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Abstract

We report a new type of restoration of macroscopic isotropy (homogenization) in fractals with
microscopic anisotropy. The phenomenon is observed in various physical setups, including diffusions,
random walks, resistor networks, and Gaussian field theories. The mechanism is unique in that it is
absent in uniform media, while universal in that it is observed in a wide class of fractals.

In this letter, we report a new type of restoration of macroscopic isotropy (homogenization) in fractals
with microscopic anisotropy. The phenomenon is unique in that it is absent in uniform media, while
universal in that it is observed in a wide class of fractals. We suspect that the phenomenon is universal
enough to be observed experimentally, for example, in spin systems close to critical points and various
transport phenomena in fractal media. We first discuss the Sierpiński gasket as an example of finitely
ramified fractals, where the calculations can be performed explicitly. We then turn to the Sierpiński
carpet, an infinitely ramified fractal, and report on rigorous results. We conclude by discussing an intuitive
picture of the mechanism. Some results of numerical calculations are also presented.

We note that when we discuss ‘isotropy’ for a deterministic regular fractal, we mean invariance with
respect to (discrete) rotations which respect the structure of the fractal.

Resistor network on Sierpiński gasket. In order to illustrate the phenomenon of isotropy restoration,
we first concentrate on the simplest example of anisotropic resistor network on the Sierpiński gasket,
a typical finitely ramified fractal. Let n be a non-negative integer, and put O = (0, 0), an = (2n, 0),
and bn = (2n−1, 2n−1

√
3). Consider the n-th generation of the (pre-)Sierpiński gasket, which is a triangle

�Oanbn with self-similar internal structure composed of triangles of side length 1, as illustrated in (Fig. 1).
Each internal vertex has 4 bonds of unit length attached. We associate a resistor of resistance 1 with each
bond parallel to the x-axis, and a resistor of resistance r > 1 with the remaining bonds. By repeated use of
the star–triangle relations (Y –∆ transforms), this n-th level network can be reduced to a simple triangular
network (an effective network), with resistances Rx

n(r) in the horizontal bond Oan and Ry
n(r) in the bonds

Obn and anbn. By definition, Rx
0(r) = 1 and Ry

0(r) = r. Put

Hn(r) = Ry
n(r)/Rx

n(r) . (1)

Hn(r) measures the effective anisotropy of �Oanbn composed of resistance elements with the basic (mi-
croscopic) anisotropy parametrized by r = H0(r). Using the star–triangle relations we obtain the following
recursion relations for Rx

n and Ry
n:

Rx
n+1 =

2Rx
nRy

n(2Rx
n + 3Ry

n)(3Rx
n + 2Ry

n)

(Rx
n

2 + 6Rx
nRy

n + 3Ry
n
2)(Rx

n + 2Ry
n)

,

Ry
n+1 =

Ry
n(2Rx

n + 3Ry
n)

Rx
n + 2Ry

n
.
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We see from these formula that in the anisotropic regime (Hn(r) � 1), the effective resistances satisfy the
scaling behavior

Rx
n+1(r) ≈ 2Rx

n(r) , Ry
n+1(r) ≈ (3/2)Ry

n(r) , (2)

while in the isotropic regime (Hn(r) ≈ 1), we have

Rx
n+1(r) ≈ Ry

n+1(r) ≈ (5/3)Rx
n(r) . (3)

We also see that Hn(r) in (1) satisfies Hn+1(r)−1 = f(Hn(r)−1), where

f(x) = (4x + 6x2)/(3 + 6x + x2) . (4)

In particular, we see the restoration of isotropy,

lim
n→∞Hn(r) = 1 . (5)

Fig. 2 gives the calculated behaviors of the effective resistances. We see a clear signal of the two scaling
regimes (2) and (3). Using (4), we can calculate the rates of restoration of isotropy. In the anisotropic
regime, we have Hn+1(r) ≈ (3/4)Hn(r), while in the isotropic regime, we have Hn+1(r)−1 ≈ (4/5)(Hn(r)−
1). We can also calculate the scaling limit F (z) = lim

n→∞ fn((3/4)nz) = z − (3/2)z2 + (39/14)z3 + · · ·,
where fn is the n-th iteration of f . For large r and large n (1 � n < O(log(r)/ log(4/3))) we have
H−1

n (r) ≈ F ((4/3)n/r). We can prove by standard methods using (4) that the scaling limit exists and that
F is complex analytic in a neighborhood of z = 0.

We can generalize the above consideration so that the resistors parallel to Ob0 and a0b0 have different
values. If we denote the effective resistances parallel to Oa0, Ob0, a0b0, by Ra

n, Rb
n, Rc

n, respectively, we
find Ra

n+1 = (4K+Ra
n+Rb

n+Rc
n)Ra

n(Rb
n+Rc

n)
(K+Rb

n+Rc
n)(Ra

n+Rb
n+Rc

n)
, where K = (Ra

n+Rb
n)(Rb

n+Rc
n)(Rc

n+Ra
n)

2(Ra
nRb

n+Rb
nRc

n+Rc
nRa

n)
. Corresponding formula for

Rb
n+1 and Rc

n+1 are obtained by cyclic permutations of the suffixes. Restoration of isotropy lim
n→∞Rb

n/Ra
n =

lim
n→∞Rc

n/Ra
n = 1 can be proved in the generalized situation.

Restoration of isotropy is not observed in uniform media. To see this, consider a resistor network
of regular square lattice, whose horizontal (resp. vertical) bonds are resistors of resistance 1 (resp. r).
The ratio of the effective resistances for n × n size network in vertical direction to horizontal direction is
easily seen to be r, independently of n. Thus the anisotropy for the resistor network of regular lattice is
independent of scale. The restoration of isotropy which we observe on the Sierpiński gasket is a feature
absent on uniform media.

Related models on Sierpiński gasket. We described restoration of isotropy in terms of resistor net-
works [1, 2]. The phenomenon is also observed in various other physical setups, including random walks and
diffusions [3, 4] and Gaussian field theories [5]. A related mathematical problem of the construction and
uniqueness of diffusions on the Sierpiński gasket is dealt with in [6]. We also remark that there is another
aspect in homogenization, that a diffusion with microscopic irregularity restores macroscopic uniformity,
as studied in [7] for finitely ramified fractals. This aspect, in contrast to what we deal with here, is not
specific to fractals and has been known in Euclidean spaces. (For other related references in mathematics
literature, see the references in [8].)

Restoration of isotropy on Sierpiński carpet. The finite ramifiedness of the Sierpiński gasket implies
that the recursion relations are finite dimensional, and the analysis can be made explicitly. One might
then wonder if the isotropy restoration we found above is a special feature of models on finitely ramified
fractals. In [9] we have proved a mathematical theorem for a class of infinitely ramified fractals, which
establishes that the isotropy restoration is a universal phenomenon.

To state the result of [9], let n be a non-negative integer, and consider the pre-Sierpiński carpet Fn,
which is a subset of a unit square [0, 1] × [0, 1] obtained by removing small squares recursively as for
constructing the Sierpiński carpet [10], until squares of side length 3−n are reached, where we stop so that
smaller scale structures are absent (Fig. 3). Let r > 1, and assume that Fn is made of a material with a
uniform but anisotropic electrical resistivity, such that for a unit square made of this material, the total
resistance is 1 in the x-direction and r in the y-direction, and the principal axes of the resistivity tensor
are parallel to the x and y axes. Equivalently, we assume that the energy dissipation rate per unit area for
the potential (voltage) distribution v(x, y) is ( ∂v

∂x )2 + 1
r (∂v

∂y )2. (Note that by linear transform in coordinate
y′ = y

√
r, the formula becomes that of isotropic material. Hence, in experimental situation, one may as

well start with a rectangle made of isotropic material, with rectangular holes.)
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We introduce the effective resistance Rx
n(r) of Fn in x direction, the resistance observed when we apply

voltage between two edges x = 0 and x = 1. Likewise we define Ry
n(r) and introduce the effective anisotropy

Hn(r), as in (1). H0(r) = r parametrizes the anisotropy of the material composing Fn. We can prove the
following [9].
Theorem 1 — There is a finite constant C ≥ 1, independent of r and n, such that for any initial anisotropy
r > 0, we have the weak restoration of isotropy (weak homogenization) in the sense that 1/C ≤ Hn(r) ≤ C
holds for sufficiently large n. (How large n should be depends on the value of r.)

We believe that C can be taken arbitrarily close to 1, as in (5), but this is still beyond the reach of
present mathematical techniques, for the infinitely ramified fractals. We emphasize that we have concrete
rigorous results as Theorem 1, in spite of the difficulties for the infinitely ramified fractals.

Analogous results hold if we consider a cross-wire network Gn defined by replacing each smallest size
square of Fn by a horizontal and vertical cross-wire of four resistors (connected at the center of the square),
whose resistances are 1/2 in horizontal direction and r/2 in the vertical direction. The results stated above
for the board Fn also hold for the network Gn.

Ideas for a proof of the Theorem. Theorem 1 is proved by decomposing the problem into the isotropic
regime and the anisotropic regime. For the isotropic regime, an extension (to anisotropic case) of a deep
renormalization group-type analysis of effective resistance for the isotropic Sierpiński carpet [2, 11] is ap-
plied, while for the anisotropic case, renormalization group-type picture in the neighborhood of degenerate
fixed points [5, 3, 4] holds. One of the key observations for the proof of Theorem 1 is that if Hn(r) is very
large (in the anisotropic regime), then Hn(r) follows a scaling behavior. We can prove
Theorem 2 — The limits lim

s→∞ s−1 lim inf
n→∞ Hn((9/7)ns) = lim

s→∞ s−1 lim sup
n→∞

Hn((9/7)ns) exist.

This result says that while s = (7/9)nr and n are large, Hn(r) decreases like c (7/9)nr. We can prove
these Theorems by giving bounds controlling the n dependence of the effective resistances [9]. Roughly
speaking, we can show that in the anisotropic regime (Hn(r) � 1),

Rx
n+1(r) ≈ (3/2) Rx

n(r) , Ry
n+1(r) ≈ (7/6) Ry

n(r) , (6)

while in the isotropic regime (Hn(r) ≈ 1), Rx
n+1(r) ≈ ρ Rx

n(r), and Ry
n+1(r) ≈ ρ Ry

n(r). Here ρ = 1.25148±
1 × 10−5 is the growth exponent for the effective resistance in the isotropic case r = 1 [2, 11].

Based on these results, we conjecture that (5) holds also for the Sierpiński carpet, and that Fig. 2
schematically gives the behaviors of Rx

n(r) and Ry
n(r).

Discussions. Our mathematical results are not very sharp numerically; we can only say that 10−10 <
Hn(r) < 1010, for large n. Numerical calculations for the Sierpiński carpet may therefore be of interest.
We give results for the resistor network Gn. Obviously, Rx

0 (r) = 1 and Ry
0(r) = r. It is not difficult to find

Rx
1(r) = (3r + 4)/(2r + 3). The exact result for n = 2 is

Rx
2(r) =

324r8 + 3960r7 + 17169r6 + 37077r5 + 44639r4 + 30842r3 + 11900r2 + 2325r + 174
144r8 + 1924r7 + 8850r6 + 20052r5 + 25146r4 + 17976r3 + 7128r2 + 1422r + 108

.

Note that Ry
n(r) = r Rx

n(1/r), with which we can calculate Ry
n(r) and Hn(r) from these formula. We have

numerical results for 3 ≤ n ≤ 7, obtained using Gaussian relaxation method (Table 1). We see that as
r is increased, the n dependence of Rx

n(r) rapidly approach (3/2)n, and that for large n, those of Ry
n(r)

approach c (7/6)n with c = 6/5. These observations are consistent with (6), implying scaling behavior in
the anisotropic regime. (Deviation from scaling of Ry

n for small n in the data can be explained if we notice
that we are calculating the network Gn instead of the board Fn.) In particular, we see that for any value
of r > 1, Ry

n/Rx
n monotonically decreases as n is increased, which indicates the tendency of restoration of

isotropy.
We expect that the scaling limit

z lim
n→∞Hn((9/7)n/z) = c + d z + · · ·

exists, where c is the limit in Theorem 2. The data and the fact that Rx
n(r) is a rational function of r

makes it possible to find an estimate

Rx
n(0) = lim

r→∞ r−1Ry
n(r) = c (7/6)n − 3−n/5
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with c = 6/5. Thus the constant term c in the scaling function is determined. We need more data to
determine d, but the calculations become rapidly time consuming as n or r is increased.

Let us discuss general intuitive picture of the restoration of isotropy, in terms of random walks [3,
4]. The fractals may be regarded to have obstacles or holes in the space, when compared to uniform
spaces. Intuitively, a random walker that favors horizontal motion performs a one-dimensional random
walk between a pair of obstacles, and eventually is forced to move in off-horizontal direction before he
could move further horizontally. There are obstacles of various sizes, separated by distances of the same
order as their sizes, hence globally, the random walker is scattered almost isotropically. On uniform media
such as regular lattices or Euclidean spaces, these obstacles are absent, hence the anisotropic walk keeps
anisotropy asymptotically.

The Sierpiński gasket and the Sierpiński carpet have exact self-similarity, and one may doubt the
‘extrapolation’ to figures without exact self-similarity. However, we can prove that the restoration of
isotropy occurs for anisotropic diffusions on the scale-irregular abb-gaskets, a family of fractals which are
scale-irregular, i.e. do not have exact self-similarity [4]. These considerations suggest that the restoration
of isotropy is to be observed on a wide class of random media. For example, numerical calculations on the
percolation clusters may provide interesting observations.

T. Hattori wishes to thank Hal Tasaki for his interest in the present work, for valuable comments, and
above all, for suggesting to write a letter on the subject. The research of T. Hattori is supported in part
by a Grant-in-Aid for General Scientific Research from the Ministry of Education, Science and Culture.
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Figure 1: Pre-Sierpiński gasket.

Figure 2: Rx
n(r) (lower plots) and Ry

n(r) (upper plots) on the pre-Sierpiński gasket for r = 100. The lines
are the scaling predictions (2) and (3).

Figure 3: Pre-Sierpiński carpet F3.

Table 1: Effective resistances Rx
n(r) and Ry

n(r) for the pre-Sierpiński carpet network Gn.
r = 10 r = 100 r = 1000 r = 10000 r = 100000

n Rx
n(r) Ry

n(r) Rx
n(r) Ry

n(r) Rx
n(r) Ry

n(r) Rx
n(r) Ry

n(r) Rx
n(r) Ry

n(r)
3 2.831057 19.64149 3.238145 190.6445 3.356806 1899.017 3.373110 18982.35 3.374810 189815.7
4 3.798415 23.47825 4.614455 224.0274 4.963201 2223.085 5.049858 22209.29 5.061194 222070.3
5 5.070868 28.10055 6.524220 263.1750 7.258880 2598.702 7.524180 25934.86 7.585124
6 6.742934 33.69136 9.185975 309.3891 10.56635 3037.488 11.14879 30272.61 11.34244
7 8.933314 40.46672 12.88375 364.0724 15.34037
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