = Q.
Let m < n and Qnfin(Z) be the image measure of fi, (&) induced by Q.

Proposition 5.1. Forw € W*™) and m < n, Qnw € WHm),
Qunfin(T) = firm(Xn-m(%)).
In particular, for @ def (Ze, Ye, 0,0),
Qumiin (@) = fim (@).
The statement on @y, fin () is obtained directly from the recursion relations,
eq. (2.2) in Proposition 2.1.

We introduce a time-scale transformation Uy, («) : C' — C, «a € (0,00), n €

N . For w € C, define

(Un(@)w)(t) 2 w(a™).

Let us denote by P, (Z) the image measure of fi,, (%) induced by U, ()). We omit
the Z dependence of P, when no confusion occurs.
We define

y(n) def {we W) | 83(7*110) = 84(’}/7110) =0}

Note that for w € V™,
Tz*k(w) = Tz‘k(w)v
for k<mn, 0 <i< N(w).
In the following we write, for example, P, [ Qnw = v ] instead of P,[ {w €
C| Qunw=1v}].
We obtain the following proposition in a similar way to the case of the two-
dimensional Sierpinski Gasket.

Proposition 5.2. Assume m < n, v € V"™ and 0,,(v) = (Aq,...,An).
Under the conditional probability P,[ - | Qmw = v], we have the following.

(1) The set of S!™’s with i € {i1,%2,...,ix} C {1,...,N} are independent
random variables, if A;; # Ay, , for any j # k.

(2) For 1 < i < N, if A; appears only once in o, (v), the law of XS is
equal to p}_,., thus converges weakly to p* as n — oo.

(3) If Ay = Aj, 1 <i < j <N, then the law of (\"S]",\™S}") is equal to
Qn—m, thus converges weakly to q as n — oo. In particular, the law of
A ST s equal to g, _,,, converging weakly to ¢* as n — oo.
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By Proposition 5.1 combined with Theorem 3.5, we have

Proposition 5.3. For any k € Z,

lefl

Naoy (k)
hmPn[ka:U]:{oc e ifve v,

otherwise,
where N1 = s1(y~1v) and Ny = so(y~1v).
Proposition 5.4. The family of measures P,, n=1,2,..., is tight.
Proof. Since we already have
P,[w(0)=0]=1,

it suffices to show that for any €,7 > 0, there exist a positive integer ng and a
positive number § such that

P,[ sup |w(s)—w(t)]>e]<n, n>ne.
|s—t|<d

For an arbitrarily given e, choose k € Z_ satisfying
2.27F <e.
We have,

P ‘ 5;1:‘1)<6|w(3) —w(t)| >e¢]

< P SF(w) < forsomei=1,...,N(w) ]

Ly 'v)
< > ) PSHw) <6 | Quw=v] P Quw=1v]
vV i=1
+ Py Qrw e WW\ V) ]
< 2-4Fpr s i s< AN+ @y [s 0 s < ARS))

+ Po[ Qpw € W*HB)\ y(*)

The last inequality is obtained from Proposition 5.2 and the fact that L(y~1v) <
2.4k a.s.. By Proposition 5.3, there is an n; € Z, such that

P,[ Qrw € W) \V(k) 1< g, for n > nq.

Take a § > 0 such that

~4_k_177.

1
pls : s< A6+ ¢[s - s<)\k(5]§5
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Then by Proposition 4.6 and Proposition 4.8, there is an ng > ny such that
i pls s <A+ [s s s<ARS ] <47y,

for n > ng. This completes the proof. |

Now we will show the convergence of the finite dimensional distributions.
ForoweC 0<t; <...<tn,, m=1,2,..., let us define

B (W(t1), ..oy w(ty)) = 1wt Feti@nwltn) =)0 g ) € R™.

For a probability measure @ on C, define F,,,(Q)(¢1,...,tm) : R™ — C by,

def

Fn(Q)(t1, ... tm) = EQlhm(w(ty),. .., w(tm))].

Fix anm € Zy. For any k € Z4 and n > k,

Fm(Pn)(tl,...,tm)
- Z EP by | Qrw = v] P,[Qrw = v]

veV (k)
+ EPhy | Qew € WEN\ V] P Qrw e WHF\ V)],

F(P,)
LN B | Quu = o PafQuw =
veV (k)
= Z ZEP"[hm\ Quw=v, T} <t; <Tr* | i=1,...,m
veV® {r;}

X Pn[TT*ik <t <T:ﬁ1, i=1,....m | Qrw=v] P,[Qrw = v],

where Z is taken over {1,2,..., N(v)}"™ with r1 <1y < ... <7p,.
{r:i}
For simplicity write
def * * .
Efr Z By | Quu=v, TpF <t; <T)%,, i=1,...,m],
PP T <t < TR, i=1,. . m | Quw =1,

P, def P,[Qrw = v],

and et ~
R, = P,[Qrw € W*R \ v (*)],
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Then for n,n’ >k,

|F(Pn) = F(Po)]

< D D IEP—EP| Py Po+ > Y |[EP||P; - P Py

veV (k) {r;} veV ) {r;}

+ Y D |EP| PuIPy — Pl

veV k) {r;}

Put

u; = w(Ti*), i=1,...,N(v).
Under the condition that Qrw = v, v € Vi), T:ﬁg t; < Tr*ilj-p 1=1,...,m,
there are positive constants Cy and Cs, independent of k,v and {r;} such that

(W (t1), « - w0 (Em)) — hon (it s - -y, )| < C127C2K

Thus the first term is bounded by C;2-¢2F+1. For an arbitrarily given £ > 0,
choose a k such that

012702k+1 < E
4
Note that for a fixed k, the summation over v and {r;} is finite. By Proposi-
tion 5.2 and Proposition 5.3, for sufficiently large n and n’, the second and the

third sum are less than €/4, respectively, and
€
R, + Ry < 1

Thus we see that {F,,(Py)(t1, ..., tm) tn=1,2,... is a Cauchy sequence in C(R™ —
C), and therefore converges uniformly as n — oo. We have shown that the
distribution of (w(t1),. .., w(ty,)) converges for any 0 < ¢; < ... < t,,, m € Z.
This result combined with Proposition 5.4 leads to the following theorem.

Theorem 5.5. P,, converges to a probability measure P on C' weakly as n —
0.

Now we will proceed to study the properties of P. For A € Ty, let us denote
its neighbouring elements of Ty, by AM ... A®) if A contains any element of

Go,orby AW AM® otherwise. Let us denote (UA(i) N Gk> \ (A N Gg)

7

by ON(A), and (U AWy A) \ ON(A) by N(A).

Proposition 5.6. Assume A = (Ay,...,An) €Ty, k€ Zy. Let A= {w €
C| ox(w)=A }. A is an open subset of C.
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Proof. Take any w € A. From the definition of the skeleton, for Tj*, < ¢ <
Tk i=1,...,N,

?

w(t) NGr C A; NGy,
that is, w(t) € N(4;). Let
ri = inf{d(w(t), ON(A)) | T;* <t < T7*},

and
ti =inf{t > T;% | w(t) € As, d(Ai—y N A w(t)) =275

Noting that r; > 0, we can find an € > 0 satisfying

€< min 7r; A k=2,
i=1,...,

Then it follows that for any w’, d(w,w") < ¢,
w'(t;) € A\ G,
{wt)| t; <t <T"INGr C AN Gy,
{w' ()| T/ <t <t }NGr=A1NA;,
fori=1,...,N,and A; # A;_o for ¢ = 3,...,N. This means w’ € A. This

completes the proof. o

For A € 7', define a subset of C' as u(A) def {w € C| there exists a sequence 0 <
s1 < 82 < ... < sy < oo such that w(s;) € A; \ G and w((s;, $i+1)) NG C

A; foralli=1,2,...,N}, where w((a,b)) o {w(t)] a <t <b}.
By a similar argument to the proof of Proposition 5.6, we have,

Proposition 5.7. u(A) is an open set.
Proposition 5.8. IfA € ’2;1’2, then
{w e C| op(w) = A} Cu(A).
Proof. Let t;, t =1,..., N be as defined in the proof of Proposition 5.6. Since

Trk <t <Tp% {w®) | TiM <t <t;}NGL C A1 NA;, and {w(t) | t; <t <
Tr*Y NGy C A;. Take s; =t;, i =1,2,..., N . This completes the proof. O

From this proposition we have,

Proposition 5.9. If A € ’]}3’2 does not satisfy the condition 3. or 4., then
Plog(w)=A]=0.
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Proof.

Plu(A)]
linrri)i(;l)f P, [u(A)]

liminf P, [0, (w) = A]
0.

VANVAN

The first inequality comes from Proposition 5.8 and the second comes from the
weak convergence of P, to P. The probability vanishes because P, is supported
on a set of self-avoiding paths. This completes the proof. o

For each A = (Aq,...,AyN) € Ty, there is a unique element va of V(*) such
that o (va) = A . va is determined by va (i) € A;NA41, i=1,2,...,N—1,
and va (N) = ag . On the other hand, for each v € V(¥) there is a unique element
A of 7, such that ox(va) = A. This defines a one-to-one onto mapping from
T to V& .

Proposition 5.10. For A = (Ay,...,AyN) € T,

Ploy(w) = A ] <ad 2Memlyle,
where No denotes the number of distinct tetrahedrons that appears twice in A.
Proof. By Theorem 5.5, Proposition 5.6, and Proposition 5.3, we have

P[ak(w) = A}
< liminf P, [ox(w) = A]

n—o0

= liminf P,[Qrw = va | + liminf P,[ox(w) = A, Qrw # va ]
n—00 n—oo

ali iyl

A R ALS

This completes the proof. O

Theorem 5.11. For A € '];3’2,

$572N271

Plovw =al={; W AET,

otherwise.

Proof. Proposition 5.9 implies that P is supported on {w € C'| op(w) € T;, }.
Assume that for some A’ € T;,

Plop(w) = A" ] < gy 72Nty Ve,
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This assumption together with Proposition 5.10 leads to

1 = Y Plox(w)=A4]
AET,
<Y a) TNy
A€ET,
= 'rglxk(xcayc)
1.

Here, xj, is defined in Section 3 and we used

N—-2N>—1, N.
E x 2 Yy 2 :xk(x,y),
A€ETy

which follows from the correspondence between 7;, and V*) . This is a contra-
diction. This completes the proof. O

Remark. Though P itself has an Z-dependence, the probability that a path’s
skeleton takes a certain form is independent of Z. The dependence appears only
in the crossing times of tetrahedrons. ( See Proposition 4.5.)

Proposition 5.12. Let ox(w) = (A(k (w),. .7AS\I,€Z (w)), and denote by ugk)

and vgk) the two vertices ofAE (w) that are not contained in {w(T;*(w)), w(T;*, (w))},
i=1,...,Ng. Then

Plu(t) € AP )\ {ul”, v} for all t, T, (w) < t < T7*(w),

i=1,... Ny, keZ,|=
Proof. Assume for some i and k there exist A’ € Ty, A’ # Agk), and t/,
TF (w) <t < T;*(w), such that w(t') € A’\ Gy. The definition of the exit
times implies that there are ty, ..., t4, t; < ta <t < t3 < t4 such that {w(t2)} =
{w(ts)} = AN AP and w(ty), w(ts) € AP\ Gy, Let r = d(w(t'), A’ n AP)
and r; = d(w(t;), A'N Agk)), j =1,4. Choose an m € Z such that 2-27™ <
min(r,r1,74). Let A and A(™) be the elements of T}, satisfying

A e AW DA e A A N AR = A A A

Then it follows that o, (w) contains the subsequence (A A(™) or (A0 Alm))
at least twice. Thus for a fixed A = (Aq,...,An) € Tk,

Pl op(w) = A and w(t') € F\ Ay, for some i and ', T/* (w) < t' < T*(w) |
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N(A)

< Z Plor(w) = A and w(t') € F\ A, for some ¢/, T;* (w) <t < T;*(w)]
i=1
N(A) oo
< Z Z Pl op(w) = A, 0, (w) contains some successive pair
i=1 m=k+1
{AM) AN tywice. |
= 0.

To obtain the last equality, we used Proposition 5.9. Summing up over all
elements of 73 and all k € Z, we obtain,

(PDw(t) € AP (w) for all T7% (w) < t < T/ (w),i=1,... Ny, k€ Zy]=1.

Again, for a fixed A = (Aq,...,Ayx) € Ty, and a fixed i, 1 <i < N, we denote
the two vertices of A; that are not contained in A; N A;17 or A;—1 NA;, by
u and v, and the element of T, that is contained in A; and containing u, by
A,(Lm), for m =k, k+1,.... If w(t) = u for some t, T;* (w) <t < T;*(w), then

w must go inside A&Z”), which, from what we just proved above, implies that

there is a subsequence of o, (w), {Agm), Aﬁi’{, o Aﬁ’ﬁl}, r,ry € Zg, vy >0,
such that A;m) C AL <j<r4r, wTrk (w) € A w(Trk(w)) € Ag”ﬁl,

and A" = A for some s satisfying r < s < 7 + 1. In terms of probability,

P[ there exists t, T;% (w) <t < T/*(w), such that w(t) = u| op(w) = A]

< P[ om(w) has a subsequence satisfying above conditions | o3 (w) = A ]

—k
<™,

where ot
b= max{x;l(dn(xc,yc) - x3)7y;1(¢2(xc,yc) - xé)}

Since b < 1 and m can be chosen arbitrarily large, the first probability vanishes.
The same holds for v instead of w. Summing up over i, A € 7, and k, and
combining with eq. (5.1) we have the statement. This completes the proof. O

We go on to prove that the stocastic process defined by P is almost surely
self-avoiding, that is, w(t1) # w(te), for 0 < t; < to < Ty, (w), where

Too(w) =inf{t > 0| w(t) =ap}.
We classify possible self-intersections as follows.
(1) There are ¢t; > 0 and ¢y > 0 such that

w(t) = w(ty), for ty <t <ty +ty < Tyy(w).
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(2) There are t1,ta, and ts, t1 <t2 <13 such that
’LU(tl) = ’Ll)(ifg)7
’U)(tz) 7é ’U)(t1).

Type (2) can be further classified into two cases:
(2-1) w(ty) €| JGr,
k

(2—2) w(tl) cF \ UGk

We start with dealiI;lg with type (1) case.
Proposition 5.13.
PJ there exist t1 > 0 and to > 0 such that w(t) = w(t1) # ag, t1 <t <1+ o)
=0.

Proof. Let Ay ., be the set of w € C such that there exist ¢; > 0, and two
adjoining elements of Ty, A and A’ satisfying w(t) € (AUA)\Gr)U (ANA)
for t; <t <ty +to, or such that there exist t; > 0 satisfying w(t) € (Ag\ Gx)U
{O} for t1 <t < t; + to, where Ag is the element of T} containing O. It is
straightforward to see that Ay 4, is an open subset of C, and we have

P[Ak:,to] S lim inf Pn [Ak:,to]~

Pn[Ak,to]
< P, there exists i, 2 <i < N(w), such that S¥ | (w) + SF(w) > to]
N(A)
— 3 Plok=A] Y PSE (w) + SEw) > to] o= A
AETy; i=1
k k
< Al > 2 g > 2R

In the last inequality we used
Pl SE (w) + SE(w) > to| o = A]
t t
< P SF(w)> 50 or SF(w) > 50\ o = Al

* )‘ktO * )\kto
< 2pp_plt i t> T]Jrqn_k[t Dt > T]).

By Chebyshev’s inequality and Proposition 4.5, for any a > 0 and s > 0
lim py[t : t>a]
oo

n— -
< e % lim eStp (dt)
n—oo 0
= e %g(s) < 0.



A similar inequality holds for ¢[ ¢ : t > a |. Therefore

kt
PlAr,) < liminf Py [Ap,] < 4671 Ce™"72,

n—o0

where s and C' are positive constants. Thus by Proposition 5.12, for any k € Z
and tg > 0,

P(to)
e PJ there exist t1 > 0 such that w(t) = w(t1) # ag, t1 <t <ty +to]
< P[Ak7to]~

Letting k£ — oo, we see that P(t) is equal to zero. Therefore,

P[ there exist t; > 0 and ¢y > 0 such that w(t) = w(t1) # aog, t1 <t < t5 + to]
o0
1
< P(—
< sl
m=1
= 0
This completes the proof. O
Next we will rule out the possibility that (2-1) occurs. With Proposition 5.12
taken into consideration, it is sufficient to show that {w(t)} # A; N A4 for
Trk <t < Trk almost surely, where A; is the i-th component of o4 (w). Note
that {w(T;*)} = A; N A;41, and assume there is a t1, 7%, < t; < T;F, such
that {w(t1)} = A; N A;41. Proposition 5.13 implies that w cannot stay at
A; N A4 for a finite interval of time. It follows that there must be an integer
m>kand A € T, A;NA+1 CAC A, that appears in o, (w) three times.

By Theorem 5.11, this occurs with probability zero. We can show in a similar
fashion that {w(t)} # A;—1 NA;, for T;F, <t < T;* | a.s.. Therefore, we have,

Proposition 5.14.
Plw(t) € AP (w)\ Gy, for all T*, (w) < t < T*(w), i=1,..., N,
keZ, =1,
where o (w) = (Agk) (w),..., Ag\’;’z (w)). In particular,
P[ T (w) = TF(w), foralli=1,....Ny, k€ Z, |=1.

What is left is to show that the probability for the type (2-2) case is zero.
For z € F'\ UGk’ there is a sequence of tetrahedrons Ago), Ag), cey Ag“), ...

k
such that

AP eT,, ze AP\NG,c AF-I\G, ,, keZ,.
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In order that w hits z twice, there must be an integer K such that oj(w)
contains AP twice for any k > K, and ox_1(w) contains A only once.
For w € C let K(w) be the minimum integer, if exists, such that there exists a
sequence {AFY k= K(w), K(w)+ 1,... satisfying

(1) A® €Ty, AGHD)  AG)

(2) op(w) contains A twice.
Put g» = P[ K(w) = k |. For any A* € T,,,, m = 1,2,..., let ¢ be the
probability that there exists a sequence {A®} |k = m,m + 1,..., satisfying
(1) and (2) above with A(™ = A* under the condition that A* is contained in
om(w) twice. Note that by Theorem 5.11, ¢ is independent of m and the choice
of A*.

Classifying according to the four possibilities of A™*1) and using the inclusion-

exclusion principle, we have

q = yo {42lyeq + 22y (4 — 6¢° +4¢° — ")}
The only solution to this equation found in 0 < ¢ < 1is ¢ = 0. By Theorem 5.11,
q and q’s are related as follows;
gk = 1- xcilxkfl(zc(]- - ql)v yc) )
@ = dalyeq+6z.y2(20 - ¢7).

This leads to g = 0, for all k =1,2,.... We thus have
P[ type (2-2) occurs | < qu =0.
k=1

Theorem 5.15. The stochastic process defined by P is almost surely self-
avoiding, that is,

P[ ’LU(tl) 7é ’LU(tQ), 0<t; <ty < Tao(w) ] =1.

Let w € C. The image of w, G(w) f w([0,00)), is a subset in three-
dimensional Euclidean space. We next study the Hausdorff dimension of G(w) .

In the case of the self-avoiding paths on (two-dimensional) Sierpinski gasket,
Theorem 1.1 of [6] was sufficient for the probability one determination of the
Hausdorff dimension of curve G(w) (Section 1.4 of [2]). Unfortunately it is not
sufficient for the present case. The problem is as follows.

From Proposition 5.12, it follows that

G(w) = m U A, P—a.s..

k=0 A€o (w)
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Each skeleton o (w) is a sequence of tetrahedrons A of side length 27% . Note
that from Theorem 5.11, there are two types of tetrahedrons in oy (w) for each k,
namely those that appear just once in o (w) and those that appear twice, both
type appearing with positive probability. The family of tetrahedrons U or(w)

k
resembles the “random constructions” of Mauldin and Williams, but their theory

can be applicable to the case when only one type of tetrahedrons appear.
Here we will state a weaker result, a lower bound of the Hausdorfl dimension
of G(w) . This can be derived by considering a following subgraph of G(w) :

N U a

k=0 A€o (w)

where
o). (w) = {A € or(w) | A appears just once in o (w)} .
The Hausdorff dimension of G'(w) can be derived from Theorem 1.1 of [6], in

a similar way as in [2], and the value can be used as the lower bound to the
Hausdorft dimension of G(w). We will state our result without proof.

Theorem 5.16.
P[ Hausdorff dimension of w([0,00)) > log(8x2 4+ 622 + 2x.)/log2] = 1.
Remark.
(1) 83 + 622 + 27, =2.599--- > 2.

(2) We conjucture that with P-probability 1 the Hausdorff dimension of w([0, 00))
is log A/ log 2, where X is as in Proposition 4.1. This could be derived from
an extension of the theory of [6].

6 Mean square deviations of self-avoiding paths

In this section, we return to the self-avoiding paths on the three-dimensional
pre-Sierpinski gasket, but instead of considering a set of paths with fixed end
points, we now consider a set of paths with a fixed length. The arguments are
similar to those in [4].

Let W(© = {w € Wy | w(0) = O}, and for each k € Z, , let N(k) be the
number of elements in {w € W) | L(w) = k} . The first step is to bound N (k)
from above and below.
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Proposition 6.1. Let b be a positive constant, and for n € Zy and £ € R,
let hy, = bA""/n, and g, (&) = (V2rhy) L exp(—£2/(2h2)) . If b is sufficiently

large, then

(P(Te) % ga) (6) /R gn(€ — m) P(E2) (dn) — p(E)(€)

uniformly in & € R asn — oo. Here, X is as in Proposition 4.1, p}, as in Proposi-
tion 4.6, p as in Proposition 4.8, Z. = (exp(—0.), exp(—20.), exp(—20.), exp(—30.)) ,
and B, is as in Corollary 3.6.

Proof. Let
bu(t) = / exp(i £1) (5 (Z2) * gn)(€) dE , L€ R.
R
Then

¢n(t) = Zl,n(ﬂc)_lzl,n(ﬁc - Z./\_nt) eXp(—hitz/Z)
= g\"(it) exp(—h2t2/2),

where Z; ,, is defined in eq. (3.8), and ¢\ is as in eq. (4.23) with Z = Z,. Note
that #. € JDNZ; . Also note that from eq. (4.24), h(™)(it,it) = Zo.,(8) "' Zo.n(Be—
i)
Let
A={teC|3t>0, X' <|t| < \?}.

Proposition 4.8 implies that sup |g(it)| <1 and sup |h(it,it)| < 1. Therefore
teA teA
from Proposition 4.5 and Corollary 3.6 it follows that there exist a positive

number ¢ and a positive integer n; such that forn > n; and t € A,

| Z1n(Be — iINT"8)| = | Z1,n(Be) 9\ (it)] < 20 — ¢,
and
| Zgm(Be — iA")| = | Zan(Be) B (it it)] < ye — €.

By Proposition 2.2, (. —€,y.—¢€,0,0) € D°, and since D° is an open set in 2y ,
there exists a positive number § such that (z. — €, y. — €,0,0) € D°. Note that
| Zjn(Be —iA"")| <|Z;n(Be)], 7 =1,2,3,4, t € A. From Corollary 3.6, there
exists an integer ng > ny such that |Z;, (6. —iA""t)] <0, j =3,4, n>nyg.
Therefore,

|Zj,n+m(ﬁc - ZA—nt” < Xj,m(xc —6Yc — 6 5a 6) )

i=L2, n>nyg, m>1,teA.

This together with Proposition 2.4 implies that there exist positive constants C'
and v such that forn >ng, m>1,t€ A,

(6.1) |Zj7n+M(ﬂc —iA" ") < Cexp(—y2™), j = 1,2,
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(62) Zj,n—‘rm(ﬁc + A_n) S CeXp(—’}/ 2m) ) .7 = 17 2) 374

Now let ng be as above. Let n be a positive integer satisfying n > ng,
and assume that ¢t € R and [t| € [1, A"~ ~!]. Let m be the integer part of

log |t
log |)\‘ + 1. Then m satisfies n —m > ng and A™* <A™ [¢| < 1. Then
0og

|¢n(t)| < Zl,n 50) ! ‘Zl,n(ﬁc_i)‘int”

( —
Zl’n(ﬂc)_l ‘Zlyn—m—i-m(ﬁc - ZA_(n_m) (A_mt)”
< Zl,N(ﬁc)71 Cexp(—v2™)
< Zl,n(ﬂc)71 Cexp(_,y ‘t|1og 2/ log )\) .

Since Z1 n(8:) — x. and ¢,(t) — g(it), n — oo, Proposition 4.7 and the
dominated convergence theorem implies,

/R IX[0,xn-n0-1 ([t @n () — g(it)|dt — 0, n — oco.
On the other hand,

/ Xton—ma-t] ()6 (£) — du(8)ldt
R

IN

2/ exp(—h2t?/2)dt
An—no—1

< 2 (AN exp(—(h A2 2)
= 22X 2\t exp (AT T2 /2) - 0, n — oo,

if b is sufficiently large. Hence for sufficiently large b,

/ 16a(t) — g(it)]dt — 0, 1 — oo,
R

which implies the Proposition. This completes the proof. O

Proposition 6.2. There exist positive constants Cy, Co, and real constants
Y1, Y2, such that

Cy k"M exp(Bc k) < N(k) < Co k™ exp(Bek), k>1.
Proof. Let D : W(© — Z_ be a map defined by
(6.3) D(w) = min{n > 0;w(i) € F,, for alli > 0. },

Let
Mn = Z exp(—ﬂc L(w)) , mneE Z+ .
weWw ) | D(w)<n
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Classifying the summation in the definition of M, ; in a similar way as in
the proof of the recursion relations in eq. (2.2), it follows that there exists a
polynomial f; of four variables with positive coeflicients, such that

—

(6.4) M1 < f1(Z0(B)) My, neZy.

By Corollary 3.6, Zn(ﬁc) converges as n — 00, hence there exist positive con-
stants A; and As > 1 such that

(6.5) M, <A AL, neZ,.
By definition, 2P~ < L(w) follows. Therefore,
exp(—Be k) N(k) < Miogryrog 2101 < Ay A3 A7 152,

which proves the upper bound in the Proposition.
To prove the lower bound, let b be a sufficiently large number satisfying
Proposition 6.1. Note that

(P (5e) * 9u) (€) = /R gnE — mp2 (@) (dn)
Let k, = v/2logAbnA~"™. Since
/ 9n(€ = )P (E)(dn) < gn(kn) = (276°n) "2 -0, n — o0,
R\[§—Fkn,&+kn]
Proposition 6.1 implies that
sup{[p(£.) (€) / gn(€ — MPL(E)(dn)]; EERY =0, n — oo,

[—kn,&+kn]

From Proposition 4.8, this implies that there exist an integer no > 1 and a
positive constant e such that b, ! p¥(Z.)([€ — kn, & + kn]) > €, n > ngy, €€
A1 07).

Let k € Z . Let n be the integer satisfying A™"k € [1,}]. For sufficiently
large k, n > ny and k, <1 — A~! follows, hence p: (%) ([A\""k — 2k,, \""k]) >
hpe . Therefore,

Zl,n(ﬂc)hn6 < Z exp(—ﬁcL(w))
weW ™| k—2k, A\n <L(w)<k
< exp(Bc2kn,A") exp(—L.k)N (k) ,

because w € Wl(") with L(w) < k can be extended to a path in W) with
L = k. It follows that

N(k) > Zy n(Be)e bA™n2 exp(—206:b (21og \)/2n) exp(B.k) .
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Since n < logk/log A\, this implies the lower bound in the Proposition. This
completes the proof. |

The next step is to give bounds for the numbers of short paths and long
paths. Let

Upm = Z eXp(_ﬁcL(w)) ’

weW )| D(w)<n, L(w)>An+m/2

Vi = 5 exp(- AL, €Ly mE T,
weWO) | D(w)=n+1, L(w)<An—m

Proposition 6.3. There exist positive constans Az, C', and v such that
Unm < CAYexp(—yA™?),
and
Voam < CASexp(—y2™),n€Zy, meZ,.
Ay may be taken to be the same as in eq. (6.5).
Proof. Put r = (A —+v/)\)/5, and let
Sj,n,m = Z exp(—ﬁcL(w)), ne Z+7 m e Z+a .] = 1; 273547
wEVV;n), L(w)>An+m/2p
By a graphical consideration similar to that used to obtain eq. (6.4), one finds
4
Un+1,m S fl(Zn(ﬁc))Un,m+1 + (Z Sj,n,m%
» J

j=1

(Zn(B:))) My

where f1(Z) may be chosen to be the same as that in eq. (6.4), and f1(0,0,0,0) =
1. In particular, f; is a polynomial of four variables with positive coefficients. As
in the derivation of eq. (6.5), there exists an integer n; such that fl(Zn(ﬁc)) <
Az, n >nq, where As is as in eq. (6.5). Corollary 3.6 and eq. (6.5) imply that
there exists a positive constant C; such that

4
—(n+1 — 2 :
A2 (m )UnJrl,m S AQ nUn,m+1 + Cl Sj,n,m7 n 2 ny, m Z 0.
=1

Note that since L(w) < 3-4P) it follows that U, ,, = 0 if \"*™/2 > 3.4"
which holds if m > 3n and n > 4. We may assume that n; > 4. Hence

[(3n] 4
AQ_nUn,m < Cl Z Zsj,n—k—l,m—i-k’ y 1 > 4nl , m > 0.
k=0 j=1
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On the other hand,

Sinm < exp(—rA™?) Z exp(— (8. — A" L(w))

wEWj(")
= exp(—rA") Z; 0 (B — A7)
Corollary 3.6 and Proposition 4.5 imply that there exists a constant Cy such

that
Zim(Be = A7) = g (1) Z1n(Be) < Ca, m € Zy
and

Zon(Be —A"") =™ (1)Z9.,(8.) < Ca, n€Zy .

Proposition 2.4 implies

ZS,n(ﬂc - /\7’“) Rn(fc,n)Zl,n(ﬂc - /\7n)
RO(fC,n)Cé

= 2xc,n CQ )

IN A

where T, = (Ten, 22, 22,22 ,)) with 2., = exp(—8. + A™") . Similar argu-

ment holds also for Z4n(ﬁC — )\L”). Therefore Z; ,,(8. — A™"), j =1,2,3,4,
are bounded, which, together with the above estimates on Ay " U, m and Sj n.m
implies the bound for U, ,, in the Proposition.

To prove the bound for V,, ., , let

Tinm= Z exp(—8.L(w)),

weWw " L(w)<an—m

ne€Zy, meZy, m<n, j=1,2,34,

and put fn,m = (Th,nm: Tom,m,> I3.n,m, Tan,m) . By a graphical consideration
similar to that used above, one finds

Vn,m S fl(fn,m)Mn - Mn = (fl(fn,m) - fl(oa Oa 07 O))Mn .

Note that if L(w) <A™~ then 1 — A "L(w) > 0. Therefore for j = 1,2, 3,4,

Tjum < . exp(—(Be + N""")L(w) +1) = € Zju(Be + A"").
wEW;n)

This with eq. (6.2) and eq. (6.5) implies the bound for V,, ,,,. This completes the
proof. O

The proof of Theorem 1.4 in Section 1 is as follows.
The assertion (1) is a direct consequence of Proposition 6.2.
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To prove assertion (2), let K (k) = [logk/log )], k € Z, . Note that AX(*) <
k < MX(®)+1 _Then Proposition 6.3 implies that for m € Z and k € Z, with
m < K(k),
tw e WO Liw) = k, D(w) < K(k) — m}
< eXp(ﬁck) UK(k)fm,Qm
< Cexp(Bek + (K(k) —m)log A — yA™)
< Cexp(Bck + (log As/ log A) logk — yA™).

This and Proposition 6.2 imply that for sufficiently large «,
P.[D(w) < K(k) — aloglog k]
< CCylexp((log Ag/log A — 1) log k — y(log k)* 1o )
< Cexp(—(logk)?).
Note that 2P =1 < [Jw|| < 2P®) . Therefore for sufficiently large o
Py[[|w]| < (log k)~ k"] exp((logk)?) — 0, k — oo
Next note that for m € Z and ¢ € Z , Proposition 6.3 implies
tH{we WO | L(w) =k, D(w) = K(k)+m+0+2}
exp(Bek) Vi (k) +m+t+1,m+e
< Cexp(fek) Ay W exp(—q2mt)
< CAyexp(Bek + K(k)log Ay +mlog Ay — 2™ 1) AL exp(—~2¢71) .

IN

Therefore,

PuD(w) > K(k) + (a/ log2) loglog K]

= Zpk[D(w) = K (k) + ¢+ (a/log2) loglog k]
=0

< C(C1A) ™) Afexp(—v2)
=0
x  exp((log A2/ log A — v1)logk + (alog Az / log 2) loglog k — (v/8)(log k)<) .

Therefore, for sufficiently large o
Py[|Jw]|] > (og k)*k*] exp((logk)?) — 0, k — .

This proves the assertion (2).

Let £k € Z, and s > 0. Note that the reflection principle similar to the
one in the proof of the Lemma (4.2) in [4] holds also in the present case of
three-dimensional pre-Sierpinski gasket, which implies

Eﬁk [Q(D(w)—l)s’ \w(k)| < 2D(w)—1] < Eﬁk [Q(D(w)—l)s’ |w(k:)| > 2D(w)—1}.
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This with |w(L(w))| < |Jw|| < 2P®) implies
(6.6) 27 B [2PM)] < EP[w(k)|*] < EM[[Jwl]*] < B [22P)].
Note next that

EP[[|w]|*] > ((log k) ~“k**)* (1 = B[ |jw]| < (log k)~ k"/*]) .
With assertion (2) this implies
(6.7) lim nf (log k) k=" P [||w]|*] > 0.
Similarly,

EP[Jw][*] < ((log k)*k™)* + k* B[ [w]| > (log k)K",

and assertion (2) imply

(6.8) limsup (log k)*sakfs/“Eﬁ’“[HwHS] < 00.

k—o0

It is easy to see that eq. (6.6), eq. (6.7), and eq. (6.8) imply assertion (3). This
completes the proof.

A Recursion relations

In this Appendix, we give the complete form of the function & defined in Propo-
sition 2.1.

Dy (z,y, 2, w)
= 22+ 22 + 22t + 423y + 62%y°
+ dxz 4 dxw 4+ 10222 + 8x%w + 12232 + 823w + 1622y
+ 8z%yw + 12xy° 2 + 42% + 8zw + 4w? + 14222 + 1622w
+202%2% + 1622 2w + 12zy2° + 62° + 822w + 8x23,
Dy (z,y, 2, w)
=zt 442y 4+ 2294
+ 8232 4 823w + 242%yz + 242 yw + 202222 + 3222 zw
+ 8z2w? + 36xy2% + 48zyzw + 1622° + 24x2%w + 8yz° + 227,
b3(z,y, 2, w)
= 222+ 22%w + 2232 + 42w + 42%yz + 8x%yw
+ 62y%2 4+ 12zyw + 4x2% + 1222w + Szw? + 102222
+ 242% 2w + 8x%w? + 6y222 + 24zyzw + 12xy2>
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+ 8zw? + 102%w + 32% + 4y2> + 24x2%w + 12223 + 222,
Dy (z,y, 2z, w)
= 2222 + 422w + 42%w? + 22y2° + Sxyzw
+ 8zyw? + 3y%2% + 12y%2w + 422° + 16x2°w
+ 16z2w? + 4yz> + 12y2%w + 32* + 823w .

B Derivative matrices.

We give the explicit forms of a 4 x 4 matrix B and a 9 x 9 matrix 9H ) (a) here.
B is defined by
0'® 0'd
B=(z—(a),...,m—(@
(axl (a’)7 Y 8$4 (a))a

Then an explicit calculation gives

p q p+s 2s
q r 2q 2q
B = ,
00 i(p—s) p—s
0 0 0 0
with
p= 8x§ + 6x§ + 2. + 12x§yc + 12xcy2,
q= 4x§ + IQmEyC,
r= 4xi + 88y§,
and

5 = 2x, + 4a? + 4a? 4 422y,

From this it is straightforward to obtain the eigenvalues,
1
AL = §{p—|—r—|—\/(p—r)2 +4¢%} =2.7965 . . .,
1
Ao = §(p—s) =0.3861...,

1
)\3:§{p+r— (p—r)2+4¢%2} =0.2537...,
and
A = 0.
Let
1o}

n € a n n
OH ™M (z) X (a_xltH( )(z),...7a—th( )(2)).
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Then

p q p+s 2s 0 0 0 0 0

q r 2q 2g O 0 0 0 0

0 0 Z(p—s) p—s 0 0 0 0 0

0 0 0 0 0 0 0 0 0
OHM @)= 0 0 0 0 p ¢ p+s 25 0

0 0 0 0 q r 2q 2q 0

0 0 0 0 0 0 1ip-s) p-s 0

0 0 0 0 0 0 0 0 0

1 16y} q ¢ % 16y} q q 4z} +56y2

OH™ (a) has double eigenvalues, A = A1, A2, A3, 0 and a single eigenvalue, 423 +
56y2 = 0.3276 . ... The left eigenvectors corresponding to A are (1, @, 2,2, 0,0, 0,0, 0)
and (0,0,0,0,1,,2,2,0), with « = (A —p)/qg=0.1731.. ..
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