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1 Introduction.

Renormalization group (RG) is, roughly speaking, a dynamical system determined by a
map which represents a response of (a set of random) objects in consideration to a change
of accuracy of observation, or ‘scale transformation’, on a parameter space of generating
functions of quantities defined on the objects. The method is expected to analyze the
asymptotic behaviors and critical phenomena of random objects.

We can think of, and there have been deep works on, various objects, for which the RG
approach may be effective. For the purpose of exhibiting the RG idea, we shall here focus
on a simplest object for which the RG method is non-trivial, a class of probability measures
on a set of paths (stochastic chains) on Z. The RG approach focuses on (stochastic and/or
approximate) similarity of the object (paths, in our case), rather than on Markov and/or
martingale properties, hence the RG has a (yet to be explored) possibility of being a
complimentary tool to these well-established methods.

One other point about introducing RG approaches to stochastic chains is that, like
differential equations and stochastic differential equations, RG can be seen as a differential
type equation which determine the object (stochastic chain, in our case) as a solution to
a RG equation. In fact, we will see that, given an arbitrary one dimensional RG, we can
uniquely construct a stochastic chain consistent with the equation. The RG approach to
the simple random walk on Z has been known in mathematics [7]. Our standpoint is to
place RG in the center, instead of regarding RG as another method of constructing well-
known stochastic processes, and to show that there is a large class of stochastic chains,
including simple random walks and self-avoiding paths, for which RG acts naturally, and
to show, in particular, that a generalization of the law of iterated logarithms hold for such
chains.

2 Definitions and main results.

2.1 Generating function and the renormalization group.

By a path (on Z), we mean a sequence of integers such that each neighboring pair in the
sequence differs by 1. Namely, a sequence w = (w(0), w(1), · · · , w(L(w))) of Z is a path if

|w(i) − w(i+ 1)| = 1, i = 0, 1, 2, · · · , L(w), (1)

where L(w) is the length (number of steps) of w. We write L(w) = ∞ for a infinite
sequence (a path of infinite length). We are interested on the long distance asymptotic
behaviors of paths on Z.
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Denote by Ω1 a set of finite path with w(0) = 0 and w(L(w)) = 2, which do not hit
±2 before the final step. Namely, a path in Ω starts at 0, jumps among ±1 and 0, and
finnally stops at 2. Define the generating function of path length L for Ω1 by

Φ1(z) =
∑
w∈Ω1

b1(w)zL(w), (2)

where the weights b1(w) are arbitrary non-negative constants such that the right hand
side of (4) has a non-zero radius of convergence.

For n = 1, 2, 3, · · · define the functions Φn : C → C recursively by

Φn+1(z) = Φ1(Φn(z)), n = 1, 2, · · · , (3)

and, extending the definition of Ω1, we denote by Ωn a set of finite path with w(0) = 0
and w(L(w)) = 2n, which do not hit ±2n before the final step. The following fact is the
starting point of everything.

Proposition 1 (RG on the paths on Z) For each n ∈ Z+, there exists a weight function
bn : Ωn → R+ such that

Φn(z) =
∑

w∈Ωn

bn(w)zL(w), (4)

holds for z within the raidius of convergence. �

Prop. 1 follows from a decimation procedure, ‘a scale transformation of accuracy of ob-
servation’, and is the core of relating the renormalizationg group, the dynamical system
determined by Φ1 through (3), to path spaces Ωn, n ∈ Z+. The definition of decimation
procedure, or the definition of bn(w) is esential in proving the results in the following,
but since it takes a while to understand the definition, we will leave the precise definition
to a textbook [1, §5], and be content with reproducing a figure which suggests how the
decimation procedure of relates a path of a small scale to a path of a large scale. We also
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note that the simple random walk on Z corresponds to the case

bn(w) = 1, w ∈ Ωn , n ∈ N.

Next we define a probability measure on Ωn, induced naturally by Φn, the generating
function of path length. Let xc be a positive fixed point of Φ1(x);

Φ1(xc) = xc , xc > 0. (5)

Then (3) implies Φn(xc) = xc , n ∈ N. Consider a probability measure determined, for
each n, by

Pn[ {w} ] = bn(w)xc
L(w)−1, w ∈ Ωn . (6)

The Laplace transform of distribution of path length L with respect to the path
measure Pn is calculated from (6) and (4), to obtain

∑
k∈�+

e−t kPn[ {w ∈ Ωn | L(w) = k} ] =
1

xc
Φn(e−txc). (7)

n → ∞ and L → ∞ are related through Tauberian type theorems. In considering
asymptotic behaviors, it is natural to normalize L by a scaling factor corresponding to
the average growth of L in n. We will see that the appropriate scaling factor is λn, where

λ = Φ′
1(xc) =

dΦ1

dx
(xc). (8)

Denote by P̃n, the distribution of λ−nL under Pn;

P̃n[ {λ−nk} ] = Pn[ {w ∈ Ωn | L(w) = k} ], k ∈ Z+, . (9)

Substituting t = sλ−n in (7), we find
∑

ξ∈λ−n�+

e−s ξP̃n[ {ξ} ] =
1

xc

Φn(e−λ−nsxc). We will

see that this quantity converges as n → ∞ (Thm. 4). This means that Prop. 1 implies
asymptotic behaviors of length distribution of paths.

We shall call the dynamical system on R+ determined by the recursion equation (3),
the renormalization group (RG) of the sequence of probability measures on paths
determined by (6).

2.2 Analysis of RG and asymptotic distribution of path length.

Write (2) as

Φ1(z) =
∞∑

k=0

ckz
k, (10)

where ck =
∑

w∈Ω1; L(w)=k

b1(w), k ∈ Z+. Hereafter we assume the following

Condition 1:

(i) The radius of convergence r of (10) is positive,
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(ii) c0 = c1 = 0,

(iii) c2 > 0,

(iv) ck � 0, k = 3, 4, 5, · · ·,
(v) ck > 0 for some k � 3. �

We note that Condition 1 imposes only mild conditions on {b1(w)}. Thus we have a
rich class of stochastic chains for which the following results are applicable. We will give
explicit examples in §3.

The following is elementary.

Proposition 2 The following hold.

(i) There exists a unique xc (positive fixed point) such that Φ1(xc) = xc, 0 < xc < r.

(ii) λ = Φ′
1(xc) > 2 . �

Prop. 2 further leads to the following, also elementary, facts [1, §5].

Theorem 3 (i) Φn(xc) = xc and Φ′
n(xc) = λn, for n = 1, 2, 3, · · ·.

(ii) For all x satisfying 0 � x < xc, lim
n→∞

Φn(x) = 0, and lim
n→∞

2−n log Φn(x) < 0 . �

xO xc
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xO xc

x4 x3 x2 x1x0

Fig. 2:

For x > 0, let us write for simplicity, x0 = x and xn = Φn(x), n ∈ Z+. We looked into
the trajectories of RG (behavior of sequences {xn} with different x’s). Thm. 3 says that
xc is a unstable fixed point of Φ1, and that if 0 � x < xc, xn converges to 0 as fast as
e−c2n

. It is also easy to prove that if x > xc, xn diverges (Fig. 2).

Theorem 4 Assume that a sequence of functions Φn : C → C, n = 1, 2, 3, · · ·, satisfies Condition

1 at the beginning of §2.2. Put Gn(s) =
1

xc
Φn(e−λ−nsxc), n = 1, 2, 3, · · ·, for those s such that the

right hand side is analytic, where λ is as in Prop. 2. Then the following hold.

(i) Gn is defined on Re(s) � 0 and there exists a Borel probabiity measure P̃n satisfying

Gn(s) =

∫ ∞

0

e−sξP̃n[ dξ ], Re(s) � 0.
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Furthermore, P̃n converges, as n → ∞, to a Borel probability measure P̃∗ supported on R. The

generating function G∗(s) =

∫ ∞

0

e−sξP̃∗[ dξ ] of P̃∗ is defined and analytic on Re(s) � 0 and also

on |s| < C∞ for some C∞ > 0. Gn(s) converges as n → ∞ to G∗(s) uniformly on any bounded
closed set in |s| < C∞.

(ii) There exist positive constants C and C ′, such that for any sequence {αn} with positive elements satisfying
lim

n→∞
2n(1−ν)/ναn = ∞ and lim

n→∞
αn = 0, it holds that

−C � lim
n→∞

αn
ν/(1−ν) log P̃n[ [0, αn] ] � lim

n→∞
αn

ν/(1−ν) log P̃n[ [0, αn] ] � −C ′ , (11)

and

−C � lim
x→0

xν/(1−ν) log P∗[ [0, x] ] � lim
x→0

xν/(1−ν) log P∗[ [0, x] ] � −C ′, x > 0 . (12)

Here we defined

ν =
log 2

log λ
. (13)

Furthermore, there exist positive constants (independent of ξ and n) C, C ′, C ′′ such that for any ξ and

n satisfying

(
λ

2

)n

ξ � C ′′,

P̃n[ [0, ξ] ] � C ′e−Cξ−ν/(1−ν)

(14)

holds.

(iii) P̃∗ has a C∞ density function ρ with respect to the Lebesgue measure; P̃∗[ dξ ] = ρ(ξ) dξ . ρ satisfies
ρ(ξ) = 0, ξ < 0, and ρ(ξ) > 0, ξ > 0 .

(iv) There exists a positive constant b0 satisfying the following. For b > b0 and n ∈ N, if we put

gn(ξ) =
1√

2πhn

e−ξ2/(2h2
n), ξ ∈ R, hn = b λ−n

√
n,

then lim
n→∞

∫
�

gn(ξ − η)P̃n[ dη ] = ρ(ξ), uniformly in ξ ∈ R. �

See [1, §5] for a proof. Note that the arguments in §2.2 are based solely on (3), the RG
for Φn defined by (10), and is independent of path measures.

2.3 Construction of the stochastic chain associated to RG.

To obtain a stochastic chain associated to Pn on Ωn, we need to note that a stochastic
chain by definition requires a distribution of points at each fixed time, while Pn is a
measure on a set of paths with fixed endpoints.

Theorem 5 Let (Ωn,Pn), n ∈ N, be a sequence of probability spaces defined by (4) (5) (6). Then
there exists a stochastic chain on Z, W0,W1,W2, · · ·, such that for all w ∈ Ωn, P[ Wj = w(j), j =

0, 1, 2, · · · , L(w) ] =
1

2
Pn[ {w} ]. �

A main ingredient of a proof of Thm. 5 is the Kolmogorov extension theorem [1, §C].
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2.4 Generalized law of iterated logarithms.

One of the consequence of RG analysis in §2.2 on the corresponding stochastic chain
constructed in §2.3 is the following.

Theorem 6 (Generalized law of iterated logarithms) Wk, k ∈ Z+, as above, satisfies
the following generalized law of iterated logarithms; namely, there exists C± > 0 such that

C− � lim
k→∞

|Wk|
ψ(k)

� C+ , a.e..

Here we wrote ψ(k) = kν(log log k)1−ν . The constant ν in the exponent of ψ is given by (13). �

Note that Prop. 2 implies 0 < ν < 1.
The original law of iterated logarithms is known to hold for a large class of Markov

processes (see, for example, [3, §VIII.5]), where in the proof of the lower bound, Markov
property is essentially used. The stochastic chain constructed in §2.3 lacks Markov prop-
erty in general. The generalized law Thm. 6 is applicable to cases where existing methods
and results do not apply.

Idea of a proof of the upper bound of generalized law of iterated logarithms is as
follows. For x ∈ N, let n = n(x) be defined by

2n(x)+1 > x � 2n(x). (15)

By considering hitting times of ±2n, Thm. 5, and (14) in Thm. 4(ii), we have

P̃n[ [0, λ−nk] ] � C ′e−C(λ−nk)−ν/(1−ν)

for all k and n satisfying 2−nk � C ′′, where C, C ′, and C ′′ are some constants independent
of k and n. See [1, §5] for details of the argument. This with (15) and a Borel-Cantelli

type argument [1, §2.3] implies lim
k→∞

|Wk|
ψ(k)

� C−(1−ν), a.e..

A proof of the lower bound of the generalized law of iterated logarithms is more
involved. Considering hitting times of ±2n, and then Thm. 4, Thm. 5, and Thm. 4(ii),
are used, with an argument in [4, 5] and a theorem of 2nd Borel-Cantelli type [1, §5], to

find P[

∞⋂
n=1

∞⋃
m=n

{λ−mTm(logm)(1−ν)/ν � (C + ε)(1−ν)/ν} ] = 1, which, through a standard

argument [1, §5] implies the lower bound.

3 Example: Self-repelling walk on Z.

As examples of stochastic chains for which our results can be applied, we explain a class
of chains which we call self-repelling walks [5]. The class continuously interpolates the
simple random walk and the self-avoiding walk on Z in terms of the exponent ν. This
example shows that our framework based on RG ideas contains something which were
unnoticed in the previous approaches.
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It is not difficult to see from the definitions that Φ1 of the RG for the simple random
walk on Z and the self-avoiding walk on Z are, respectively [1, §5],

Φ1(z) =

⎧⎨
⎩

z2

1 − 2z2
, simple random walk,

z2, self-avoiding walk.

A simplest interpolation would be, obviously, to define a class of Φ1 parametrized by
u ∈ [0, 1], by

Φ1,u(z) =
z2

1 − 2u2z2
, |z| < 1

u
√

2
, (16)

and define Φn, n = 2, 3, 4, · · ·, inductively by Φn+1,u(z) = Φ1,u(Φn,u(z)), n ∈ Z+. The case
u = 1 corresponds to the simple random walk, and the case u = 0 to the self-avoiding
walk. (The self-avoiding walk on Z is just a deterministic, straight going motion.) For
any u ∈ (0, 1], Φ1 = Φ1,u satisfies the Condition 1 at the beginning of §2.2, hence all
the results of the previous sections hold. The exponent ν = νu which determines the
asymptotic properties, such as the generalized law of iterated logarithms Thm. 6 and the
displacement exponent Thm. 7, of the corresponding stochastic chain Wk = Wu,k, k ∈ Z+,
is

xc,u =
1

4u2
(
√

1 + 8u2 − 1), λu =
∂Φ1,u

∂x
(xc,u) =

2

xu,c

=
√

1 + 8u2 +1, νu =
log 2

log λu

. (17)

In particular νu is continuous in u. Namely, the class of stochastic chains Wk = Wu,k,
k ∈ Z+, 0 � u � 1, continously interpolates the self-avoiding walk (ν = ν0 = 1) and
the simple random walk (ν1 = 1/2). Such continous interpolation has not been known.
The RG picture gives such interpolation in a most natural way. Comparing with (4)
and (16), {b1(w)} also can be obtained. Its explicit form, however, is not simple [5].
The obtained chains lack Markov properties, in general. The RG method works without
Markov properties. Since all the results in the previous sections hold for the self-repelling
walks, the generalized law of iterated logarithms Thm. 6 also hold.

The simple random walk allows ‘free’ motion of the paths, while in the self-avoiding
walk, returning to previously visited points are strictly forbidden. In this sense, we call
the obtained class of stochastic chain Wu,k, k ∈ Z+, 0 � u � 1, self-repelling walks on Z.
The parameter u can be extrapolated to u > 1 and all the results in the previous sections
hold. Naturally, we expect the resulting chain to be self-attractive. A self-repelling walk
has a continuum (scaling) limit (self-repelling process) [4], a continuous time non-trivial
stochastic process. Detailed properties are known [4]. In fact, some estimates are slightly
easier, becasue of self-similarity, hence the fixed endpoint self-repelling process has been
known [4] before the stochastic chain [5].

Another typical asymptotic property, the displacement exponent deals with expecta-
tions. An upper bound for E[ |Wk|s ] has similar implication to that for the law of iterated
logarithms, in that, a typical path moves back and forth, thus it cannot go much far com-
pared to its path length. In fact, the upper bound is proved in the general framework of
the previous sections for all the chains constructed in §2.3 [1, §5]. A lower bound, on the
other hand, has different meanings from that for the law of iterated logarithms. While
the latter is an estimate for how far a typical path can go, the former is an estimate for
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averages, hence paths which are accidentally close to the origin at specified step must
also be considered, and it seems (at present) that it cannot be proved without further as-
sumptions. For the self-repelling walks, a geometric consideration similar to the reflection
principle can be applied.

Theorem 7 ([5]) For any u > 0, the self-repelling walk Wk = Wu,k, k ∈ Z+, has a displacement

exponent ν = νu given by (17); lim
k→∞

1

log k
log E[ |Wk|s ] = sν, s � 0 . �

The known proof is techincally involved and we leave it to the original paper [5].
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and Z, preprint, 2003.
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