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Abstract

We study a kind of ‘restoration of isotropy’ on the pre-Sierpinski
carpet. Let R?(r) and RY(r) be the effective resistances in the z and y
directions, respectively, of the Sierpiniski carpet at the n-th stage of its
construction, if it is made of anisotropic material whose anisotropy is
parametrized by the ratio of resistances for a unit square: r = R§ / Rf.
We prove that isotropy is weakly restored asymptotically in the sense
that for all sufficiently large n the ratio R¥(r) / R%(r) is bounded by
positive constants independent of r. The ratio decays exponentially
fast when r > 1. Furthermore, it is proved that the effective resis-
tances asymptotically grow exponentially with an exponent equal to
that found by Barlow and Bass for the isotropic case r = 1.



1 Introduction.

In this article we study a kind of homogenization, or restoration of isotropy
of anisotropic diffusion, on the pre-Sierpinski carpet [5]. The present work
develops ideas arising in two series of recent studies on the diffusion on
fractals. Omne is a study of asymptotically one-dimensional diffusions on
Sierpinski gaskets in [9, 10, 8], which contains the discovery of the mecha-
nism on finitely ramified fractals. The other is a detailed study of isotropic
diffusion on Sierpinski carpets in [1, 2, 4, 3].

The most interesting aspects of asymptotic behaviors of diffusion (e.g.
the spectral dimensions) are embodied in the asymptotic behaviors of ef-
fective resistances. A physicist may find it easy to interpret the results on
resistances in terms of diffusions. Note (as we will summarize below) that
electrical resistance is the rate of heat dissipation caused by electric power.
As we will actually use in the proofs, the resistance can be defined as an
Hy norm of electric potential (see (1.1) below), and the potential is a so-
lution to the Laplace equation (a harmonic function) with corresponding
Neumann-Dirichlet boundary conditions. Thus it is natural that resistances
and diffusions are strongly related. In this paper, rather than going into the
relation of the two phenomena in general, we will focus on the behavior of
electrical resistances. See [1, 2, 4, 3] on how resistances play an essential part
in the construction of diffusions on the Sierpinski carpet, and derivation of
their properties.

The Sierpinski carpet is an example of an infinitely ramified fractal [14,
13]. For n € Z, the pre-Sierpinski carpet F), is the open subset of the
unit open square Fy = (0,1) x (0,1) obtained by iterating the operation
for constructing the Sierpinski carpet, until squares of side length 37" are
reached, where we stop, so that smaller scale structures are absent. The
operation is a generalization of that in the construction of the Cantor ternary
set: given a square of side length 37™, we divide it into 9 squares of side
length 3™ 1, remove the middle square (with its boundary) and keep the
other 8 squares. Thus F), is an open set in R?, composed of 8" squares of
side 37", and has square shaped holes of side length varying from 37" to
3~1. It will be convenient later to write F,, = Fy for n < 0.

Let » € (0,00), and consider a function v € C(F,) N H'(F,), where
C(F,) denotes the set of continuous functions on F,, and H'(F),) the set
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of square integrable functions whose partial derivatives a—v and 8—U (in the
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Figure 1: The pre-Sierpinski carpet Fj.

sense of distribution) are square integrable. Put
7 , . ,
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(1.1) &g, (v,v) = — (z,y)+- — (v,y) dzdy.
ol ox r Oy

!

In physical terms £, (v, v) is the rate of energy dissipation for the potential
(voltage) distribution v if F, is made of a material with a uniform but
anisotropic electrical resistivity, with anisotropy parameter r. For a unit
square made of this material, the total resistance is 1 in the z-direction
and r in the y-direction, and the principal axes of the resistivity tensor are
parallel to the z and y axes.

Define R¥(r), the effective resistance of Fj, in the x direction, by the
following (principle of minimum heat production):

(1.2) R%(T) — inf{Ep (0,0)}

where the infimum is taken over all the functions v € C(F,) N H'(F,),
satisfying boundary conditions

(13) U(Ovy) =0, U(lay) =1, 0<y<1



The effective resistance in the y direction R} (r) is defined in a similar man-
ner, with boundary conditions

(1.4) v(2,0) =0, v(r,1) =1, 0<az <L
Obviously,

(1.5) Ri(r)=1 and Rj(r)=r.
Set R%(r)

(1.6 o) = T

thus H,,(r) measures the effective anisotropy of F), if it is composed of ma-
terial with anisotropy parameter r. It is easy (see Lemma 3.1 ) to verify
that

RE(r) =rRY(1/r),  Hu(r)= H,(1/r)" "

We have the following conjecture:

Conjecture. (‘Strong Homogenization’).

(1.7) lim H,(r) =1, for each r € (0, 00).

n— 00

In this paper, we prove the following weak homogenization property:

Theorem 1.1. There exists a constant 1 < K < oo such that

K ! <liminf H,(r) < limsup H,(r) < K for each r € (0,00).

n—00 n—00

Our proof gives explicit bounds: we can take K = 6333, which may be
compared with the conjectured value K = 1 in (1.7). (Our bounds, and
proof, have improved since we announced them in [5].)

Theorem 1.1 does not give information on the asymptotic behavior in n
of R%(r) and Rj,(r). However, we have the following result:

Theorem 1.2. For each r > 0,

0 <infp™R;(r) <supp "R:(r) <oo, z=u,y,
n n

where p is the growth exponent for the isotropic case r =1 given in [2, 4].



Thus the effective resistances R%(r) and Rj (r) both grow asymptotically
like p", and so the growth exponent p found in [2] is universal in the sense
that it is independent of the anisotropy r.

We see from (1.5) and (1.6) that Hy(r) = r. Thus Theorem 1.1 implies
that if » > 1, H,(r) should be relatively small when n is large. In fact, we
have the following estimate for the decrease of H,, in n.

Theorem 1.3. There exist constants ¢ € (0,00), s; € (0,1) such that
(1.8) 1< s YH,((9/7)"s) < exp(es ®), n>1,5> s,
where £ =log2/log7. In particular

lim liminfs 'H,((9/7)"s) = lim limsups 'H,((9/7)"s) = 1.

5—00 N—00 500 00

Thus when s = (7/9)"r is large, Hy(r) = (7/9)"r. A similar result holds
for small s:

lim lim sup s~ ' H,((7/9)"s) = lim liminf s~ H,((7/9)"s) = 1.

s—0 pnooco s—+0 n—oo
We can also obtain scaling relations of this kind for the effective resistances
RZ(r) and Rj,(r) — see the proof of the theorem. Our proof also implies that
le R:(r) = (3/2)" and le r YRY(r) = (7/6)". (See (3.22) and (3.20).)
Therefore N
(1.9) lim r 1 H,(r) = ! , n>0.

T—00 9

We have no proof of the existence of the scaling limit

h(s) = lim s *H,((9/7)"s),

n— 00

but Theorem 1.3 implies that if & does exist then lim h(s) = 1. For further

comments and conjectures on the form of h see [5?._”0

Proofs of Theorem 1.1 and Theorem 1.3 are given in Section 3. The basic
tools to prove Theorem 1.1 are Propositions 3.2 and 3.3, which are recur-
sive inequalities for the effective resistances, which give good bounds in the
anisotropic regime, that is when H,,(r) is very different from 1. If H,(r) > 1,
then, roughly speaking, these inequalities state that the smaller effective re-
sistance RZ(r) grows as (3/2)", while the larger effective resistance Rj(r)
grows as (7/6)"r. So as long as Hy,(r) > 1, we have H,(r) =~ (7/9)"r, and



thus H,,(r) approaches 1 exponentially fast. Theorem 1.3 shows that we can
make precise this argument on the exponential decay of H,(r). In fact, the
estimates in Propositions 3.2 and 3.3 are precise enough to allow us to prove
that H, (r) is bounded for all large n, so proving Theorem 1.1.

We prove Theorem 1.2 in Section 4, by giving another recursive inequal-
ity (Proposition 4.1), analogous to those given in [2] for r = 1. Section 2 is
devoted to basic estimates used both in Section 3 and Section 4.

A strong homogenization result similar to (1.7) is proved in [9, 10, 5]
for the pre-Sierpinski gasket, using explicit renormalization group recursion
relations for quantities analogous to R%(r) and R} (r). As the Sierpiniski gas-
ket is finitely ramified, these recursion relations are finite dimensional, and
so exact calculations are possible. We expect that this kind of restoration of
isotropy will occur on a wide class of fractals — see [5]. That this is difficult
to prove for the Sierpinski carpet reflects the fact that it is an infinitely
ramified fractal, and so the renormalization group recursion acts on an in-
finite dimensional space. The rigorous inequalities in Propositions 3.2, 3.3,
and 4.1 provide a version of the renormalization group relations.

We conclude this section with some remarks.

1. With the change of the coordinate y' = /ry, the defining equation
(1.2) has an isotropic expression, so our results also apply to rectan-
gular boards made of isotropic material.

2. F}, is contained in the unit square and the unit structure is of order 37".
But the scale invariance of resistance in two dimensions implies that
the effective resistances are the same if we defined F;, as a figure with
unit structures of order 1 and of total size 3" x 3"; i.e., constructing
the figure outward instead of inward. The results in this paper hold
as they are, with only minor notational changes.

3. Analogous results can also be obtained for the cross-wire networks
G, introduced in [2]. The network G,, is obtained from F,, by re-
placing each of the 8" squares of side 37" in Fj, by a horizontal and
vertical crosswire of four linear resistors (joined at the center of the
square), where each horizontal resistor has resistance 1/2 and each
vertical resistor has resistance r/2. (See [7] for basic facts about resis-
tor networks.) The results in this paper hold as they are, with similar
proofs.

4. Our proofs should also be effective for the class of ‘generalized Sierpinski
carpets’ considered in [2, Eq. (3.1)]. In particular, with only minor



changes, they apply to (k,l) — Sierpinski carpets. Here the sets F,
are constructed recursively by dividing each square of side k=1 in
F,_ into k? squares, and throwing out a block of ¢? squares at the
center. (We take k > 3 and k£ > (.) The numbers appearing in the
results, such as the exponents 7/9, 7/6, 3/2, and p, will of course in
general be different for different figures.

5. The proof of the conjecture (1.7) seems to us to be quite hard. We
suspect that it is similar in difficulty to the problem of improving the
inequalities

given in [2], to proving the existence of the conjectured limit

lim p™"Ry(1).

n—oQ
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2 Basic estimates on energy of harmonic functions.

Throughout this section, we fix r > 0 and n € Z.

The first two Propositions deal with the principle of minimum heat pro-
duction in terms of potentials and currents, respectively. They are straight-
forward extensions of the isotropic case r = 1 in [2], to which we refer for a
proof.

Proposition 2.1. There ezists a unique function v = V,*(r) (or V;/(r)) in
C(F,) N HY(F,) with Vv € L*(0F) which attains the infimum of (1.2) with
the boundary condition (1.3) (or (1.4), respectively);

(21) Rp(r)' = ER, (Vii(r), Vi (), Ry(r)~" = Ep, (VV(r), VE(r)).
The functions satisfy the following Laplace equation on F),

0% 1 0%v

2.2 — -—
(22) e CNEES

(z,y) =0, (z,y) € Fp,



with boundary conditions (1.3) (or (1.4), respectively), and Neumann bound-

v
ary conditions — = 0, on the rest of OF,,, except at the corners of the

n
squares in OF,. In particular, for z = x,y,

(2.3) 0<Vi(r)(z,y) <1, (x,y) € F,.
Note also that the symmetry of Fj, implies

pa VD@D =VEO@1-y).  0<e<lo<y<l,
D VR ) 4 VEO (A~ ey =1, 0<e <1 0<y<l,

with similar relations for V7 (r).

There is a dual formulation of resistance in terms of currents. Denote by
C(Fy,), the set of R? valued square integrable functions j € BV (F,) (inte-
grable functions whose derivatives in the sense of distribution are measures
with finite total variations [15]), satisfying current conservation divj = 0
(in the sense of distribution). We call an element j = (ju,Jy) of C(F,), a
current on Fj,.

Remark. Note that as j is defined on the open set F,, the values of j on 0F,
are not defined. However, we will need to express the resistance R (r) in
terms of the minimum energy of a current j with total flux 1 across F;,, and
to define the class of feasible currents for this optimization problem we need
to consider boundary values for currents j € C(F},). If j € BV (F},) then by
[12, p.325] the rough trace j* exists on OF,. For the precise definition of j*
see [12] — but note from [12] that if (z¢,yo) € OF,, then

j*(wanO) = lim j(way)
(z:y)—(z0,y0)

whenever this limit exists. Thus, essentially, for a well behaved function the
rough trace is simply a continuous extension to the boundary. A general
version of the Gauss—Green formula [12, p.340] expresses an integration of j
over the domain F), by a contour integration of j* along 0F;,. The currents
we will consider in this paper have analytic continuations to 0F;,, except at
a finite number of points. (See the proof of Lemma 2.8 in Appendix A.)
Thus we can consistently extend j to the boundary 0F;,, and from now on
we will do so whenever necessary without further comment.

For a vector field j = (jg, jy) € L?(F,), and B C F),, define
Z

Ep(j,j) = B(ji(ac,y) +rjo(z,y)) dedy.



Proposition 2.2.
(2.5) Ry (r) = inf{Er, (5,))} ,

where the infimum is taken over all j = (jg,jy) € C(Fy,) which satisfy j-n =
0, a.e., on the boundary of F,,, except at two edges x =0 and x = 1, where
we impose

P Z Z
(2.6) Jz(0,y)dy = ju(l,y)dy = —1.

0 0

Here n is the unit normal vector at the boundary of Fy,, and j - n denotes
inner product of vectors. The function j = J¥(r) which attains the infimum
of (2.5) exists and is unique, and is given by

Wi(r) 1, OVi(r)
81‘ ? TRTZ(T) ay

2.7) I3 (r) = (Jnz (1), Jny (1)) = = Ry (7)

Similarly, there exists a unique function Jj(r) € C(F,) which satisfies

(2.8) Ry (r) = mf{EF, (4,4)} = Er, (J3(r), Ji (1)),
where j satisfies similar conditions as before, with
Z 4 Z 4
(2.9) Jy(,0)de = jy(x,1)dz = —1.
0 0

in place of (2.6).

Remark. The minus sign in (2.7) comes from the sign conventions in the
boundary conditions (1.3) and (2.6), which are the traditions in the study
of electricity. It is a well-known historical misfortune that not only do we
need minus signs here, but the electrons in reality move in opposite direction
to the currents when they are defined in this way.

Remark. We can regard Proposition 2.1 and Proposition 2.2 as giving R (r)
in terms of an optimization problem and its dual. In view of this, we will
use the language of optimization theory and refer, for example, to a flow
which satisfies the conditions of Proposition 2.2 as a feasible flow.

Remark. If n <0, then since F,, = Fy, we have V7 =V, J¥ = J§, etc.



Note that (2.3) and (2.7) imply that
Jnz(r)(0,y) >0, 0<y<1,
while the symmetry of F), implies
(2.10) 1375, (0,9) = Jnz(1,y) = Jnz (0,1 —y) = Jp, (1,1 —y), 0 <y <1,

with similar relations for JJ(r).
Next we turn to a couple of basic estimates of the energy in terms of

potentials and currents.

Definition 2.3. For G C F,,, define the bilinear form

z
Ealfrg)= A 10Ty 4 g e 0(G)nEYG).
g Ordx r OyOdy

Thus £ is the Dirichlet form associated with the self-adjoint operator

P d? L1 0?
022 roy?

on the space L?(G, ). (Here u is Lebesgue measure).
The following Lemma is an application of Cauchy-Schwarz. We write 14
for the indicator function of G, and || - ||« for the L® norm.

Lemma 2.4. Let f, g € C(F,) N H'(F,). Then

Ea(fa fa) <2lglcll% Ea(f, ) +2lf1cl% Ealg,9)-

Proof. Write (just for now) f, = 8—f Note that ((f9)z)? = (f9a + f29)* <

2 92 2 42 Oz
Z Z

Ealfg, fg) < 2 fAga+r'g))dudy+2 g*(fs+r " f)dady
G G

< 2||fl6ll% Ealg.9) +2llglel% Ealf. f).

Definition 2.5. Letn >0, m > 0. Set

B, = [0,]]x[3™™, (i+1)37™], 0<i<3™—1,
Bl = [i37™ (i+1)3™ x[0,1], 0<i<3™—1.

10



We now estimate the energy associated with the potential V,7(r) in the
thin strip By, o, which lies adjacent to the z-axis. To avoid too many sub-

scripts we will sometimes write E[G](f, f,) for E¢(f, f,) in what follows.

Lemma 2.6. For m,n >0,

IN

(2.11) EIBL o N F(VEW), VE() < 27™RI(r) ",
(2.12) E[BY o N F(VY(r), VI() < 2 ™RY(r) .

Proof. Write
Emi = E&[Bn; N Fl(Vy, Vi),

)

set
BZ i =[0,1] x [227 137 i+ 1)27 137 i =0,1,

and let

Ep; = E[BL N F)(VEVE), i=0,1.

Thus we have

X Xt
Em,O = Em+1,j = Em+1,j-
For m € Z, define a potential v € C(F,) N H*(F,) by
8 .
( ) i VﬁE(T) (Z’, 3 — y) ) (II), y) € 37:%4-1,0 )
v m,y = ~
: V?f(r)(xay)a (way) EFR\Bfn+1,0‘

As v satisfies the boundary condition (1.3), (2.1), (1.2), and the definition
of v imply that

3t —1 ~ 3rgt—1
(2.13) Ems1i = RE(r) ™" < €p, (v,0) = 2Em411 + Emiii -
1=0 1=3

Therefore Em+1’0 < Em+1’1, and so 2Em+1,0 < Em+1,0 —i—EmH,l = Ep0. As
Bri1,0 C By 11 this implies that

- 1
Emi10 < Emy10 < 5Emp -

Tterating, and using the fact that Egg = RZ(r) ', we obtain (2.11). (2.12)
follows by interchanging = and y axes. O

We have a corresponding result for currents.

11



Lemma 2.7. Forn,m >0,

(2.14) E[By, o N E)(J5(r), Ty (r)) < 27™Ry(r),
(2.15) BBy, o N F)(J(r), Ji(r)) < 27" Ry(r).
Proof. Let
Epni = BBy V(T (r), T (r)
BY, = [27137m i+ 12713 < [0,1), i =0,1,
En; = E[B}, ;0 E(J5(r), I3 (r).
So, as before, we have
Xt
r / o ral
m,0 — m+1,7 — m+1,5°
j=0 J=0

For m € Z, define a current j € C(F,) by

8
j(%’ y) — ‘ (J’Ifli(r)7 —Jﬁy(r))(?)_m - x,y) ’ (Q:ay) € Bgn+1,07
Ju(r)(z,y), (z,y) € Fn \ 5’5’n+1,o .
It is straightforward to check that j € C(F),) and satisfies (2.6). Therefore
3mgt-1 ~ 3mgt-1
(2.16) mits = Ba(r) < E(j,5) =2E;, 1, + L
and the remainder of the proof proceeds as in Lemma 2.6. O

The next lemma will play a crucial role when we obtain an upper bound
on quantities like RY(r) by constructing a ‘feasible flow’ j € C(F,) and
using the energy-minimizing principle (2.5). Except in the simplest cases,
this construction requires estimates on the energy of a current which can
‘turn corners’.

Fix (for now) n,m > 0, r > 0, and let G = Bryn,0 N F,. Let Rg be
the resistance of G between the lines y = 0 and y = 1. We define (and
calculate), Rg by the methods of Propositions 2.1 and 2.2. Thus

(2.17) Rg = inf{Ec(j,5)}

12



where the infimum is over currents 5 on G satisfying the boundary conditions
Z 3-m Z 3-m

jy(l‘,O)dl’ = jy(l‘, l)dz = -1,
0 0

and j-n = 0 a.e. on the remainder of the boundary of G. As G consists
of 3" scaled copies of F,_,, it is easy to see that the infimum in (2.17) is
attained by the current § obtained by piecing together 3™ scaled copies of

Tn—m(r):
I(x,y) = 3" T _ (3™, 3™y — [3™y))(r), (z,y) € G,
Here [3™y] is the largest integer less than or equal to 3™y. Therefore
Rg = Eq($, %) =3"RY_, (7).
The following result is proved in the Appendix.
Lemma 2.8. There exists L = L(™™) € BV (F,) N L*(F,) satisfying
(2.18) div(L) = 0 (as a distribution) on G,

(2.19) L = 0 onkF,-G,

(2.20) L = Ji(r) in a neighborhood of {x =0,0 <y < 1},
(2.21) L = —J in a neighborhood of {0 <z <3 ™,y =0},
(2.22) g—f; = 0 a.e. on the remainder of the boundary of G,
such that

Eq(L, L) Eg(J;(r), I3 (r) + Ea(J. J)

<
< 27MRY(r) 4+ 3™RY_(r).

The current L constructed in Lemma 2.8 provides a current which has total
flux 1 across G coming in from left edge = 0 and going out at bottom edge
y = 0. L will be considered as a part of a current in the larger domain in such
a way that the boundary condition (current conservation at the boundary
of G) specified by (2.20) and (2.21) must be satisfied.

3 Recursion relations effective in the anisotropic
regime.

3.1 Basic tools.

We begin with some elementary observations.

13



Lemma 3.1. Forr € (0,00) and n € Z,
Ry (r) = rRy(1/r),
Hy(r) = H,(1/r)" L

Proof. Fix n, and write S*(a,b) for the resistance in the x direction of F,,

if it is composed of anisotropic material with resistivity a in the z direction,

and b in the y direction, and define SY(a,b) analogously. Then S*(a,b) =

SY(b,a), RE(r) = S*(1,7), Ry(r) = SY(1,r), S¥(Aa, Ab) = A\S*(a,b), and so
R%(r) = 8%(1,r) = §Y(r,1) = rSY(1,r 1) = rRY(r 1).

Also,

a

The following two propositions give the recursion relations which are the
essential tools for this section.

Proposition 3.2. Letr >0,n>1, and m > 2. Then
a1
2m
RY(r) < (L4 gn) Ry ()7 ABTRL ()

3
(3.1) Ry (r) ' <SR < (1+
-1 _3
(32) Ry ,(07 <3
where a1 = 8/3, Ay =4/9.

VRE_(r) "t + A3™RY (1),

Proposition 3.3. Letr >0, n>1, and m > 2. Then

€T 6 €T a X m
(33) Ri () < 2 RH) < (14 32) BE, (1) + 423" RY_, (1),
6

a

(34) Ry_y(r) < ZRA(r) < (1 50) RY (1) + A23™ Ry, (1)
where ag = 16/7, Ay = 4/21.

Remark. (3.1) and (3.3) are good bounds when Hy,(r) > 1, while (3.2) and
(3.4) are good when H,(r) < 1.

While we have, for clarity, given four separate inequalities, (3.2) and
(3.4) are immediate consequences of (3.1), (3.3) and Lemma 3.1. So we
need only prove (3.1) and (3.3).

14



Definition 3.4. Denote the eight scaled copies of F,,_1 which compose F,,
by

Aij = ([i/3, (i+1)/3] x [§/3, G+ 1)/3) N Fy, (i,5) € {0,1,2}* \ {(1,1)}.

The left hand side inequalities in Propositions 3.2 and 3.3 are easy — this
is essentially just a standard argument involving shorts and cuts. See [7],

[6].

Proof of the left hand side of (3.1) . Define a potential v € C'(F,,) N H(F},)
by
8 : :
‘6;; 7V7f_1(’/’)(31‘,3y—j), (:c,y) E140]'7 J :071727

,U(:I;ay) =. %+ %Vg—l(r)(?)x - 1a3y _j)a (way) € A1j7 ] = 072a
%+ %Vrf—l(r)(?)x - 2a3y _j)a (w,y) € A2j7 .7 = 0a172-

Then v is continuous, and using (1.2) we have

Ri(r)™h < E(v,v)
< 680, GV 00, 2V () + 260, (FV (), 2V ()
6 _
= §R£—1(7’) g

Proof of the left-hand side of (3.3) Define a current j € C(F,) by

x
.7(51) y): % g_l(r)(3$_i73y_j)a (xay)eAija ’6'20,172’ j:0,27
’ 0’ (m,y)€A01UA21_

Then it is easy to check that j satisfies the current conservation and the
boundary conditions given in Proposition 2.2, so that by (2.5), and the fact
that A;; = 371F,_,, we have

1 1 3

RE(r) < B g) = 6Br,_ (G2, 351 (r) = 5 R, (7).

The proofs of the right hand side inequalities in Propositions 3.2 and 3.3
are more involved.

15



Proof of the right hand side of (3.1). As r will be fixed throughout this
proof, we will simplify notation by writing V,¥ = V,*(r), J¥ = J%(r), etc.
Fix n > 0, m > 2, set k = n —m and recall our convention that V;* = V" if
k <0.

Set

1 . N .
o(x,y) = §V$_1(3x — 14,3y — j) + 3 if (x,y) € Ay, (i,75) # (1,1).
Note that ¢ € C(F,) N H'(F,) and

£y 0 Bl(p0) = g (RD™ for (i) # (1,1).

Now let
-8 1, (w,y) € Fp \ (Agr U Agq),
£ 0, (@) € (A UAdar)\ (BE 4 s UBZ oy ),
Vi) = Va7 3737 D), () € (o U ) 0 B
Vo (3™ — [3™2],3™(3 —v)), (2,9) € (Aot U A1) N BE .

We can check that 1 is continuous, and so ¢ € C(F,) N H'(F,). Note that
©, ¥ are symmetric about the line y = %, and that

Set
seny) = E@IVEY). 0<a<h 0<y<l,

Continuity of v follows from that of ¢ and ¢, and (3.5); thus v € C(F,) N
H(F,). Tt is also easy to see that v satisfies the boundary conditions (1.3).
Noting that A;; = 37! F,_; and using the symmetry of v, we have

(RE)™L < &, (v,v) = 4E[AgoNFy] (v, v)+2E[Ao1NFy] (v, ) +2E [A1oNE,) (v, v).
(3.6)
As 1y =1 on Ay U Ajg we have for j =0, 1,

BT ElAy N El(e,0) = £l 0 B(e.9) = GRE ()
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Now set G = [0, 3] x [3,3+37™]. As¢ =0on (450 — G)N{y < 3}, by the
symmetry of G and Lemma 2.4,
(3.8)  ElAi](v,v) = 28a(pdh, ey)

< AllelREa(p. ) +4llplal B (i, )
4

Using scaling and Lemma 2.6,
217m

—(RE_)7

1
(3.9) Ealp,9) = g€Bm_10 N Fn-1](Vily, Vila) <
while as G consists of 3™~! segments, each congruent to 3~™F, ,,,
(8:10)  Eqly,) =37 EWL,, Vi) = 3" (R ,)

Combining (3.6), (3.7), (3.8), (3.9), and (3.10) we deduce that

_ 2 _ 4__ _ 4 .. _
(R < S(RE_)™' 42 g2 R S8 (R,
2 _ 8.,_ 4 _

— 5 (BRI 2 (R,

a

Proof of the right hand side of (3.8). This proof uses similar ideas to the one
given above, but as we have to work with currents rather than potentials, it
is a bit more complicated. Define a vector field K' on F}, by

8

i Jﬁ(?)ac—z,?)y—j), (xay)eAijai:()aZOSjSZ

Kz, y) = . . .
( y) : %Jﬁ(&l‘ —Z,3y _J)v (m,y) € Alju] = 072

Then K! is piecewise continuous, and div(K') = 0 on int(4;;), for (,5) #
(1,1), but K' has a jump discontinuity on the line x = %, T = % Thus, we
have

3
Ky(3—,y) = J%,(1,3y), Ki(3+,y) = 57na(1:3y): y € [0, 3.

We now modify K' to obtain a current satisfying the conditions of Propo-
sition 2.2. Essentially, we use the current L, defined in Lemma 2.8, to move

17



the excess current arriving at the left hand edges of the squares A1g, A12 to
the right hand edge of Ag;.

Let L € BV(F, 1) N L*(F, 1) be L(=1m=1 defined in Lemma 2.8.
Recall that L = 0 except on Bfn_m NF,_1. Put

Lo(xay) = L(l_wal_y)a
L z,y) = (Lo(1—2,y),—Ly(1—z,y)),
LY(z,y) = —-L°—L2

Since div(L) = 0 on B | (N F, 1, we have div(L*) = 0 for 0 < i < 2.
Define a vector field K? by

8 ,

f‘i %LJ(?).’L’,&U—‘]), (m,y) EA0j70§j§27
K2(w,y) = . 07 (ac,y) € Alj’j = 0’27

£

LA = 32,3y — §), L1 = 3z,3y — j)), (2,y) € Ag;,0 < j < 2.
Now let K = K'+K?; then K € C(F,,). To see this, note that for 0 < y < %,
K3 (5—y) = $L3(1=,3y) = §L.(0+,1 - 3y)
= 3J5.(0+,1 = 3y) = $J7.(1,3y),
so that
K3 (3=) + K2(3=y) = 5 75.(1,3y) = KX (3+,9).

With a number of similar calculations, this shows that div(K) = 0. There-
fore, using the symmetry of F, and K,

(3.11) RE < B(K,K) = 4E . (K, K) + 2E4,, (K, K) + 2E4,, (K, K),

and it remains to estimate the terms in (3.11).
Note first that

3 21 1
EAlo(KaK) = EAlo(KlaKl) = 5 §Rﬁ—1 = Z fz—la
and )
EAOl(KlaKI) = EAoo(KlaKl) = § fz—l'

Let H=1[0,3 —37™] x [0,1], and G = [§ —37™, 4] x [0,1]. As K =0 on
H we have for j = 0,1,

Eag;(K,K) = Eapnu(K',K") + Eqgna(K' + K* K' + K?)
< Eay (K'Y, K'Y+ Epgna(K', K') +2E,,,(K*, K?).

18



Using symmetry, and Lemma 2.7, for j = 0,1

2—(m—1) x

n—1+

1 1
Eagra(K', K') = §E[Fn—1 N By, 1 1(Jy_1,J5—1) < 9

From the definition of K?,

1
EAOO (K27 KQ) = %EFW,—I (L7 L)7

and

1
EAOI(K27K2) = %EFn—l(LlaLl)
1
%(ZEFn—l(LoaLO) + 2EF77,—1 (L27 L2))
1
= §EFR71(L,L).

IN

Finally, by Lemma 2.8,
Eanl (La L) < 27(m71)Ri71 + 3m71R%—m‘

Therefore, substituting in (3.11),

2
Rﬁ < 6E 4, (Kla Kl) + GEAOOQG(Kla Kl) + gEanl (La L) + 2E 4, (Kla Kl)
7 8 2
S gl 2R+ 5(2_(m_1)Rﬁ—1 +3" R )
7! 16, 4 J
= g A+ —=27")Ry + ﬁ?’mR%—m ;
which completes the proof of Proposition 3.3. a

3.2 Proof of Theorem 1.1.

Fix r > 0. The left hand inequalities of Propositions 3.2 and 3.3 imply, for
n>k>0,

3 6
(312) Ri() ' < 5 Ri() ' and RS o R0,

hence
(313) Hk(T) <= Hk+1(7“), k Z 0.



Since, by (3.12), we have RY__(r) < (6/7)™ 'RY

o (), forn >m > 1,
it follows from (3.3) that for n > m > 2,

7 Ry (r)
Ri(r) < = 14a2 ™+ A3m——"2- R’ |(r
s g trer AR g el
7 —-m 7 m T
< 6 14+ a27™ + 6 Ag09™ Hy, 1 (7) n—1(7)

where 6, = 18/7. Similarly, we have

2 -
1+a127™+ = A410"Hy_1(r) RY_,(r) Lon>m>2,

Ry < .

[SCR N N

where 6; = 9/2. Combining these inequalities, we obtain

anl(r)
. n > N T rr /0 Z Z 27
(3.14) Hy(r) > G (o 1 (1) n>m
where
7 —-m 2 m —-m 7 m
(3.15) Gp(z) = 9 (I+a27™+ 3 A107z)(1 4+ ag2™™ + 6 Ag05'x) .

Now let m be large enough so that G,,,(0) < 1, and let 6, > 0 be such
that G, (0,,) = 1. Let 1 be an arbitrary number satisfying 0 < n < d,,,, and
put @ = 1/G.,(n). We have Gp,(2)™! > a > 1 for 0 < x < 5. Hence, by
(3.14),

(3.16) Hpi1(r) > aHy(r), whenever H,(r) <n.
It follows immediately that there exists an integer ng > m such that Hy,(r) >
n. Now if k > ng and Hy(r) > In, then if Hy(r) < n, by (3.16) Hyy1(r) >
Hy(r) > In. On the other hand, if Hy(r) > n then by (3.13) Hjyq(r) >
THy(r) > Ln. Thus in either case Hy1(r) > &7, and so, by induction, we
deduce that

Hy(r) > gn, for n > ny.

This holds for any n < d,,, hence

liminf H, (r) >

n—oo

Nel |

O -
Since this holds for any r > 0, and H,,(r) = H,(1/r)™", we also deduce that

lim sup H,(r) < g (6,) 1,

n—o0
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proving the Theorem. O

Remark. A numerical bound for the asymptotic values of H,(r) is obtained
by computing d,,. If we use the explicit values for the constants in G,,, we
find G,,,(0) < 1 for m > 5, and that 65 > 2.03039 x 10~*, which leads to the

numbers given in Section 1.

3.3 Proof of Theorem 1.3.

We begin with a lemma.

Lemma 3.5. Let f,(r), r € [0,00), n > 0, be a sequence of functions
satisfying, for constants a > 1, >0, 60 > 1, ¢; € (0,00),

(3.17) Bfn-1(r) < fu(r) < Bfu-1(r)(1+c127™ 4+ read™ "),

for alln > 1 and m > 2. Then if £ = log2/log(2«a) there ezist constants
S0, 5, depending only on «, 0, c; such that

B fa(07"s)
hs fo(6=7s)

Proof. Let n > 1 be fixed, and choose m; > 2 for 1 <4 < n. Then iterating
(3.17) we obtain for r > 0

< exp(C5s§), 0<s<sg,n>1.

Y )
B < fu(r)/folr) < 6% (14 c127™ 4+ repa™i6).
i=1
So, setting r = 0~ "s, k; = my_;, ] =n — i we have
n-1 w1 ‘
0 <log(B8 "fn(0 "s)/fo(0 "s)) <ec1 2% +eps kg,
j=0 j=0

Choose b > 0 such that 27% < 1 and o < 6 (so b depends only on a, ), let

log))
log(2a) ’

and let k; satisfy

a+bj<kj<l4+a+bj, 0<j<n-—1.
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Then k; > 2 provided s < 59 = (2c)~2. Thus

%

. xe .
0 <log(B7"fn(07"s)/fo(07"s)) < ¢  27Y 4 psattt (P07
j=0 Jj=0
(,0)27% 4+ c4(a, 0)a’s
(v, 0)s5.

Proof of Theorem 1.3.
The left hand side inequalities of Propositions 3.2 and 3.3 imply that, for
z=x,y
(3.18) Ry (r)~H < (6/T)"R5(r)~Y,  Ri(r) < (3/2)"Ri(r).

It follows that (treating the cases m < m, m > n separately)

Bocnl) < ey 0/mrr. 0z tm 1.

n—l(r)

Therefore (3.3) implies that for n > 1, m > 2,
7 7 _

ER,“;;_I(T) < Ry(r) < gRﬁ_l(r)(l +a2™™ 4+ 1r(7/6)A2(9/7)"3™).

So, by Lemma 3.5, taking f,(r) = R:(r), 8 =7/6,0 =9/7, a« = 3, & =
log 2/ log 6, we obtain

(3.19) 1< (6/7)"RE((7/9)"s) < exp(cs™), n>1,s < sq.

Here sy =1/36 and ¢ € (0,00).

Using Lemma 3.1 and (3.19), we obtain, replacing s by s!

(3.20) 1< (2/3)"RY((9/7)"s)s™" <exples™), n>1,5>s5".
In a similar fashion we have, if n > 1, m > 1, kK = max(n — m,0),

no1(r) n— - -
o o <62 L(6/7)Frt < (2/(3r))(9/7)"(7/6)™.
So, using (3.1), and replacing r by r~!, for n > 1, m > 2,

2R (1)) < RE(1/r)!

(821 % ZRT_(1/r) L1+ a2 ™ + (24, /3)(9/T)"(7/2)™).
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Taking f,,(r) = RE(1/r)~Y, 3=2/3,0=9/7, a = 7/2, & = log2/ log 7, we
obtain by Lemma 3.5,

(3.22) 1< (3/2)"RE((9/7)"s) ' <exp(es™2), n>1,5> s,
Using Lemma 3.1 this implies that
(3.23) 1< (7/6)"RY((7/9)"s)"ts < exp(cs®?), n>1,5 < sp.

Multiplying together (3.22) and (3.20) gives the theorem. 0

4 Asymptotic behavior of effective resistances.

4.1 Statement of the results.

For the isotropic case r = 1, it is proved in [2] that there exists a constant
p > 1 such that
(4.1) 471" <R, <4p", n>0,

where R, & R%(1) = Ry (1). (It is also proved there that 7/6 < p < 1.27656;

calculations of R,, 1 < n < 7 suggest that p =~ 1.25149. See [2] and [4]).
The proof uses the inequalities

47'R,, Ry < Ryqim <4Rn R,, n>0, m>0.

The following proposition extends this result to the anisotropic case r # 1.
Theorem 1.2 follows at once if we put m = 0 in Proposition 4.1.

Proposition 4.1. For z =x,y, r >0, n,m € Z,
-1

(4.2) Ry ()
Ry (r)

Remark. The proof below also implies the bounds with R,, in place of p” in
both (4.2) and (4.3).

16 p~" (Rpy(r) ™" + Ry (r) ),

<
< 8" (Ry(r) + Ry (r)).

To prove the Proposition, we first recall results proved in [2], which relate
R,, to the effective resistances for crosswire resistance networks. For ¢ =
0,1,---,3" —1,and j = 0,1,---,3" — 1, let A;; be the closure in R? of

(37", i+ 137" x [37", (G +1)37"]) N Fy,
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and let
Sp={(i,5) €{0,1,---,3" —1}%: A;; # 0} .
Givena:{ai’j :z’:O,l,...,?)”, ‘7':071,-..73”}7 set

Xt xt
(4.4) djj =41 Gita,j+6-
a=0 =0
and define
b X xXxx I
K~ (a) = (Gitajrp — Gij)” -

(i,j)€S =0 =0

Define RP by

(4.5) (RPY"'=inf{K"(a) | ap; =0, ag=j =1, j=0,1,---,3"}.
a

The notation R2 is consistent with that of [2], and denotes the effective
resistance of the wire network obtained by replacing each board of side 37"
in F;, by a diagonal crosswire of 4 unit resistors. Next let A;; and S,, be as
above. Assume that a set of numbers

J={Jijp|i=0,1,---,3" -1, 5=0,1,---,3" =1, n=1,2,3,4}
satisfies the following conditions:
Jijﬂ =0, (Zuj) € {0717 7371 - 1}2\57 n= 1,2,3,4,
P y
Jijn = Oa (Zaj) € Sa

. ,r):1
g Ji+1,j,1+<]ij3 :07 (Zaj) € {0717"'73” - 1}27
Jijr1,2 + Jija =0, (i,§) € {0,1,---,3" —1}%.

We regard J;;; as being the current flowing in the wire network G, obtained
by replacing each board of side 37" in F, by a horizontal and vertical cross-
wire of 4 wires, each of resistance 3. With this interpretation (4.6) are the
equations of current conservation.

We impose the following ‘boundary conditions’:

8
i Jie =Jign14=0,1=0,1,---,3" ~1,
K1 K1
4.7
(4.7) 0 Joj1 = — Jyn_1,53 = 1.

j=0 j=0
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Put
2
Jijn )
(i.7)eS n=1

and
RS = i%f{KG(J) | J satisfies (4.6) and (4.7). }.

The notation RS is consistent with that of [2], and denotes the effective
resistance of the network G,,.

From [2] (see Theorem 3.3, Proposition 4.1, Theorem 4.3 and (5.4)) we
have

Lemma 4.2. Forn >0,

(4.8) RY < 4min(p", R,) < 4max(p", R,) < 8R?,

4.2 Proof of Proposition 4.1.

It is sufficient to consider the case z = x, as the case z = y then follows
immediately by Lemma 3.1. We first prove (4.2). For ¢ = 0,1,---,3" — 1,
and j =0,1,---,3" — 1, let B;; be the closufe in R? of ([i37", (i +1)37"] x
[j37™, (j +1)37™]) N Fytm. Then F, 4, =  Byj, and each non-empty B;;

_ i:J _
is congruent to 37" Fj,. Define four functions .5, @ = 0,1, 3 = 0,1, on F},
by

pi(z,y) = Vilr)(z,y) Vi (r)(z,y),

por(z,y) = (1 —=Vy(r)(zy) Vi) (zy),
ero(z,y) = Valr)(@,y) (1= Vi(r)(z,y),
eoo(z,y) = (1—=Va(r)(z,y) @1 -VE(r)(z,y)).

Note that Lemma 2.4, (2.3), and (2.1) imply

(4.9) Ery (Paps Pap) < 2(RE (1) 4+ RY, (1) 7).

Given a set of real numbers {a;; | 0 < 4,5 < 3"}, with @;; defined by
(4.4), define v € C(Fyypm) N H' (Foim) by:

X xt
v(x,y) = G + (Qita,j+8 — Gij) Pap(3" T —1,3"y — j),
a=0 =0

(way) € BZ]a (Zaj) € Sn
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Note that if (a;;) satisfy the ‘boundary conditions’ in (4.5) then v satis-
fies (1.3). Continuity of v at the boundaries of the B;; follows from (2.4).
Recalling that B;; is congruent to 37" F,, for (i,7) € S, we have

X

(z'j%)es
= (Gitajrp — @ij)(@itar jrp — i) E R, (Pap, Parp)

(i,4)€S a,B,a! .
X X 1®

(Qita,j+8 — Gij)*EFn (Pas: Pas)

\\J
_ 2
+ (agta',ﬁ,@' = @ij)°ER, (Parps Parpr)

IN

(,)€S 3,0/,

= 4 (ita,j+6 = @ij) *EFn (Pap; Pas)
(iy)€S a.p
XX o a2 (R (7))L Y ()L
< 8 (a’H—Oé;]-hB - aZ]) (Rm(r) + Rm(r) )
(%])ES Oé,ﬁ
< 8K"(a)(Ry,(r)™" + RY(r)7),
where we used (4.9) in the last line. Hence, taking infimum over {a;;} and
using (4.5) we have

Ry (r) 1 < (R T (RG () + B () ),
and (4.2) now follows immediately using (4.8).

We now turn to a proof of £4.3). Let B;; and S, be as above. Define
currents Iy, 1 <n,n' <4, on Fy, as follows. First, let

113 = —I31 = J ( ) 124 = —I42 Jgn(’f’)
Let 112 = (l124, 1124) be the current Lm0) defined in Lemma 2.8, and let

I14(:c,y) = —_[41(.’13,y) = (-[1293(:1:71 - y)7 _I12y(m7]- - y))7
I32(w,y) = —Izg(x’,y) = (_I12x(1 - ac,y),112y(1 - way))a B
Liz(7,y) = —La(2,y) = (hoo(1 — 2,1 —y), [igy(1 — 2,1 —y)), (z,y) € Fipy

Finally we put I;;, = 0, n = 1,2, 3,4. From Lemma 2.8 we have,

(410) EFm(Inn’vlnn’) < Riz(r) +R'Zr4n(7a) ; 77777, € {1a273a4}'

Note also that from (2.10) we have the boundary conditions
I177$(0 y) 77137( ) ( )( y) 77:2’374’
I277y(‘,1:70) 'W2;y(‘,1:70) ( )( ) n= 17374-7
I377; (1’ ) 77337(17y) ( )( ) n=1,2,4,
Lipy(2,1) = —Ipay(2,1) = _Jy y()(z,1), n=1,23,
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while for the remaining combinations of the suffices, the corresponding quan-
tities vanish.

Given {Jij,} satisfying (4.6), write J::

ijn — 2_1(|Jij77| + Jijn)),

N
hij = Jign = Jign>
n=1 n=1

and define a current I on Fj, ., by

1 X X + 7= n ©an :
F JijnJij'q’I’WI’ (3 x—1,3"y — J) )
LY n=0n'=0

(may) € B2]7 (7”]) € S.
Then I € C(Fyqm), so if {Jij,} satisfy (4.7), then by (2.6) we have
(4.11) Ry . ,.(r) < Ep,...(I,I).
Recalling that B;; = 37" F,,, (i,j) € S, we have
Er (LI
Fn+m, (X )
= Ep;, (Z,1)
 Nes
(e LXXo
i,5)€S ’ 1
(—]iex "Lf{g X + 7= 7t -
(i.4)€S ' 55'(
< (R (r) + Ry,(r) hij s
(i,4)es

I(z,y) &

where we used (4.10) in the last line.
Now by the Cauchy-Schwarz inequality,

1 X X 2 \1/2
hij=g5 il < Jigy) /=
7 7
Hence
R791:+m(r) S EFn+m(I7 I)
T Y X X 2
< (RBp(r)+ RY,(r)) Jijn
igoon
2(R;, (r) + RY,(r) K (J)
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and using (4.8) gives (4.3). O

A Proof of Lemma 2.8.

In this Appendix, we will give a proof of Lemma 2.8. In fact we prove a
more general result:

Lemma A.1. Let 0 < k; <1 and 0 < ky < 1, and let B = ((0,ky) %
(ky,1)) N F, and B = ((0,ky) % (0,1)) N F,. Let vg < v1, v < v} be
constants, and let v° be the harmonic function on B, with Neumann bound-
x
= 0 at the boundaries (in R?) of B, except at x = 0
n
and © = kg, where the Dirichlet boundary conditions, v*(0,y) = v and
v®(kz,y) = vo are imposed. Define a current j* = (ji,j;) on B by j* =
R* Vv®, where the constant R* is defined by the normalization condition
kly JE(0,y)dy = 1. Similarly, let v¥ be the harmonic function on B, with

ary conditions

Neumann boundary conditions, except at y = 1 and y = 0, where Dirichlet

boundary conditions v¥(z,1) = v} and v¥(z,0) 7 v} are imposed. Define
kz

7Y = (5%,75) = —RY VoY, where RY is defined by Jy(x,1)dx = 1. Then,
0

there exist two disjoint open subsets of B, B* and BY, satisfying the follow-

mg:

1. the boundary of B* contains ({0} x [ky,1]) U

(([0, k3] x {ky}) N OB
and has no common points with ((0,k;]x {1})U

{ks} < (ky,1])NOB

’

7

2. the boundary of BY contains ([0, k,] x {1}) U (
and has no common points with ({0} x [k,,1))U

7

~— — ~— —

(
{ks} x [ky,1]) N OB
([0, k) x {k,})NOB

)

3. The wvector field J defined by

i J%(xy), (z,y) € BY,
(A.1) J(@,y) = j¥y), (z,y)€BY,
0, otherwise,
is in C(B).

It follows, in particular, that

(A.2) Eg(J,J) < Ep(5*,5") + EB(5Y,5Y) -
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Proof. Note that with a linear transformation of the coordinate y' = y+/r,
(2.2) becomes the Laplace equation in the standard sense. Hence, the po-
tential functions V,¥ and V! are harmonic functions in the usual sense, with
this change of coordinate. We assume this change of coordinate in the fol-
lowing. With the change of coordinate, the domain F;, may no more be
a square, but it is still a rectangle shaped object, with rectangular ‘holes’
inside. To avoid the clumsiness in the notation, we will keep the notations
F,, and assume that it is a square [0,1]? with square holes inside. We will
not use any symmetries specific to squares in the proofs, and the results are
directly applicable to the original problem.

Put v = R®v® — RYvY. Since v is harmonic, there locally exists, around
each point in B, an analytic function u(z +yv/—1) def v(z,y) +vV—-1w(z,y),
where w is the conjugate harmonic function of v.

Note that for any closed path C in B, we have

1 I I
gradw - dx = @ds =— 8—Uds,
c c on o On
where n is the unit normal vector and 9'B is the boundary of B in the
interior of C. In the last equality, we used the fact that v is harmonic.
Because of the boundary conditions on v we see that this quantity is zero,
hence w is single valued.

Denote the boundary of B by dB. (By a boundary of a set, we al-
ways mean, in the following, that as a set in R%.) Decompose OB into the
‘external’ boundary of B defined by

aea:tB:aBm({x:O}U{w:kx}u{y:ky}u{y:1})7

and the ‘internal’ boundary defined by 0;:B = 0B \ eyt B. Decompose
OintB \ Ocorner B = 05, B, where Ocorner B is the (finite) set of corner points
of square ‘holes’ in B C Fj,. By the reflection principle of analytic functions
(see the arguments in the Appendix of [2] for F}, with boundary conditions
dealt with here), we see that u(z) can be analytically continued to a neigh-
borhood of each point in 0B \ OcornerB = Ot B U 0, B, and that at each
20 € Ocorner B, there exists an analytic function U in a neighborhood of 0,
such that u(z) = U((z — 20)*/?). We regard, in the following, u (and also v,
w) as a continuous function on the closed set B, analytic on B \ Ocorner B.
Note also that similar considerations hold for v* on B and v¥ on B D B
in place of v. We define w® on B and w¥ on B which are conjugate harmonic

functions of v® and vY, respectively, and put

u®(z +V=1y) = v"(z,y) + V-1w"(z,y)
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and

w (x4 vV—=1y) = vY(x,y) + V—1w"(x,y) .

Obviously, we can fix constant ambiguities of conjugate harmonic functions
to satisfy w = R*w® — RYwY and u = R*u” — RYuY.

Decompose OB into 4 parts and put e; = 0uB N {z = 0}, ea =
Oczt BN {y = ky}a €3 = Oegt B N {ZC = k:c}u e4 = OegtB N {y = 1}

Define 2 disjoint open subsets B, BY of B by B* def {(z,y) € B |
w(z,y) > w(0,1)} and BY ¥ {(z,y) € B | w(z,y) < w(0,1)}. We will
prove that B* and BY satisfy the statements of the Lemma.

A point (z,y) € B\ OcornerB is said to be a critical point of v* if
Vo*(z,y) = 0, or equivalently, u*'(2) = 0. By the uniqueness theorem
on analytic continuation, we see that there are at most a finite number of
critical points in B \ OcornerB. (The possibility of accumulation of critical
points to a point in O.prper B is ruled out by considering the uniqueness the-
orem on U?, the function corresponding to U defined above.) Denote the
(finite) set of critical points by AZ ..

Note first that, by assumption, we have v*(x,y) < vy, from which follows
ov” ov”

(0,y) = 0.
ox ay
These results and the fact that the number o£ critical points is finite imply,
with the Cauchy-Riemann relation, that aal(o,y) < 0 except for at most
finite number of ys’. Note also that we have,yfor v¥, the boundary condition

ovY . . . owY
—(0,y) = 0. Wi e Cauchy—Riemann relation we have ——(0,y) = 0.
(0,y) = 0. With the Cauchy-R lat h 5 (0,y) =0

Y

0x
z Y

Therefore we have Z—Z(O,y) = R" 8;; (0,y) — Ryaa%(O,y) < 0, except for
at most finite number of points on e;, consequently, w(0,y) > w(0,1) for
ky <y < 1. w is a continuous function on B, hence we see that e is
contained in the boundary of B* and has no common points with that of BY
except for a point (0,1). The positivity of R* and RY are consequences of
the fact that the assumptions imply that R* and j% (or RY and j¥) satisfy
a relation analogous to (2.6) and (2.7).

Similarly we deduce that ey is contained in the boundary of BY and has
no common points with that of B* except for a point (0,1).

To prove that es is contained in the boundary of BY, first note that, by
the Cauchy-Riemann relations and the boundary conditions on »* and v¥

(0,y) < 0. The boundary condition v*(0,y) = vy implies
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and the normalization condition on j¥, we have

k)z
w(ky, 1) —w(0,1) = Z—Z(m,l)dm
2k ov® 0 ovY 2k
= —-R" x, 1)+ RY—(x,1)dx = — 39 (x,1)dx = —1.
et R e ) de =~ e

Then we have, using Cauchy—Riemann relations and the assumption that

ovY

o =0 on ej3,
w(k:lrzy) - UJ(O, 1) = w(kw,yi— w(k:lra 1) -1
L v L
= — %(kx,y) dy—1= jy(ke,y)dy —1.

Y Y

Using divj? = 0, ‘%e Gauss—Green %rmula, and the boundary conditions
1 1

on v¥, we see that Jalkg,y)dy = J2(0,y) dy = 1. Therefore,
k k

Y Yy

Zy

(A.3) w(kz,y) —w(0,1) = — . i3 (keyy) dy .

T

)
i(km,y) < 0. The

By assumption, v*(z,y) > vg, from which follows
xT

a—q;(kw,y) = 0. These results

and the fact that the number of critical points is finite imply, j7(kz,y) =
g
oz
we see that w(kz,y) < w(0,1) on e3\ (kg ky), implying that es is contained
in the boundary of BY, and has no common points with that of B* except
for (ky, ky).
To prove that eg is contained in the boundary of B*, (and has no common
points with that of BY except for (k;,ky),) it suffices to prove w(z,k,) >
w(0,1) on ey \ (kg, ky). By an analogous argument to those above we obtain

boundary condition v*(k;,y) = wvo implies

(kz,y) > 0, except for at most finite number of points. With (A.3)

Z P Z
w .
w(0,ky) —w(0,1) = = —==(0,y)dy = ji(0,y)dy =1.
ky OY k
Y Y
: L. Ov” :
Noting the boundary condition 8—(:6, ky) = 0 on ey, we therefore see, with
Yy
the Cauchy—Riemann relations, that
w(z, ky) —w(0,1) = . %(w,ky)dac +1=— . Jy (@, ky) do + 1.
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Hence w(z, ky) > w(0,1) on ey \ (ks, ky) holds if we can show
Z

xT
(A.4) Jy(w,ky)de <1, 0 <z <ky.
0
Z

o
Suppose Jy (@, ky) dx > 1 for some (29, ky) € e\ (kz, ky), and put
0

@ = {(a,y) € B|w’(x,y) = w"(z0.k,)}

Since w? is a harmonic function on B, (¥ is a smooth curve (or a set of
smooth curves) in B , whose tangent is proportional to VoY, which implies
that v¥ is strictly monotone on £¥, hence it is not a closed orbit, and separates
B in domains with wY(z,y) > w”(xo,k,) and with w?(z,y) < w®(xo, ky).
The boundary conditions % = 0 on the edges x = 0 and x = k; imply
that w¥ is constant on thesg edges, so that Y cannot have endpoints on
them. Therefore there is an endpoint of ¢ on the edges {(z,0) | 0 < z <
kel U{(z,1) | 0 < = < kz}. Let (z1,1) be an endpoint of ¢¥, satisfying
0 < 21 < kgz. (The case that the endpoints are only on the edge y = 0
can be handled similarly.) There is a connected piecewise smooth curve
v C 9 U 92, B which connects (zg,ky) to (z1,1). Consider the subset of
B bounded by #¥', e, e1, and e4. Applying the Gauss—Green formula and
the current conservation divj¥ = 0, and noting that j¥-n = 0 on ¥’ and ey,
where n is a normal vector, we see that

Z Z

1 Zo
(A.5) Jy(z,1)dz = Jy (@, ky) dz > 1.
0 0

Y
On the other hand, v¥(z,1) = vy < vY(z,y) implies ai(ac,l) > 0, and
Y

ovY

——(x,1) = 0. This implies (with an argument similar to one which led to
x
w(0,y) > w(0,1) for ky <y < 1) that jy(z,1) >0, 0 < x < kg, except for
at most finite number of points. Hence
Z 7

T

Jy (@, 1) dx =1~ Jy (@, 1) dx < 1.
1

This contradicts (A.5). Hence (A.4) is proved.

We are left with the statements on J defined in (A.1). Since 5% and j¥
are in C(B), it follows at once that .J is square integrable and of bounded
variation. To prove that divJ = 0, let f be an infinitely differentiable
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function on B with compact support. Using (A.1), divj® = divj¥ = 0, and
the Gauss—Green formula [12, p.340] in turn, we have
Z Z
fdivJdedy=—- (Vf)-Jdxdy
Bz Bz
=—  (Vf)-jPdedy— (Vf) j¥dzxdy
zb* Vi
=— div(f j*) dzdy — div(f 7¥) dz dy
7B* z B
=— fj*-nds— f7¥ -nds,
oB= oBY
where n is the unit normal vector to the curves dB* or dBY, in the outward
directions of the domain B* or BY. Since f has compact support on B, the
contribution to the line integration from 0B is zero. On the other hand, the
function w is analytic in B, hence,

(€ (9B)\ (0B) = (9B) \ (0B)

and w(z,y) = w(0,1) on the curve £. Note that Vv = —RYVoY + R*Vv® =
j¥ — j%. By Cauchy-Riemann relations we know that Vv - Vw = 0. Hence
we have (3% — j¥) - n = 0 on ¢, where n is the unit normal vector to ¢, with
same sign as n for dB*. The normal vector n has opposite signs on 9B”
and 0BY. Therefore,

7 7

fdivldedy=— f(F*—37Y) -nds=0,
B l
which proves divJ = 0.
The estimate (A.2) now follows since

Eg,(J,J) = EgenF,(J,J) + Egvnr,(J,J) < Eg, (5%, 5%) + EF, (3%, 3Y) -

a
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