Mathematical Derivation of Chiral Anomaly in Lattice Gauge Theory with Wilson’s Action

Tetsuya Hattori
Department of Mathematics, Faculty of Science, Rikkyo University,
Nishi-Ikebukuro, Tokyo 171, Japan
e-mail address: hattori@rkmath.rikkyo.ac.jp

Hiroshi Watanabe
Department of Mathematics, Nippon Medical School,
2-297-2, Kosugi, Nakahara, Kawasaki 211, Japan
e-mail address: d34335@m-unix.cc.u-tokyo.ac.jp

1998.5.8

Abstract
Chiral $U(1)$ anomaly is derived with mathematical rigor for a Euclidean fermion coupled to a smooth external $U(1)$ gauge field on an even dimensional torus as a continuum limit of lattice regularized fermion field theory with the Wilson term in the action. The present work rigorously proves for the first time that the Wilson term correctly reproduces the chiral anomaly.

I Introduction
It is widely believed that continuum limit of a lattice regularized theory of quantized fermion gives the correct chiral anomaly [1, 2, 3] if we have Wilson terms in the lattice fermion action [4]. Since Karsten and Smit [5] observed this fact by a perturbative argument, there appeared mathematically more careful analyses [6, 7], in which it was claimed that the Wilson fermion has the expected continuum limit and gives the correct chiral anomaly under some mathematical ansatz on perturbative expansions. However, a further investigation on the validity of the ansatz has not been published so far, and from a mathematical view point, a proof that Wilson’s formalism for lattice fermion is a correct scheme giving the expected anomaly, has not been completed.

On the other hand, in modern physics, the Wilson fermion provides not only a mathematical basis for analytic investigations but also a practical scheme for numerical studies on Euclidean quantum field theories including fermions. In view of this, we cannot help asking for a mathematically rigorous proof that the Wilson term correctly reproduces the chiral anomaly in the continuum limit.
In the present paper, we study Wilson’s formalism for a Euclidean lattice fermion coupled to a smooth external $U(1)$ gauge field defined on an even dimensional torus and derive the expected chiral anomaly in the continuum limit with mathematical rigor. The present work rigorously proves for the first time that the Wilson term correctly reproduces the chiral anomaly.

We summarize below three essential mathematical problems in the present study and the strategies to solve the problems.

1. **Chiral oscillation.** Let $T_a^d = (aZ/LZ)^d$ be a discrete torus with period L/a and lattice spacing a, where L/a is a positive integer. We denote by V_a^d the vector space consisting of all functions $u : T_a^d \rightarrow C^{2d/2}$ defined on T_a^d with values in the ‘fibre’ $C^{2d/2}$. The vacuum expectation of divergence of chiral current, which is our main quantity of interest, is written in the form of $\text{Tr} \left(K \gamma_{d+1} \right)$, where K is an operator acting on V_a^d, and γ_{d+1} is the chirality in d dimensions (see (3.1)). [Note that γ_{d+1} is regarded as an operator acting on V_a^d instead of the fibre $C^{2d/2}$ and therefore the multiplicities of the eigenvalues ± 1 are not uniformly bounded in the lattice spacing a.]

 To take the trace, we choose, as in [6, 7], the ‘planewave basis’, i.e. the set of eigenfunctions of the (free) translations on the lattice (see (4.4)). Though this choice may be standard, it should be underlined because the Wilson term is too weak to make the trace norm of $K \gamma_{d+1}$ uniformly bounded in the lattice spacing a. In other words, it is essential to ‘cancel’ (see e.g. (6.9)) the highly degenerate positive and negative eigenvalues of γ_{d+1} (the ‘chiral oscillation’) before taking the continuum limit. The planewave basis is convenient for this purpose.

 Strategy 1: Take the trace with respect to the planewave basis in order to explicitly cancel the chiral oscillation.

 It may be illustrative to compare the situation with a previous related work by one of the authors [8, 9, 10]. There, the chiral oscillation is controlled by introducing an additional heat-kernel regularization, with which the operator in question lies in the trace class, and the continuum limit can be taken without explicit cancellation of chiral oscillation. As a result, the index of the continuum Dirac operator appears, which is equal to the Chern class by the index theorem [11], hence the proof is completed.

2. **Perturbative expansion.** After performing the fermion integration, we have a formula with inverse of operators (see (3.9)). If we try to expand the inverse operators perturbatively, the convergence of the expansion becomes a problem, as is usual with formal perturbation series. For example, the operator C defined in (3.8) is decomposed as

 $$ C = C_0 + C_1 $$ \hspace{1cm} (1.1)

 into a free part C_0 (for vanishing gauge potentials) and an interaction part C_1, but the Neumann series

 $$ C^{-1} = \sum_{\ell=0}^{\infty} (-C_0^{-1}C_1)^\ell C_0^{-1} $$ \hspace{1cm} (1.2)

 is not absolutely convergent, unless the gauge field is sufficiently small. The following idea was suggested in [7] without details:
Strategy 2: Terminate a perturbative expansion of inverse operator up to a finite order, and use ‘positivity’ to control the remainder terms.

Namely, we use an identity

\[C^{-1} = C_0^{-1} + \sum_{j=1}^{m-1} (-C_0^{-1}C_1)^j C_0^{-1} + (-C_0^{-1}C_1)^m C^{-1}, \quad m = 1, 2, \ldots, \] (1.3)

for a sufficiently large \(m \). What we need is the power-counting property of the operator \((-C_0^{-1}C_1)^j\), and an a priori bound arising from positivity of \(C \), to control the remainder terms. See Section IV and Section V for details. It may be suggestive to note that remainder estimates based on positivity is used in the convergence proof of cluster expansions in constructive field theory.

3. Power counting. The strategy 2 should be accompanied by a rigorous power-counting argument. Furthermore, we need asymptotic estimates of operators, when we take the continuum limit. Our last point is to employ the power-counting arguments with mathematical rigor in order to extract the asymptotic behaviors.

Strategy 3: Show and use the fact that the operators in question are ‘quasi diagonal’ with respect to the planewave basis.

The class of quasi diagonal operators defined in Section IV is closed with respect to the summation and the product, and, under a simple assumption, it is also closed with respect to the inverse operation. This calculus, which is a systematic arrangement of the asymptotic analysis of lattice operators in the spirit of power-counting, fits our analysis in this paper well. The smoothness assumption on the gauge fields is of relevance here. See Section IV for details.

According to the above strategies, we take the continuum limit of \(\text{Tr} (K_{\gamma d+1}) \) and confirm that the Wilson fermion gives the correct chiral anomaly.

This paper is organized as follows. We describe the model and state the result (Theorem 2.1) in Section II. Theorem 2.1 is proved in the subsequent sections. In Section III, we derive the expression of chiral anomaly in the form of chiral oscillation. Section IV is devoted to the calculus of quasi diagonal operators. In Section V, we apply the framework of Section IV to several operators and determine their orders. The proof of Theorem 2.1 is completed in Section VI.

The propositions in Section III and Section VI may guide the readers who wish to have an overview of our argument.

II Problem and Result

In this section, we formulate the problem and then state the result in Theorem 2.1.

II.1 Notation

Let \(T_a \) be a discrete torus with lattice spacing \(a \) and period \(L \). Throughout this paper, we assume that \(0 < a < 1/2, L/a \in \mathbb{Z} \). Let \(V_a^d \) be the set of all mappings

\[u = (u_s)_{s=1,2,\ldots,2^d/2} : \quad T_a \longrightarrow \mathbb{C}^{2^d/2}. \] (2.1)
We impose the anti-periodic boundary condition for definiteness, though boundary conditions play no essential roles in this paper.\(^1\)

Let \((\ , \)\) be the inner product on \(V^d\) defined by
\[
(v, u) = d^d \sum_{x \in T^d_a} (v(x), u(x))_x,
\] (2.2)
where \((\ , \)_x\) is the (standard) inner product on \(C^{d/2}\):
\[
(v(x), u(x))_x = \sum_{s=1}^{2^{d/2}} \bar{v}_s(x) u_s(x).
\]

Let \(A_\mu(x), \mu = 1, 2, \ldots, d,\) be a fixed smooth \(U(1)\) gauge field on the continuum torus \(T^d = (\mathbb{R}/L\mathbb{Z})^d\). Using \(A_\mu\), we assign the gauge group element
\[
U_\mu(x) = \exp \left(-iQ \int_0^a A_\mu(x + se_\mu) \, ds \right)
\] (2.3)
to a directed link \((x, x + e_\mu), x \in T^d_a, \mu = 1, 2, \ldots, d,\) where \(Q \in \mathbb{R}\) is a charge and \(e_\mu\) is a unit vector along the \(\mu\)-th axis for \(\mu = 1, 2, \ldots, d,\). Denote the free and the covariant translations by \(T_{\mu0}\) and \(T_\mu\), respectively:
\[
T_{\mu0} u(x) = u(x + ae_\mu), \mu = 1, 2, \ldots, d, \quad x \in T^d_a, \quad u \in V^d_a,
\] (2.4)
\[
T_\mu = U_\mu T_{\mu0}, \quad \mu = 1, 2, \ldots, d,
\] (2.5)
where \(U_\mu\) denotes the multiplication operator defined by
\[
U_\mu u(x) = U_\mu(x) u(x), \quad \mu = 1, 2, \ldots, d, \quad x \in T^d_a, \quad u \in V^d_a.
\] (2.6)

Note that \(T_\mu^* = T_{\mu}^{-1}\) holds, where \(T_\mu^*\) is the adjoint with respect to the inner product \((\ , \).\) Put
\[
D_\mu = \frac{1}{2a} (T_\mu - T_{\mu}^*), \quad \mu = 1, 2, \ldots, d,
\] (2.7)
and let \(\gamma_\mu, \mu = 1, 2, \ldots, d,\) be the \(d\) dimensional anti-hermitian Dirac matrices. Namely,
\[
\gamma_\mu \gamma_\nu + \gamma_\nu \gamma_\mu = -2\delta_{\mu\nu} I_{2^{d/2}}, \quad \mu, \nu = 1, 2, \ldots, d,
\] (2.8)
where \(I_\ell\) denotes the unit matrix of order \(\ell\). In what follows, we abbreviate \(\gamma_\mu \otimes \hat{I}\) to \(\gamma_\mu,\) where \(\hat{I}\) denotes the identity operator on the space \(V^d_a = \{ \varphi : T^d_a \to \mathbb{C} \}.\) Then, the lattice Dirac operator on the discrete torus \(T^d_a\) is by definition
\[
\mathcal{D} = \sum_{\mu=1}^d \gamma_\mu D_\mu.
\] (2.9)

\(^1\) The anti-periodic boundary condition is required in the proof of the reflection positivity [12].
II.2 Lattice Fermion

As is well-known, the operator \mathcal{D} has eigenfunctions called *doublers* which do not approximate any eigenfunctions of the continuum Dirac operator. In order to suppress the contributions of doublers to vacuum expectation values, we introduce the Wilson term:

$$W = -\sum_{\mu=1}^{d} (2I - T_\mu - T_\mu^*),$$

where I denotes the identity operator on V_α^d. Then our lattice fermion action is written as

$$S(\bar{\psi}, \psi) = (\bar{\psi}, (i\mathcal{D} + MI - \frac{r}{2a}W)\psi),$$

where $M > 0$ is the fermion mass and r is a positive constant.\(^2\) Using the action S, we define the vacuum expectation by

$$\langle \Phi(\bar{\psi}, \psi) \rangle = \frac{1}{Z(A)} \int \prod_{x \in T_\alpha^d} d\bar{\psi}(x)d\psi(x) \exp(-S(\bar{\psi}, \psi))\Phi(\bar{\psi}, \psi),$$

where the integrations with respect to $\bar{\psi}$ and ψ are the Grassmann integrations [12, 13] and the partition function $Z(A)$ is defined by

$$Z(A) = \int \prod_{x \in T_\alpha^d} d\bar{\psi}(x)d\psi(x) \exp(-S(\bar{\psi}, \psi))$$

$$= \det (i\mathcal{D} + MI - \frac{r}{2a}W).$$

Note that the semi-positivity of $-W$

$$\langle u, -Wu \rangle = \sum_{\mu=1}^{d} \| (I - T_\mu)u \|^2 \geq 0$$

implies

$$\langle u, (i\mathcal{D} + MI - \frac{r}{2a}W)u \rangle \neq 0 \, , \, u \neq 0,$$

hence $Z(A) \neq 0$.

II.3 Lattice Chiral Current

We define the lattice chiral current by

$$J_\mu(x) = \frac{1}{2} (\bar{\psi}(x), \gamma_{d+1}\gamma_\mu(T_\mu \psi)(x))_x + \frac{1}{2} ((T_\mu \bar{\psi})(x), \gamma_{d+1}\gamma_\mu \psi(x))_x,$$

$$\mu = 1, 2, \ldots, d,$$

\(^2\) Our analysis allows any $r > 0$, but the proof of reflection positivity [12] requires $0 < r \leq 1$.

where the chirality γ_{d+1} is by definition
\[\gamma_{d+1} = i^{d/2} \gamma_1 \gamma_2 \cdots \gamma_d. \tag{2.17} \]

Put
\[Y(x) = \frac{1}{a} \sum_{\mu=1}^{d} (J_\mu(x) - J_\mu(x - ae_\mu)) - 2Mi(\bar{\psi}(x), \gamma_{d+1}\psi(x))_x, \quad x \in T^d_a, \tag{2.18} \]
and smear it as
\[Y(\xi) = a^d \sum_{x \in T^d_a} \xi(x)Y(x) \tag{2.19} \]
by an arbitrary real-valued smooth function ξ defined on the continuum torus. The functional $Y(x)$ is the 'divergence' of lattice chiral current with a mass correction. Our problem is to calculate $\lim_{a \to 0} \langle Y(\xi) \rangle$.

II.4 Result

Let us state our result.

Theorem 2.1. For an arbitrary smooth gauge field $A = (A_\mu)$ and for an arbitrary smooth function ξ both defined on the continuum torus T^d, it holds that
\[\lim_{a \to 0} \langle Y(\xi) \rangle = \frac{-2iQ}{(4\pi)^{d/2}(d/2)!} \int_{T^d} dx \sum_{\mu_1,\mu_2,\ldots,\mu_d=1}^{d} \epsilon_{\mu_1\mu_2\ldots\mu_d} F_{\mu_1\mu_2}(x)F_{\mu_3\mu_4}(x)\cdots F_{\mu_{d-1}\mu_d}(x), \tag{2.20} \]
where $\epsilon_{\mu_1\mu_2\ldots\mu_d}$ is the totally antisymmetric tensor and
\[F_{\mu\nu}(x) = \partial_\mu A_\nu(x) - \partial_\nu A_\mu(x). \tag{2.21} \]
Namely, $\langle Y(x) \rangle$ weakly converges to the Chern class in the continuum limit. In the subsequent sections, we prove this fact with mathematical rigor.

III Chiral Oscillation

In this section, we carry out the Grassmann integrations, and write the chiral anomaly as a trace of an operator on V^d_a.

Proposition 3.1 ([6, 7]). It holds that
\[\langle Y(\xi) \rangle = -2i\text{Tr}_{V^d_a} [\Lambda \gamma_{d+1}] , \tag{3.1} \]
where
\[\Lambda = \frac{1}{2}(i\mathcal{D} + MI - \frac{r}{2a}W)^{-1}(i\mathcal{D} + MI) + \frac{1}{2}(i\mathcal{D} + MI)(i\mathcal{D} + MI - \frac{r}{2a}W)^{-1}. \tag{3.2} \]
Proof. It is easy to see that
\[
Y(\xi) = a^d \sum_{x \in T_n^d} \xi(x)Y(x)
\]
\[
= (\bar{\psi}, \xi \gamma_{d+1} \slashed{D} \psi) + (\slashed{D} \bar{\psi}, \xi \gamma_{d+1} \psi) - 2Mi(\bar{\psi}, \xi \gamma_{d+1} \psi),
\]
where in (3.4) we used the same symbol \(\xi \) for the multiplication operator given by \((\xi u)(x) = \xi(x)u(x), x \in T_n^d \). Using (3.4) and manipulating the Grassmann integrations, we obtain (3.1). Here, (2.15) ensures the existence of the inverse of \(i\slashed{D} + MI \). \(\square \)

Taking into account the behavior of the Wilson term \(-r^2aW\) for doublers, one may intuitively see that the \(\Lambda \) works as a ‘projection’ to decouple doublers, and according to this picture, one can write the scenario that when the doublers go out of the continuum world, they take away a part of lattice chiral current and produces the chiral unbalance in the continuum world. One may say that this is the origin of chiral anomaly and nonzero index of the Dirac operator.

Put
\[
L = MI - \frac{r}{2a}W, \quad (3.5)
\]
\[
X_{\mu\nu} = D_\mu L^{-1}D_\nu - D_\nu L^{-1}D_\mu, \mu, \nu = 1, 2, \ldots, d, \quad (3.6)
\]
\[
B = \frac{1}{2} \sum_{\mu, \nu=1}^d \gamma_\mu \gamma_\nu X_{\mu\nu}, \quad (3.7)
\]
\[
C = L - \sum_{\mu=1}^d D_\mu L^{-1}D_\mu. \quad (3.8)
\]

Proposition 3.2 ([6, 7]). It holds that
\[
\langle Y(\xi) \rangle = -i \text{Tr} \, V_d^a \left[\frac{r}{2a} (\xi W + W \xi) (C + B)^{-1} \gamma_{d+1} \right]. \quad (3.9)
\]

Proof. Put
\[
H_0 = i\slashed{D} + MI, \quad (3.10)
\]
\[
H_1 = i\slashed{D} + L, \quad (3.11)
\]
and rewrite (3.1) as
\[
\langle Y(\xi) \rangle = -i \text{Tr} \, V_d^a \left[\gamma_{d+1}(H_0 H_1^{-1} + H_1^{-1}H_0) \xi \right]. \quad (3.12)
\]
Since \(H_0 = H_1 + \frac{r}{2a}W \) and \(\text{Tr} \, V_d^a [\xi \gamma_{d+1}] = 0 \), it holds that
\[
\langle Y(\xi) \rangle = -i \text{Tr} \, V_d^a \left[\gamma_{d+1} \frac{r}{2a} (WH_1^{-1} + H_1^{-1}W) \xi \right]. \quad (3.13)
\]
Note that
\[
H_1 L^{-1}H_1^\dagger = L + \slashed{D} L^{-1} \slashed{D} = C + B \quad (3.14)
\]
\[H_1^{-1} = L^{-1} H_1^* (C + B)^{-1}. \]

(3.15)

Furthermore,
\[H_{1 \gamma_{d+1}} = \gamma_{d+1} H_1^* \]

(3.16)

holds, while \(L, \xi W + W \xi, \) and \((C + B)^{-1}\) commute with \(\gamma_{d+1} \). Then we have
\[
\langle Y(\xi) \rangle = -i \text{Tr}_{V_2^d} \left[\frac{r}{2a} (\xi W + W \xi) L^{-1} H_1^* (C + B)^{-1} \gamma_{d+1} \right]
= -i \text{Tr}_{V_2^d} \left[\frac{r}{2a} (\xi W + W \xi) L^{-1} \frac{H_1 + H_1^*}{2} (C + B)^{-1} \gamma_{d+1} \right]
= -i \text{Tr}_{V_2^d} \left[\frac{r}{2a} (\xi W + W \xi) (C + B)^{-1} \gamma_{d+1} \right].
\]

(3.17)

\[\square \]

IV Quasi Diagonal Operators

All the lattice operators appearing in this paper are ‘quasi diagonal’ with respect to the planewave basis. In this section, we define the class of quasi diagonal operators, give a few examples (Lemma 4.1, Lemma 4.2), and prove basic properties (Lemma 4.3, Lemma 4.4).

IV.1 Definition of Quasi Diagonal Operators

We first fix an orthonormal basis of \(V_2^d \). Put
\[T_2^a = \{ p = (p_\mu) \in \mathbb{R}^d \mid p_\mu = \frac{2k_\mu + 1}{L} \pi, k_\mu \in \mathbb{Z}, |p_\mu| < \frac{2}{a} \pi \}. \]

(4.1)

We regard \(T_2^a \) as a discrete torus with period \(\frac{2}{a} \pi \) and spacing \(\frac{2}{L} \pi \) and denote by \(\langle p \rangle \) the periodic distance on \(T_2^a \):
\[
\langle p \rangle = \max_{\mu = 1, 2, \ldots, d} \langle p_\mu \rangle = \max_{\mu = 1, 2, \ldots, d} \min_{n \in \mathbb{Z}} |p_\mu - \frac{2n}{a} \pi|.
\]

(4.2)

For \(p \in T_2^a \), define the anti-periodic planewave \(u_p \) on \(T_2^d \) with a momentum \(p \) by
\[u_p(x) = L^{-d/2} \exp(ipx), \quad x \in T_2^d. \]

(4.3)

Furthermore, let \(\chi_\alpha, \alpha = 1, 2, \ldots, 2^{d/2} \), be the canonical orthonormal basis of \(C^{2^{d/2}} \) with respect to the standard inner product. Then,
\[u_{\alpha p} = \chi_\alpha \otimes u_p \in V_2^d, \quad \alpha = 1, 2, \ldots, 2^{d/2}, p \in T_2^a, \]

(4.4)
constitute an orthonormal basis of V^d_a:

$$ (u_{\alpha p}, u_{\beta q}) = \delta_{\alpha \beta} \delta_{pq}, \quad \alpha, \beta = 1, 2, \ldots, 2^{d/2}, \quad p, q \in T^d_a^*, $$

(4.5)

where the inner product $(\ , \)$ is the one defined by (2.2).

Let us formulate the class of quasi diagonal operators. Operators such as T_μ or C acting on V^d_a have dependences on the lattice spacing a, so that when we define such operators, we in fact define families of operators $T_\mu = T_\mu(a), a > 0$, or $C = C(a), a > 0$.

Definition. Let $k = k(a, p), p \in T^d_a^*$, be a non-negative function satisfying

$$ k(a, p) \leq c(1 + \langle p - q \rangle)^\tau k(a, q), \quad p, q \in T^d_a^*, $$

(4.6)

for some constants c and τ independent of a, p, q. Then, for a family of linear operators $K^{(a)}$ on V^d_a, we say that $K^{(a)}$ is a quasi diagonal operator of the order k and write $K^{(a)} = O(k)$, if

$$ |(u_{\alpha p}, K^{(a)} u_{\beta q})| \leq c_k k(a, p) (1 + \langle p - q \rangle)^\sigma, $$

(4.7)

holds for all $\sigma \geq 0, p, q \in T^d_a^*$, and $\alpha, \beta = 1, 2, \ldots, 2^{d/2}$. Here the constant c_k may depend on σ but not on a, p, q, α, β.

Note that (4.6) and (4.7) imply

$$ |(u_{\alpha p}, K^{(a)} u_{\beta q})| \leq c'_k k(a, q) (1 + \langle p - q \rangle)^\sigma, $$

(4.8)

for another constant c'_k. In other words,

$$ K^{(a)} = O(k) \implies K^{(a)*} = O(k). $$

(4.9)

In the following, we often suppress writing a-dependences of operators explicitly and write K instead of $K^{(a)}$. Then we will simply say that K is quasi diagonal and write $K = O(k)$.

IV.2 Free Parts and Multiplication Operators

Define the ‘free parts’ of D_μ, W, L, and C by

$$ D_{\mu 0} = \frac{1}{2a}(T_{\mu 0} - T_{\mu 0}^*), $$

(4.10)

$$ W_0 = - \sum_{\mu=1}^d (2 - T_{\mu 0} - T_{\mu 0}^*), $$

(4.11)

$$ L_0 = MI - r \frac{d}{2a} W_0, $$

(4.12)

$$ C_0 = L_0 - \sum_{\mu=1}^d L_0^{-1} D_{\mu 0}^2. $$

(4.13)
respectively. A free part of an operator is equal to the operator when the gauge potentials $A_{\mu}, \mu = 1, 2, \ldots, d$, vanish. The free part of B vanishes. Since $-W_0$ is semi-positive (see (2.14)), L_0 and C_0 are positive definite and therefore invertible.

These operators are exactly diagonal with respect to the planewave basis and are the first examples of quasi diagonal operators.

Lemma 4.1. We have the following.

\[
\begin{align*}
T_{\mu 0} &= O(1), \\
T_{\mu 0} - I &= O(a(1 + \langle p \rangle)), \\
D_{\mu 0} &= O(1 + \langle p \rangle), \\
W_0 &= O(a^2(1 + \langle p \rangle^2)), \\
L_0 &= O(1 + a\langle p \rangle^2), \\
L_0^{-1} &= O\left(\frac{1}{1 + a\langle p \rangle^2}\right), \\
C_0 &= O\left(\frac{1 + \langle p \rangle^2}{1 + a\langle p \rangle^2}\right), \\
C_0^{-1} &= O\left(\frac{1 + a\langle p \rangle^2}{1 + \langle p \rangle^2}\right).
\end{align*}
\]

Proof. (4.14)-(4.17) follow from

\[
\begin{align*}
T_{\mu 0}u_{\alpha p} &= e^{iap}u_{\alpha p}, \\
D_{\mu 0}u_{\alpha p} &= \frac{i}{a} \sin(ap_{\mu})u_{\alpha p}, \\
W_{\mu 0}u_{\alpha p} &= -2\sum_{\mu=1}^{d}(1 - \cos(ap_{\mu}))u_{\alpha p}.
\end{align*}
\]

For example, if $K = T_{\mu 0} - I$, then (4.7) is satisfied by putting $k(a, p) = a\langle p \rangle$. We add extra ‘1’ in (4.15) in order to ensure (4.6): the function $k(a, p) = a(1 + \langle p \rangle)$ satisfies (4.6), because

\[
1 + \langle q + r \rangle \leq 1 + \langle q \rangle + \langle r \rangle \\
\leq (1 + \langle r \rangle)(1 + \langle q \rangle), \quad q, r \in T_d^*.
\]

For the case $K = W_0$, we need

\[
1 + \langle q + r \rangle^2 \leq 1 + 2(\langle q \rangle^2 + \langle r \rangle^2) \\
\leq 2(1 + \langle r \rangle^2)(1 + \langle q \rangle^2), \quad q, r \in T_d^*.
\]

The other bounds are shown by using

\[
L_0u_{\alpha p} = \left(M + \frac{r}{2a} \sum_{\mu=1}^{d}(1 - \cos ap_{\mu})\right)u_{\alpha p},
\]
\[C_0 u_{\alpha p} = \left(M + \frac{r}{2a} \sum_{\mu=1}^{d} (1 - \cos ap_{\mu}) + \frac{\sum_{\mu=1}^{d} \frac{1}{a^2} \sin^2 ap_{\mu}}{M + \frac{r}{2a} \sum_{\mu=1}^{d} (1 - \cos ap_{\mu})} \right) u_{\alpha p}. \quad (4.28) \]

A multiplication operator determined by a smooth function on \(T^d \) is another example of quasi diagonal operators.

Lemma 4.2. Let \(\phi \) be a multiplication operator defined by

\[\phi u(x) = \varphi(x)u(x), \ x \in T^d_a, u \in V^d_a, \quad (4.29) \]

for a complex valued smooth (periodic) function \(\varphi(x) \) on the continuum torus \(T^d \). Then, we have \(\phi = O(1) \).

Furthermore, \(\phi = O(1) \) holds, if \(\phi \) is defined by

\[\phi u(x) = \varphi_a(x)u(x), \ x \in T^d_a, u \in V^d_a, \quad (4.30) \]

for a family of functions \(\varphi_a(x) \) on \(T^d \) that are 'uniformly smooth', i.e.

\[\sup_{x \in T^d} |\partial^\alpha \varphi_a(x)| < c^{(\alpha)}, \ \alpha = (\alpha_1, \ldots, \alpha_d) \in \{0, 1, 2, \ldots\}^d, \quad (4.31) \]

where \(\{c^{(\alpha)} | \alpha \in \{0, 1, \ldots\}^d\} \) is a family of constants independent of \(a \), and \(\partial^\alpha \) stands for \(\prod_{k=1}^{d} \partial_{a_k}^\alpha \).

Proof. We show the first part of the lemma. Since \(\varphi(x) \) is smooth and satisfies

\[(u_{\alpha p}, \phi u_{\beta q}) = \delta_{\alpha\beta} a^d \sum_{x \in T^d_a} e^{i(q-p)x} \varphi(x), \ \alpha, \beta = 1, 2, \ldots, 2^{d/2}, p, q \in T^d_a, \quad (4.32) \]

there exists \(c_\sigma \) such that

\[|(u_{\alpha p}, \phi u_{\beta q})| \leq \frac{c_\sigma}{(1 + (p - q)^\sigma)}, \ \sigma \geq 0 \quad (4.33) \]

for \(p, q \in T^d_a \) and for \(\alpha, \beta = 1, 2, \ldots, 2^{d/2} \). Then, \(K_a = \phi \) and \(k(a, p) = 1 \) satisfy (4.6) and (4.7). The other part of the lemma can be proved in a similar way. \(\square \)
IV.3 Basic Properties

The class of quasi diagonal operators is closed with respect to summation, product, and the inverse operation in the following sense.

Lemma 4.3. Let \(K_j = O(k_j), j = 1, 2 \). Then, we have \(K_1 + K_2 = O(k_1 + k_2) \) and \(K_1 K_2 = O(k_1 k_2) \).

The proof is given in Section IV.4. Note that, when we say \(K = O(k) \), it is implied that \(k \) has the property (4.6) with some constants \(c, \tau \).

Lemma 4.4. Suppose that \(K = K_0 + K_1 \) satisfies the following, where ‘const.’ stands for some positive constant independent of \(a \) and \(p \):

1. There exists \(k_0 \) satisfying
 \[
 k_0(p) \leq \text{const.}(1 + \langle p \rangle)\nu, \quad p \in T^d_a,
 \]
 for some constant \(\nu \) independent of \(a \) and \(p \), such that \(K_0 \) is exactly of the order \(k_0 \) in the sense that \(K_0 = O(k_0) \) and \(K_0^{-1} = O(1/k_0) \) hold.

2. \(K_1 \) is of a lower order than \(K_0 \) in the sense that \(K_1 = O(k_1) \) and
 \[
 \frac{k_1(p)}{k_0(p)} \leq \text{const.}(1 + \langle p \rangle)^{-\delta}, \quad p \in T^d_a,
 \]
 for some constant \(\delta > 0 \) independent of \(a \) and \(p \).

3. \(K^{-1} \) exists and is uniformly bounded, i.e.,
 \[
 \| K^{-1} \| = \sup_{u \in V^d_a, u \neq 0} \frac{\| K^{-1} u \|}{\| u \|} \leq c
 \]
 for some constant \(c \) independent of \(a \).

Then we have \(K^{-1} = O(1/k_0) \).

The proof is given in Section IV.6.

By means of Lemma 4.3 and Lemma 4.4, we can estimate traces on \(V^d_a \) using the order of operators. As may be seen explicitly from Lemma 4.1, such estimates provide a mathematical justification of the power counting argument.
IV.4 Proof of Lemma 4.3

Let us first show $K_1 + K_2 = O(k_1 + k_2)$. Assume

\begin{align*}
k_1(a, p) &\leq c_1(1 + \langle p - q \rangle)^{\tau_1}k_1(a, q), \quad (4.37) \\
k_2(a, p) &\leq c_2(1 + \langle p - q \rangle)^{\tau_2}k_2(a, q), \quad (4.38)
\end{align*}

for $\sigma \geq 0$, $p, q \in T_a^{d^a}$, and for $\alpha, \beta = 1, 2, \ldots, 2^{d/2}$. Then, putting $K = K_1 + K_2, k = k_1 + k_2, \tau = \max(\tau_1, \tau_2), c = \max(c_1, c_2)$, and $c_\sigma = \max(c_{1\sigma}, c_{2\sigma})$, we have (4.6) and (4.7), and consequently, $K_1 + K_2 = O(k_1 + k_2)$.

Let us show $K = K_1K_2 = O(k_1k_2)$. Put $k = k_1k_2$. Then, for $c = c_1c_2$ and for $\tau = \tau_1 + \tau_2$, (4.6) holds. In order to show (4.7), we need the following lemma.

Lemma 4.5. If $0 \leq \rho \leq \min\{\sigma, \tau\}$ and $\sigma + \tau - \rho \geq d + 1$ hold, we have

\begin{equation}
\sum_{r \in T_a^{d^a}} (1 + \langle p - r \rangle)^{-\sigma}(1 + \langle r - q \rangle)^{-\tau} \leq \text{const.} (1 + \langle p - q \rangle)^{-\rho},
\end{equation}

where ‘const.’ is independent of $p, q,$ and a.

Proof. Decompose the summation in the left hand side of (4.41) as

\begin{equation}
\sum_{r \in T_a^{d^a}} (1 + \langle p - r \rangle)^{-\sigma}(1 + \langle r - q \rangle)^{-\tau} = \left(\sum_{r \in T_a^{d^a}} + \sum_{r \in T_a^{d^a}} \right) (1 + \langle p - r \rangle)^{-\sigma}(1 + \langle r - q \rangle)^{-\tau}.
\end{equation}

Let us estimate the first sum. If $\langle p - r \rangle \geq \langle r - q \rangle$, then it holds that

\begin{equation}
2\langle p - r \rangle \geq \langle p - r \rangle + \langle r - q \rangle \geq \langle p - q \rangle,
\end{equation}

hence

\begin{align*}
\sum_{r \in T_a^{d^a}, \langle p - r \rangle \geq \langle r - q \rangle} & (1 + \langle p - r \rangle)^{-\sigma}(1 + \langle r - q \rangle)^{-\tau} \\
& \leq \sum_{r \in T_a^{d^a}, \langle p - r \rangle \geq \langle r - q \rangle} (1 + \langle p - r \rangle)^{-\rho}(1 + \langle p - r \rangle)^{-\sigma+\rho}(1 + \langle r - q \rangle)^{-\tau} \\
& \leq \sum_{r \in T_a^{d^a}} (1 + \frac{1}{2}\langle p - q \rangle)^{-\rho}(1 + \langle r - q \rangle)^{-\tau-\sigma+\rho} \\
& \leq \text{const.} (1 + \frac{1}{2}\langle p - q \rangle)^{-\rho}
\end{align*}

(4.44)
where we also used the assumptions \(0 \leq \rho \leq \sigma\) and \(\tau + \sigma - \rho \geq d + 1\). The second sum in the right hand side of (4.42) can be estimated in a similar way.

Using (4.39),(4.40),(4.38) and (4.41), we have

\[
|\langle u_{\alpha p}, K_1 K_2 u_{\beta q} \rangle| \leq 2 \frac{d}{2} \sum_{\gamma=1}^{2^d/2} \sum_{r \in T_{a\tau}} c_1 c_2 r_1(a, p) r_2(a, r) \left(1 + \langle p - r \rangle \right) \left(1 + \langle r - q \rangle \right) \left(1 + \langle q - s \rangle \right) \leq \text{const.} \frac{c_1 c_2 r_1(a, p) r_2(a, p)}{\left(1 + \langle p - q \rangle \right)^{\rho}} \tag{4.45}
\]

by choosing sufficiently large \(\sigma\) and \(\tau\) for each \(\rho\). This implies (4.7) for \(K = K_1 + K_2\), hence a proof of Lemma 4.3 is completed.

IV.5 Preparation for a Proof of Lemma 4.4

In this section, we prepare Lemma 4.6, Lemma 4.7, and Lemma 4.8 for the proof of Lemma 4.4.

The idea of the proof of Lemma 4.4 is to estimate the right hand side of the identity

\[
K^{-1} = \sum_{j=0}^{n-1} J^j K_0^{-1} + J^n K^{-1}, \quad n = 1, 2, \ldots, \tag{4.46}
\]

where

\[
J = -K_0^{-1} K_1. \tag{4.47}
\]

Lemma 4.3 implies that the first term in the right hand side of (4.46) is quasi diagonal. For the second term, as we shall see later, \(J^n K^{-1}\) for a sufficiently large \(n\) has a good power counting property in spite of the poor information (4.36) on \(K^{-1}\). The key point is that the order of \(J\) is strictly lower than 1:

Lemma 4.6. It holds that

\[
J = O\left((1 + \langle p \rangle)^{-\delta}\right). \tag{4.48}
\]

Furthermore, for \(n \geq \nu/\delta\),

\[
J^n = O\left(1/k_0\right) \tag{4.49}
\]

holds.
Proof. The assumption (4.35) and Lemma 4.3 imply (4.48). Then we have

\[J^n = O((1 + \langle p \rangle)^{-n\delta}), \quad n = 1, 2, \ldots. \]

(4.50)

In view of (4.34), we can bound the order of \(J^n \) as follows:

\[(1 + \langle p \rangle)^{-n\delta} \leq \text{const.} \frac{(1 + \langle p \rangle)^{\nu-n\delta}}{k_0(p)}. \]

(4.51)

Choosing \(n \geq \nu/\delta \), we obtain (4.49). \(\Box \)

The above lemma implies that multiplying by \(J \) improves the power counting properties of operators.

In order to determine the order of the second term in the right hand side of (4.46), we have to bound

\[\langle p_{\mu} - q_{\mu} \rangle^\rho |(u_{\alpha p}, J^n K^{-1} u_{\beta q})| \]

(4.52)

for \(\rho \geq 0, p, q \in T_a^{d^*} \), and for \(\alpha, \beta = 1, 2, \ldots, 2^{d/2} \). To this end, we use commutators with \(\frac{1}{a} T_{\mu 0} \). Let us write

\[\text{ad}_\mu(R) = \left[\frac{1}{a} T_{\mu 0}, R \right] \]

(4.53)

for an operator \(R \) on \(V_a^d \).

Lemma 4.7. For an operator \(R \) on \(V_a^d \), it holds that

\[|(u_{\alpha p}, \text{ad}_\mu(R) u_{\beta q})| \left\{ \begin{array}{ll}
\leq \langle p_{\mu} - q_{\mu} \rangle |(u_{\alpha p}, R u_{\beta q})|,

\geq \frac{1}{\pi} \langle p_{\mu} - q_{\mu} \rangle |(u_{\alpha p}, R u_{\beta q})|,
\end{array} \right. \]

(4.54)

for \(p, q \in T_a^{d^*}, \alpha, \beta = 1, 2, \ldots, 2^{d/2}, \mu = 1, 2, \ldots, d. \)

Furthermore, if \(R = O(r) \), then \(\text{ad}_\mu(R) = O(r) \).

Proof. The bounds (4.54) follows from

\[|(u_{\alpha p}, \text{ad}_\mu(R) u_{\beta q})| = \frac{1}{a} |(\exp(ip_{\mu}a) - \exp(iq_{\mu}a))|(u_{\alpha p}, R u_{\beta q})| = \frac{2}{a} \sin(\frac{1}{2}(p_{\mu} - q_{\mu})a) |(u_{\alpha p}, R u_{\beta q})|. \]

(4.55)

The estimate \(\text{ad}_\mu(R) = O(r) \) follows from (4.54) and (4.7). \(\Box \)
Lemma 4.8. (1) For \(R = O(r) \), we have
\[
|(u_{\alpha p}, RK^{-1}u_{\beta q})| \leq const.r(p), \ p, q \in T_a^d, \ \alpha, \beta = 1, 2, \ldots, 2^{d/2}, \quad (4.56)
\]
where ‘const.’ is a constant independent of \(a, p, \) and \(q \).

(2) Assume that \(R = O(r) \) is at most of the same order as \(K \), i.e.,
\[
r(p) \leq k_0(p), \ p \in T_a^d. \quad (4.57)
\]

Then, we have
\[
\sum_{s' \in T_a^d} |(u_{\alpha s'}, RK^{-1}u_{\beta s})| \leq const., \ s \in T_a^d, \ \alpha, \beta = 1, 2, \ldots, 2^{d/2}, \quad (4.58)
\]
where ‘const.’ is a constant independent of \(a \) and \(s \).

Proof. (1) (4.7) and (4.36) imply
\[
|(u_{\alpha p}, Ru_{\gamma s})| \leq \frac{const.r(p)}{(1 + \langle p - s \rangle)^{d+1}},
\]
\[
|(u_{\gamma s}, K^{-1}u_{\beta p})| \leq c, \quad (4.59)
\]
for \(p, s \in T_a^d \) and for \(\alpha, \beta, \gamma = 1, 2, \ldots, 2^{d/2} \). Then, we have
\[
|(u_{\alpha p}, RK^{-1}u_{\beta q})| \leq \sum_{s \in T_a^d} |(u_{\alpha p}, Ru_{\gamma s})||(u_{\gamma s}, K^{-1}u_{\beta q})| \leq \sum_{s \in T_a^d} \frac{const.r(p)}{(1 + \langle p - s \rangle)^{d+1}} \leq const.r(p),
\]
where we used
\[
\sum_{s \in T_a^d} (1 + \langle s \rangle)^{-d-1} \leq const. \quad (4.62)
\]

(2) Using (4.46), we have
\[
\sum_{s' \in T_a^d} |(u_{\alpha s'}, RK^{-1}u_{\beta s})| \leq \sum_{s' \in T_a^d} \sum_{j=0}^{n-1} |(u_{\alpha s'}, RJ^jK_0^{-1}u_{\beta s})| + \sum_{s' \in T_a^d} |(u_{\alpha s'}, RJ^nK^{-1}u_{\beta s})|.
\]
Let us bound the right hand side of the above inequality. For the first term, (4.48) implies
\[
J = O(1),
\]

hence
\[
RJ^jK_0^{-1} = O\left(\frac{r}{k_0}\right) \quad (4.65)
\]
holds. Then, from (4.65), (4.8), and (4.57), we obtain

$$
\sum_{s' \in \mathcal{T}_d^s} \sum_{j=0}^{n-1} |(u_{\alpha s'}, R J^j K_0^{-1} u_{\beta s})| \leq \text{const.} \frac{r(s)}{k_0(s)} \sum_{s' \in \mathcal{T}_d^s} (1 + \langle s' - s \rangle)^{-d-1} \leq \text{const.}, \quad s \in \mathcal{T}_d^s,
$$

for a ‘const.’ independent of a and s. For the second term, note that (4.34) and $r(p) \leq k_0(p)$ imply that by choosing a sufficiently large n, we can make the order $r(p)(1 + \langle p \rangle)^{-d}$ of $R J^n$ lower than $(1 + \langle p \rangle)^{-d-1}$. Then, using (4.36) for K^{-1} and (4.6) for $R J^n$ with $\sigma = d + 1$, we have

$$
\sum_{s' \in \mathcal{T}_d^s} |(u_{\alpha s'}, R J^n K^{-1} u_{\beta s})| \leq \sum_{s', s'' \in \mathcal{T}_d^s} \sum_{\gamma=1}^{2^d/2} |(u_{\alpha s'}, R J^n u_{\gamma s''})|(u_{\alpha s''}, K^{-1} u_{\beta s})| \leq \sum_{s', s'' \in \mathcal{T}_d^s} \sum_{\gamma=1}^{2^d/2} \text{const.} (1 + \langle s' \rangle)^{-d-1}(1 + \langle s' - s'' \rangle)^{-d-1} \leq \text{const.},
$$

(4.67)

IV.6 Proof of Lemma 4.4

In order to show Lemma 4.4, it suffices to estimate the right hand side of (4.46). For the first term, using (4.64), we have the following bound:

$$
\sum_{j=0}^{n-1} J^j K_0^{-1} = \mathcal{O}(1/k_0).
$$

(4.68)

For the second term, we have to estimate

$$
\langle p_{\mu} - q_{\mu} \rangle \rho |(u_{\alpha p}, J^n K^{-1} u_{\beta q})|
$$

(4.69)

for $\rho \geq 0, p, q \in \mathcal{T}_d^s$ and for $\alpha, \beta = 1, 2, \ldots, 2^{d/2}$.

If $\rho = 0$, (4.49) and (4.56) yield

$$
|(u_{\alpha p}, J^n K^{-1} u_{\beta p})| \leq \text{const.} \frac{1}{k_0(p)}, \quad p, q \in \mathcal{T}_d^s, \alpha, \beta = 1, 2, \ldots, 2^{d/2}.
$$

(4.70)

Now assume $\rho > 0$. Then Lemma 4.7 implies

$$
\langle p_{\mu} - q_{\mu} \rangle \rho |(u_{\alpha p}, J^n K^{-1} u_{\beta q})| \leq \pi^\rho |(u_{\alpha p}, \text{ad}_\mu^p (J^n K^{-1}) u_{\beta q})|,
$$

$$
p, q \in \mathcal{T}_d^s, \alpha, \beta = 1, 2, \ldots, 2^{d/2}.
$$

(4.71)

Here we note the equalities

$$
\text{ad}_\mu^p (J^n K^{-1}) = \sum_{m=0}^{\rho} \left(\begin{array}{c} \rho \\ m \end{array} \right) \text{ad}_\mu^{\rho-m} (J^n) \text{ad}_\mu^m (K^{-1})
$$

(4.72)
and
\[
\text{ad}_\mu^m(K^{-1}) = \sum_{\ell=1}^{m} \sum_{(m_1, m_2, \ldots, m_\ell)} \frac{(-1)^m \ell!}{m_1! m_2! \cdots m_\ell!} \text{ad}_\mu^{m_1}(K) K^{-1} \text{ad}_\mu^{m_2}(K) K^{-1} \cdots \text{ad}_\mu^{m_\ell}(K) K^{-1},
\]
\[m = 1, 2, \ldots, (4.73)\]

where the summation \(\sum_{(m_1, m_2, \ldots, m_\ell)}\) is taken over all \((m_1, m_2, \ldots, m_\ell)\)'s such that
\[
m_1 + m_2 + \cdots + m_\ell = m, \quad m_1, m_2, \ldots, m_\ell \geq 1. \quad (4.74)
\]

Combining them, we obtain
\[
\text{ad}_\rho^p(J^n K^{-1}) = \text{ad}_\rho^p(J^n) K^{-1} + \sum_{\rho=1}^{p} \left(\begin{array}{c} \rho \\ m \end{array} \right) \sum_{\ell=1}^{m} \sum_{(m_1, m_2, \ldots, m_\ell)} \frac{(-1)^m \ell!}{m_1! m_2! \cdots m_\ell!} \text{ad}_\mu^{m_1}(J^n) K^{-1} \text{ad}_\mu^{m_2}(J^n) K^{-1} \cdots \text{ad}_\mu^{m_\ell}(J^n) K^{-1}. \quad (4.76)
\]

Then, it suffices to bound \(\text{ad}_\mu^m(J^n) K^{-1}\) and \(\text{ad}_\mu^m(K) K^{-1}\).

Note that (4.49) and the latter part of Lemma 4.7 imply \(\text{ad}_\mu^m(J^n) = O(1/k_0)\) for sufficiently large \(n\). Then, using (4.56), we have
\[
|(u_\alpha p, \text{ad}_\mu^m(J^n) K^{-1} u_\beta s)| \leq \frac{\text{const.}}{k_0(p)}, \quad p, s \in T^*_a, \quad \alpha, \beta = 1, 2, \ldots, 2^{d/2}. \quad (4.77)
\]

Furthermore, the assumptions on the orders of \(K_0\) and \(K_1\) imply \(K = O(k_0)\). This fact and Lemma 4.7 and (4.58) imply
\[
\sum_{s \in T^*_a} \sum_{\beta=1}^{2^{d/2}} |(u_\beta s, \text{ad}_\mu^m(K) K^{-1} u_\gamma s')| \leq \text{const.}, \quad s' \in T^*_a, \quad \gamma = 1, 2, \ldots, 2^{d/2}. \quad (4.78)
\]

Then, (4.71), (4.76), (4.77), and (4.78) imply
\[
\langle p_\mu - q_\mu \rangle^n |(u_\alpha p, J^n K^{-1} u_\beta q)| \leq \frac{\text{const.}}{k_0(p)}, \quad \rho > 0, \quad p, q \in T^*_a, \quad \alpha, \beta = 1, 2, \ldots, 2^{d/2}. \quad (4.79)
\]

This together with (4.70) yields \(J^n K^{-1} = O(1/k_0)\), which concludes the analysis on the second term in the right hand side of (4.46), hence the proof of Lemma 4.4.

V Orders of Operators

Using the framework of quasi diagonal operators, we determine the orders of lattice operators.
V.1 Orders of Interaction Parts

Interaction parts of the operators \(T_\mu, D_\mu, W, L, \) and \(C \) are by definition

\[
T_{\mu 1} = T_\mu - T_{\mu 0}, \quad \quad (5.1)
\]
\[
D_{\mu 1} = D_\mu - D_{\mu 0}, \quad \quad (5.2)
\]
\[
W_1 = W - W_0, \quad \quad (5.3)
\]
\[
L_1 = L - L_0, \quad \quad (5.4)
\]
\[
C_1 = C - C_0. \quad \quad (5.5)
\]

Namely,

\[
T_{\mu 1} = (U_\mu - I)T_{\mu 0}, \quad \quad (5.6)
\]
\[
D_{\mu 1} = \frac{1}{2a}(T_{\mu 1} - T_{\mu 1}^*), \quad \quad (5.7)
\]
\[
W_1 = \sum_{\mu=1}^d \left((U_\mu - I)(T_{\mu 0} - I) + (T_{\mu 0}^* - I)(U_\mu^* - I) + (U_\mu + U_\mu^* - 2I) \right), \quad \quad (5.8)
\]
\[
L_1 = -r_2 \frac{a}{2a} W_1, \quad \quad (5.9)
\]
\[
C_1 = L_1 - \sum_{\mu=1}^d \left(D_\mu (L^{-1} - L_0^{-1}) D_\mu + D_{\mu 1} L_0^{-1} D_\mu + D_{\mu 0} L_0^{-1} D_{\mu 1} \right). \quad \quad (5.10)
\]

Lemma 5.1. We have the following order estimates.

(1) The orders of the interaction parts:

\[
T_{\mu 1} = \mathcal{O}(a), \quad \quad (5.11)
\]
\[
D_{\mu 1} = \mathcal{O}(1), \quad \quad (5.12)
\]
\[
W_1 = \mathcal{O}(a^2(1 + \langle p \rangle)), \quad \quad (5.13)
\]
\[
L_1 = \mathcal{O}(a(1 + \langle p \rangle)). \quad \quad (5.14)
\]

(2) The orders of the full operators:

\[
T_\mu = \mathcal{O}(1), \quad \quad (5.15)
\]
\[
D_\mu = \mathcal{O}(1 + \langle p \rangle), \quad \quad (5.16)
\]
\[
W = \mathcal{O}(a^2(1 + \langle p \rangle^2)), \quad \quad (5.17)
\]
\[
L = \mathcal{O}(1 + a\langle p \rangle^2). \quad \quad (5.18)
\]

Proof. (1) follows from (5.6)–(5.9) and Lemma 4.3 together with Lemma 4.1 and

\[
U_\mu - I, U_\mu^* - I = \mathcal{O}(a), \quad \quad (5.19)
\]
\[
U_\mu + U_\mu^* - 2I = \mathcal{O}(a^2). \quad \quad (5.20)
\]

(2) follows from (1) and Lemma 4.1.

\(\square \)
V.2 Orders of L^{-1} and C^{-1}

Lemma 5.2. The operator L is positive definite and satisfies

\begin{align*}
(u, Lu) & \geq M \| u \|^2, \\
\| L^{-1} \| & \leq M^{-1}.
\end{align*}

Furthermore, it holds that

\begin{align*}
L^{-1} &= O\left(\frac{1}{1 + a(p)^2} \right), \\
L^{-1} - L_0^{-1} &= O\left(\frac{a(1 + \langle p \rangle)}{(1 + a(p)^2)^2} \right).
\end{align*}

Proof. The semi-positivity of $-W$ (see (2.14)) yields (5.21), from which (5.22) follows. Furthermore, we have (5.23) from (4.18), (4.19), (5.14), and Lemma 4.4, because

\begin{align*}
\frac{a(1 + \langle p \rangle)}{1 + a(p)^2} & \leq 2 \frac{1}{1 + \langle p \rangle}.
\end{align*}

Finally, estimating the right hand side of

\begin{align*}
L^{-1} - L_0^{-1} = -L^{-1}L_1L_0^{-1},
\end{align*}

we obtain (5.24).

\[\square\]

Lemma 5.3. The operator C is positive definite and satisfies

\begin{align*}
(u, Cu) & \geq M \| u \|^2, \\
\| C^{-1} \| & \leq M^{-1}.
\end{align*}

Furthermore, it holds that

\begin{align*}
C_1 &= O\left(\frac{1 + \langle p \rangle}{1 + a(p)^2} \right), \\
C &= O\left(\frac{1 + \langle p \rangle^2}{1 + a(p)^2} \right), \\
C^{-1} &= O\left(\frac{1 + a(p)^2}{1 + \langle p \rangle^2} \right).
\end{align*}

Proof. In the right hand side of (3.8), L is positive definite (Lemma 5.2) and

\begin{align*}
D_\mu^* &= -D_\mu, \ \mu = 1, 2, \ldots, d.
\end{align*}

Then, (5.27) and (5.28) hold. Applying Lemma 4.1, Lemma 5.1, and Lemma 5.2 to operators in the right hand side of (5.10), we have (5.29), which, with (4.20), implies (5.30). Finally, we obtain (5.31) from (4.20), (4.21), and (5.28).

\[\square\]
V.3 Order of $X_{\mu\nu}$

We begin with the following.

Lemma 5.4. If ϕ is a multiplication operator which satisfies (4.30) and (4.31), we have, for $\mu = 1, 2, \ldots, d$,

\[
[T_{\mu0}, \phi] = O(a), \quad (5.33)
\]

\[
[T_{\mu0}^*, \phi] = O(a), \quad (5.34)
\]

\[
[T_{\mu0} + T_{\mu0}^*, \phi] = O(a^2(1 + \langle p \rangle)). \quad (5.35)
\]

Proof. We bound the right hand side of

\[
[T_{\mu0}, \phi] = (T_{\mu0}\phi T_{\mu0}^* - \phi)T_{\mu0}. \quad (5.36)
\]

Since $T_{\mu0}\phi T_{\mu0}^*$ is a multiplication operator determined by the translation of φ, it holds that

\[
T_{\mu0}\phi T_{\mu0}^* - \phi = O(a). \quad (5.37)
\]

This proves (5.33). The estimate (5.34) is obtained in a similar way. The estimate (5.35) follows from

\[
[T_{\mu0} + T_{\mu0}^*, \phi] T_{\mu0} = 2a(T_{\mu0}\phi T_{\mu0}^* - \phi)D_{\mu0}
\]

\[\quad + (T_{\mu0}\phi T_{\mu0}^* + T_{\mu0}^*\phi T_{\mu0} - 2\phi)T_{\mu0}^* \quad (5.38)\]

with a help of

\[
T_{\mu0}\phi T_{\mu0}^* + T_{\mu0}^*\phi T_{\mu0} - 2\phi = O(a^2). \quad (5.39)
\]

The refined bound (5.35) due to the cancellation between $T_{\mu0}$ and $T_{\mu0}^*$ is essential in the proof of Proposition 6.1.

Lemma 5.5. We have the following order estimates:

\[
[D_{\mu1}, D_{\nu0}] = O(1), \quad (5.40)
\]

\[
[D_{\mu1}, D_{\nu1}] = O(a), \quad (5.41)
\]

\[
[D_{\mu}, D_{\nu}] = O(1), \quad (5.42)
\]

\[
[L_{0}, D_{\nu1}] = O(a(1 + \langle p \rangle)), \quad (5.43)
\]

\[
[L_{1}, D_{\nu0}] = O(a(1 + \langle p \rangle)), \quad (5.44)
\]

\[
[L_{1}, D_{\nu1}] = O(a), \quad (5.45)
\]

\[
[L, D_{\nu}] = O(a(1 + \langle p \rangle)), \quad (5.46)
\]

\[
X_{\mu\nu} = O\left(\frac{a(1 + \langle p \rangle^2)}{(1 + a(\langle p \rangle^2)^2)}\right), \quad (5.47)
\]

where $\mu, \nu = 1, 2, \ldots, d$.
Proof. Put $\eta_{\mu} = U_{\mu} - I$. Then, $\eta_{\mu} = O(a)$ and

$$[T_{\mu 1}, T_{\nu 0}] = [\eta_{\mu}, T_{\nu 0}] T_{\mu 0}$$

hold. Using (5.33) for $\phi = \frac{1}{\alpha} \eta_{\mu}$ (the functions $U_{\mu}(x)$ and $\eta_{\mu}(x)$ can be extended on the whole T^d), we obtain

$$[T_{\mu 1}, T_{\nu 0}] = O(a^2).$$

Similarly, we have

$$[T_{\mu 1}^*, T_{\nu 0}] , [T_{\mu 1}, T_{\nu 0}^*] , [T_{\mu 1}^*, T_{\nu 0}^*] = O(a^2).$$

Then, (5.40) holds. The estimates

$$[T_{\mu 1}, T_{\nu 1}] = -\eta_{\nu}[\eta_{\mu}, T_{\nu 0}] T_{\nu 0} + \eta_{\nu}[\eta_{\mu}, T_{\nu 0}] T_{\nu 0} = O(a^3),$$

$$[T_{\mu 1}^*, T_{\nu 1}], [T_{\mu 1}, T_{\nu 1}^*], [T_{\mu 1}^*, T_{\nu 1}^*] = O(a^3),$$

are obtained similarly, from which we have (5.41). The estimate (5.42) follows from (5.40) and (5.41), because $D_{\nu 0}$ and $D_{\nu 0}$ commutes.

Next, using

$$[T_{\mu 0} + T_{\mu 0}^*, T_{\nu 1}] = [T_{\mu 0} + T_{\mu 0}^*, \eta_{\nu}] T_{\nu 0},$$

$$[T_{\mu 0}, T_{\nu 1} + T_{\nu 1}^*] = T_{\nu 0} [T_{\mu 0}, \eta_{\nu} + \eta_{\nu}^*] - 2a D_{\nu 0} [T_{\mu 0}, \eta_{\nu}^*],$$

and Lemma 5.4, and the fact that $\eta_{\nu} + \eta_{\nu}^* = O(a^2)$, we have

$$[T_{\mu 0} + T_{\mu 0}^*, T_{\nu 1}] = O(a^3(1 + \langle p \rangle),$$

$$[T_{\mu 0}, T_{\nu 1} + T_{\nu 1}^*] = O(a^3(1 + \langle p \rangle)).$$

Similarly,

$$[T_{\mu 0} + T_{\mu 0}^*, T_{\nu 1}^*] = O(a^3(1 + \langle p \rangle),$$

$$[T_{\mu 0}^*, T_{\nu 1} + T_{\nu 1}^*] = O(a^3(1 + \langle p \rangle))$$

hold and we obtain (5.43) and (5.44). Furthermore, (5.45) is shown by estimating the right hand sides of

$$[T_{\mu 1} + T_{\mu 1}^*, T_{\nu 1}] = \eta_{\mu}[T_{\mu 0}, \eta_{\nu}] T_{\nu 0} + \eta_{\nu}[\eta_{\mu}, T_{\nu 0}] T_{\mu 0} + [T_{\mu 0}^*, \eta_{\nu}] \eta_{\mu} T_{\nu 0} + \eta_{\nu} T_{\mu 0}^* [\eta_{\mu}, T_{\nu 0}]$$

and its adjoint. The estimate (5.46) follows from (5.43)–(5.45). Finally, note that

$$X_{\mu \nu} = D_{\mu} L^{-1} [D_{\nu}, L] L^{-1} - D_{\nu} L^{-1} [D_{\mu}, L] L^{-1} + [D_{\mu}, D_{\nu}] L^{-1}. (5.60)$$

Estimating the right hand side of (5.60) by means of (5.16), (5.23), (5.42), and (5.46), we obtain (5.47).
Lemma 5.6. The operator $C + B$ is positive definite and satisfies
\begin{align*}
(u, (C + B)u) & \geq M \| u \|^2, \quad (5.61) \\
\| (C + B)^{-1} \| & \leq M^{-1}. \quad (5.62)
\end{align*}

Furthermore, it holds that
\begin{align*}
B &= O \left(\frac{a(1 + \langle p \rangle^2)}{(1 + a\langle p \rangle^2)^2} \right), \quad (5.63) \\
BC^{-1} &= O \left(\frac{a}{1 + a\langle p \rangle^2} \right), \quad (5.64) \\
(C + B)^{-1} &= O \left(\frac{1 + a\langle p \rangle^2}{1 + \langle p \rangle^2} \right). \quad (5.65)
\end{align*}

Proof. (5.61) and (5.62) are obtained from
\begin{align*}
(u, (C + B)u) &= (u, Lu) + \sum_{\mu=1}^{d} (D_{\mu}u, L^{-1}D_{\mu}u) \quad (5.66)
\end{align*}
and (5.21). (5.63) is a consequence of (3.7) and (5.47). (5.64) follows from (5.63) and (5.31). Lemma 4.4 then yields (5.65).

V.4 Leading Term of $X_{\mu\nu}$

We extract the leading term of $X_{\mu\nu}$ and bound the remainder. Put
\begin{align*}
E_{\mu0} &= \frac{1}{2} (T_{\mu0} + T_{\mu0}^*) \ , \ \mu = 1, 2, \ldots, d. \quad (5.67)
\end{align*}

Lemma 5.7. For $\mu, \nu = 1, 2, \ldots, d$, we have
\begin{align*}
[D_{\mu}, D_{\nu}] + iQ F_{\mu\nu} E_{\mu0} E_{\nu0} &= O(a), \quad (5.68) \\
[L, D_{\mu}] + iar Q \sum_{\rho=1}^{d} F_{\mu\rho} D_{\rho0} E_{\mu0} &= O(a), \quad (5.69)
\end{align*}

where Q is the charge and $F_{\mu\nu}$ is the field strength defined by (2.21).

Proof. Put $\eta_{\mu} = U_{\mu} - I$. Recalling (2.3), we have
\begin{align*}
\eta_{\mu} - T_{\nu0}\eta_{\mu} T_{\nu0}^* &= -a \partial_{\nu} \eta_{\mu} + O(a^3) \\
&= -ia^2 Q \partial_{\nu} A_{\mu} + O(a^3). \quad (5.70)
\end{align*}

Then, (5.48) and (5.36) yield
\begin{align*}
[T_{\mu1}, T_{\nu0}] &= ia^2 Q (\partial_{\nu} A_{\mu}) T_{\rho0} T_{\sigma0} + O(a^3). \quad (5.71)
\end{align*}
Similarly, we have
\[
[T_{\mu l}, T_{\nu l}^*] = -ia^2 Q(\partial_\nu A_\mu) T_{\mu l} T_{\nu l}^* + O(a^3),
\]
(5.72)
\[
[T_{\nu l}^*, T_{\mu l}] = -ia^2 Q(\partial_\mu A_\nu) T_{\nu l}^* T_{\mu l} + O(a^3),
\]
(5.73)
\[
[T_{\mu l}^*, T_{\nu l}^*] = ia^2 Q(\partial_\nu A_\mu) T_{\mu l} T_{\nu l}^* + O(a^3),
\]
(5.74)

hence
\[
[D_{\mu l}, D_{\nu l}] = iQ(\partial_\nu A_\mu) E_{\mu l} E_{\nu l} + O(a).
\]
(5.75)

This together with (5.41) yields (5.68). Let us show (5.69). (5.38) and (5.53) yield
\[
[T_{\rho l} + T_{\rho l}^*, T_{\mu l}] = -2ia^2 Q(\partial_\rho A_\mu) D_{\rho l} T_{\mu l} + O(a^3).
\]
(5.76)

Similarly, we have
\[
[T_{\rho l} + T_{\rho l}^*, T_{\mu l}^*] = 2ia^2 Q(\partial_\rho A_\mu) D_{\rho l} T_{\mu l}^* + O(a^3).
\]
(5.77)

Then,
\[
[L_0, D_{\mu l}] = iarQ \sum_{\rho=1}^d (\partial_\rho A_\mu) D_{\rho l} E_{\mu l} + O(a)
\]
(5.78)

follows. Furthermore, (5.54) implies
\[
[L_1, D_{\mu l}] = -iarQ \sum_{\rho=1}^d (\partial_\rho A_\mu) D_{\rho l} E_{\mu l} + O(a).
\]
(5.79)

Then, (5.69) follows from (5.78), (5.79), and (5.45).

\[\square\]

Lemma 5.8. It holds that
\[
X_{\mu \nu} + iQ \left(F_{\mu \nu} E_{\mu l} E_{\nu l} L_0^{-1} + ar \sum_{\rho=1}^d F_{\rho \nu} L_0^{-2} D_{\rho l} D_{\rho l} E_{\nu l} - ar \sum_{\rho=1}^d F_{\rho \mu} L_0^{-2} D_{\rho l} D_{\nu l} E_{\rho l} \right) = O\left(\frac{a(1 + \langle p \rangle)}{1 + a\langle p \rangle^2} \right)
\]
(5.80)

for \(\mu, \nu = 1, 2, \ldots, d\).

Proof. We extract the leading term from the right hand side of (5.60). Firstly, (5.68) and (5.24) imply
\[
[D_{\mu l}, D_\nu] L^{-1} = -iQ F_{\mu \nu} E_{\mu l} E_{\nu l} L_0^{-1} + O\left(\frac{a(1 + \langle p \rangle)}{1 + a\langle p \rangle^2} \right).
\]
(5.81)

Similarly, from (5.69), we have
\[
D_\mu L^{-1} [D_\nu, L] L^{-1} = -iarQ \sum_{\rho} D_{\rho l} L_0^{-1} F_{\rho \nu} D_{\rho l} E_{\nu l} L_0^{-1} + O\left(\frac{a(1 + \langle p \rangle)}{1 + a\langle p \rangle^2} \right).
\]
(5.82)

In the right hand side of the above equality, we may move \(F_{\mu \nu}\) to the front of the term by using the following lemma. (The difference is absorbed in the second term of the right hand side of (5.82).) Thus we have the desired result.

\[\square\]
Lemma 5.9. If \(\phi \) is a multiplication operator which satisfies (4.30) and (4.31), we have, for \(\mu = 1, 2, \ldots, d \),

\[
\begin{align*}
[D_{\mu 0}, \phi] &= O(1), \\
[E_{\mu 0}, \phi] &= O(a), \\
[W_0, \phi] &= O(a^2(1 + \langle p \rangle)), \\
[L_0^{-1}, \phi] &= O\left(\frac{1}{(1 + a\langle p \rangle^2)(1 + \langle p \rangle)} \right), \\
[C_0^{-1}, \phi] &= O\left(\frac{1 + a\langle p \rangle^2}{(1 + \langle p \rangle)^3} \right).
\end{align*}
\]

Proof. The estimates (5.83) – (5.85) follow from (5.33) – (5.35). The commutators with \(L_0^{-1} \) and with \(C_0^{-1} \) are estimated using commutators with \(L_0 \) and with \(C_0 \), respectively. \(\Box \)

VI Proof of Theorem 2.1

VI.1 Irrelevant Terms

If we formally expand \((C + B)^{-1}\) in the right hand side of (3.9), we have

\[
\langle Y(\xi) \rangle \text{ formally } = \sum_{j=0}^{\infty} z^{(j)},
\]

where

\[
z^{(j)} = -i \text{Tr} \sqrt{a} \left[\frac{r}{2a} (\xi W + W \xi) C^{-1} (-BC^{-1})^j \gamma_{d+1} \right], \quad j = 0, 1, 2, \ldots
\]

The following proposition is a consequence of the order estimates in Section V.

Proposition 6.1. For \(j > d/2 \), \(z^{(j)} \) is irrelevant, i.e.

\[
\lim_{a \to 0} \langle Y(\xi) \rangle - \sum_{j=0}^{d/2} z^{(j)} = 0.
\]

Proof. It suffices to bound the right hand side of

\[
\langle Y(\xi) \rangle - \sum_{j=0}^{d/2} z^{(j)} = -i \text{Tr} \sqrt{a} \left[\frac{r}{2a} (\xi W + W \xi) (C + B)^{-1} (-BC^{-1})^{d/2+1} \gamma_{d+1} \right].
\]

The order estimates (5.17), (5.65), and (5.64) imply

\[
\frac{r}{2a} (\xi W + W \xi) (C + B)^{-1} (-BC^{-1})^{d/2+1} \gamma_{d+1} = O\left(\frac{a^{d/2+2}}{(1 + a\langle p \rangle^2)^{d/2}} \right).
\]
with the help of Lemma 4.2 and Lemma 4.3. Let us take the trace on \(V_d^a \) by means of the planewave basis (4.4). Then, we have from (4.7) with \(q = p \)
\[
|\langle \mathcal{Y}(\xi) \rangle - \sum_{j=0}^{d/2} z^{(j)}| \leq \text{const.} \sum_{p \in T^d_a} \frac{a^{d/2+2}}{(1 + a(p)^2)^{d/2}} \\
\leq \text{const.} a^2 \log(1/a) \\
\rightarrow 0, a \rightarrow 0,
\]
(6.6)
where we used
\[
\sum_{p \in T^d_a} \frac{a^\ell}{(1 + a(p)^2)\ell} \leq \text{const.} \left\{ \begin{array}{ll}
a^{\ell-d/2}, & \ell > d/2, \\
\log(1/a), & \ell = d/2.
\end{array} \right.
\]
(6.7)

VI.2 Spin Properties

Next we take into account the ‘spin properties’ of operators. We classify operators on \(V_d^a \) with respect to the homogeneous degrees in \(\gamma \) matrices. For example, \(C \) and \(B \) have 0 and 2 homogeneous degrees, respectively. An operator with homogeneous degree 0 is regarded as an operator on \(\dot{V}_d^a = \{ \varphi : T^d_a \rightarrow C \} \). Since \(V_d^a = C^{d/2} \otimes \dot{V}_d^a \), the trace is factorized as:
\[
\text{Tr} V_d^a = \text{Tr} V_d^a \text{Tr} C^{d/2}.
\]
(6.8)

Proposition 6.2. It holds that
\[
z^{(j)} = 0, \ j = 0, 1, \ldots, d/2 - 1,
\]
\[
z^{(d/2)} = -i^{d/2+1} \sum_{\mu_1, \mu_2, \ldots, \mu_d=1}^d \epsilon_{\mu_1 \mu_2 \cdots \mu_d} \text{Tr} V_d^a \left[\frac{p}{2a} (\xi W + W \xi) \right] \right] C^{-1} X_{\mu_1 \mu_2} C^{-1} X_{\mu_3 \mu_4} C^{-1} \cdots X_{\mu_{d-1} \mu_d} C^{-1} \right],
\]
(6.10)
where \(\epsilon_{\mu_1 \mu_2 \cdots \mu_d} \) denotes the totally antisymmetric tensor, and all the operators, having homogeneous degree 0, are regarded as defined on the space \(V_d^a \).

Proof. The operator \((\xi W + W \xi) C^{-1} (-BC^{-1})^j \) has homogeneous degree \(2j \) in \(\gamma \)'s. Then, (6.9) is obvious from
\[
\text{Tr} C^{d/2} (\gamma_{\mu_1} \gamma_{\mu_2} \cdots \gamma_{\mu_{\ell}} \gamma_{d+1}) = 0, \ 0 \leq \ell < d, \ \mu_1, \mu_2, \ldots, \mu_{\ell} = 1, 2, \ldots, d.
\]
(6.11)
On the other hand, (6.10) follows from (3.7) and
\[
\text{Tr} C^{d/2} (\gamma_{\mu_1} \gamma_{\mu_2} \cdots \gamma_{\mu_d} \gamma_{d+1}) = (-2i)^{d/2} \epsilon_{\mu_1 \mu_2 \cdots \mu_d},
\]
\[
\mu_1, \mu_2, \ldots, \mu_d = 1, 2, \ldots, d.
\]
(6.12)
VI.3 Leading Terms

We extract the leading terms from (6.10). Let us introduce the ‘normal product’ : : that moves multiplication operators to front, e.g.

\[: \xi W_0 + W_0 \xi : = 2 \xi W_0, \quad \xi \in \mathfrak{g} \]

\[: F_{\mu \nu} E_{\mu 0} E_{\nu 0} L_0^{-1} F_{\mu' \nu'} E_{\mu' 0} E_{\nu' 0} L_0^{-1} : = F_{\mu \nu} F_{\mu' \nu'} E_{\mu 0} E_{\nu 0} L_0^{-1} E_{\mu' 0} E_{\nu' 0} L_0^{-1}. \]

Proposition 6.3. Put, for \(\mu, \nu = 1, 2, \ldots, d \),

\[X_{\mu \nu} = -i Q \left(F_{\mu \nu} E_{\mu 0} E_{\nu 0} L_0^{-1} + 2 a r \sum_{\rho = 1}^{d} F_{\rho \nu} L_0^{-2} D_{\rho 0} D_{\mu 0} E_{\nu 0} \right). \] (6.15)

and

\[z_0 = -i^{d/2+1} \sum_{\mu_1, \mu_2, \ldots, \mu_d/2 = 1}^{d} \sum_{\nu_1, \nu_2, \ldots, \nu_d/2 = 1}^{d} \epsilon_{\mu_1 \nu_1 \ldots \mu_d/2 \nu_d/2} \]

\[\text{Tr} \left[: \xi W_0 C_0^{-1} X_{\mu_1 \nu_1} C_0^{-1} X_{\mu_2 \nu_2} C_0^{-1} \ldots X_{\mu_d/2 \nu_d/2} C_0^{-1} : \right], \] (6.16)

Then, we have

\[\lim_{a \to 0} (z^{(d/2)} - z_0) = 0. \] (6.17)

Proof. Insert

\[C^{-1} = C_0^{-1} - C_0^{-1} C_1 C^{-1} \] (6.18)

into the right hand side of (6.10) and expand it with respect to \(C_1 \). Lemma 4.1 and Lemma 5.3 imply that \(C_0^{-1} \) has the same order as \(C^{-1} \) and

\[C_0^{-1} C_1 C^{-1} = \mathcal{O} \left(\frac{1}{1 + \langle p \rangle}, \frac{1 + a \langle p \rangle^2}{1 + \langle p \rangle^2} \right). \] (6.19)

is of lower order than \(C^{-1} \) by the factor \(1/(1 + \langle p \rangle) \). Then, terms containing \(C_1 \) vanish in the continuum limit in a similar way as in the proof of Proposition 6.1. By the same reason, we can replace \(W \) by \(W_0 \) (see (5.13), (5.17), and (4.17)). Furthermore, we can replace \(X_{\mu \nu} \) by

\[-i Q \left(F_{\mu \nu} E_{\mu 0} E_{\nu 0} L_0^{-1} + a r \sum_{\rho = 1}^{d} F_{\rho \nu} L_0^{-2} D_{\rho 0} D_{\mu 0} E_{\nu 0} - a r \sum_{\rho = 1}^{d} F_{\rho \nu} L_0^{-2} D_{\rho 0} D_{\nu 0} E_{\mu 0} \right) \] (6.20)

(see (5.80)). Here, the second and third terms of (6.20) give the same contributions to \(z^{(d/2)} \) when (5.80) is inserted into the right hand side of (6.10). Then, we can replace \(X_{\mu \nu} \) by \(\tilde{X}_{\mu \nu} \). Finally in order to replace \(\xi W_0 + W_0 \xi \) by \(2 \xi W_0 \) and to take the normal product, it suffices to bound commutators \([W_0, \xi], [C_0^{-1}, F_{\mu \nu}], [E_{\mu 0} E_{\nu 0} L_0^{-1}, F_{\mu \nu}] \) etc. Those commutators are estimated using Lemma 5.9: By taking a commutator with a multiplication operator, the order of the free part of an operator (with the suffix 0 like \(D_{\mu 0} \) is reduced by the factor \(1/(1 + \langle p \rangle) \), hence the trace containing at least one commutators vanishes in the continuum limit.
VI.4 Symmetry Arguments

In view of (6.15) and (6.16), we see that z_0 is a polynomial in r of order $d/2 + 1$ if we ignore the r-dependences of L_0^{-1} and C_0^{-1}. The following proposition claims that the cubic and higher order terms vanish.

Proposition 6.4. Put

$$
z_1 = -iQ^{d/2} \sum_{\mu_1, \mu_2, \ldots, \mu_{d/2} = 1}^d \sum_{\nu_1, \nu_2, \ldots, \nu_{d/2} = 1}^d \epsilon_{\mu_1 \nu_1 \ldots \mu_{d/2} / \nu_{d/2}}$$

$$r \sum_{\nu} \text{Tr}_a \left[\xi W_0 C_0^{-(d/2 + 1)} L_0^{-(d/2 + 1)} \prod_{j=1}^{d/2} \left(F_{\mu_j \nu_j} E_{\mu_j 0} E_{\nu_j 0} \right) \right], \quad (6.21)$$

$$z_2 = -iQ^{d/2} \sum_{\mu_1, \mu_2, \ldots, \mu_{d/2} = 1}^d \sum_{\nu_1, \nu_2, \ldots, \nu_{d/2} = 1}^d \epsilon_{\mu_1 \nu_1 \ldots \mu_{d/2} / \nu_{d/2}}$$

$$2r^2 \sum_{\nu} \text{Tr}_a \left[\xi W_0 C_0^{-(d/2 + 1)} L_0^{-(d/2 + 1)} \sum_{\ell=1}^{d/2} \sum_{\rho=1}^d F_{\mu_\ell \nu_\ell} D_{\mu_\ell 0} D_{\mu_\ell 0} E_{\nu_\ell 0} \prod_{j=1}^{d/2} \left(F_{\mu_j \nu_j} E_{\mu_j 0} E_{\nu_j 0} \right) \right]. \quad (6.22)$$

Then, we have

$$z_0 = z_1 + z_2. \quad (6.23)$$

Moreover, in the right hand side of (6.22), we can fix the value of ρ to μ_ℓ, i.e.

$$z_2 = -iQ^{d/2} \sum_{\mu_1, \mu_2, \ldots, \mu_{d/2} = 1}^d \sum_{\nu_1, \nu_2, \ldots, \nu_{d/2} = 1}^d \epsilon_{\mu_1 \nu_1 \ldots \mu_{d/2} / \nu_{d/2}}$$

$$2r^2 \sum_{\nu} \text{Tr}_a \left[\xi W_0 C_0^{-(d/2 + 1)} L_0^{-(d/2 + 1)} \sum_{\ell=1}^{d/2} \sum_{\rho=1}^d F_{\mu_\ell \nu_\ell} D_{\mu_\ell 0}^2 E_{\nu_\ell 0} \prod_{j=1}^{d/2} \left(F_{\mu_j \nu_j} E_{\mu_j 0} E_{\nu_j 0} \right) \right]. \quad (6.24)$$

Proof. Insert (6.15) into the summand in the right hand side of (6.16) and expand it. Let us look at a term generated by the expansion that contains at least two factors of the form $2ar \sum_{\rho=1}^d F_{\rho \nu} L_0^{-2} D_{\rho 0} D_{\mu_0} E_{\nu 0}$ (the second term of the right hand side of (6.15)). Such a term has the form

$$
: \cdots 2ar \sum_{\rho=1}^d F_{\rho \nu} L_0^{-2} D_{\rho 0} D_{\mu_0} E_{\nu 0} \cdots 2ar \sum_{\rho=1}^d F_{\rho \nu} L_0^{-2} D_{\rho 0} D_{\mu_0} E_{\nu 0} \cdots . \quad (6.25)
$$

Then, it is symmetric with respect to μ_ℓ and $\mu_{\ell'}$, hence it vanishes when it is summed up with respect to μ_ℓ and $\mu_{\ell'}$ under the presence of the totally antisymmetric tensor. This gives (6.23).
Next, note that $\mu_1, \nu_1, \ldots, \mu_{d/2}, \nu_{d/2}$ are mutually distinct because of the totally anti-symmetric tensor. Then, the sum (6.22) is decomposed into partial sums in which ρ is fixed to μ_j or ν_j for $j = 1, 2, \ldots, d/2$. If $\rho = \nu_\ell$, $F_{\rho\nu_\ell}$ vanishes. It therefore suffices to consider the case $\rho = \mu_j, \nu_j$ for some $j \neq \ell$. Assume $\rho = \mu_j$. In this case, the summand has the form

$$\cdots F_{\mu_1, \nu_1} D_{\mu_1, 0} D_{\mu_2, 0} E_{\nu_2, 0} \cdots F_{\mu_j, \nu_j} E_{\mu_j, 0} E_{\nu_j, 0} \cdots$$

Then, it is symmetric with respect to ν_ℓ and ν_j, hence it vanishes when it is summed up with respect to ν_ℓ and ν_j. The term for $\rho = \nu_j$ similarly vanishes. Thus we have (6.24). □

Combining Proposition 6.1, Proposition 6.2, Proposition 6.3, and Proposition 6.4, we obtain:

Proposition 6.5. Put

$$G = \frac{r}{a} W_0 C_0^{-(d/2+1)} L_0^{-(d/2+1)} \left(L_0 + a \sum_{\ell=1}^d \frac{D_{\mu_\ell, 0}^2}{E_{\ell, 0}} \right) \prod_{j=1}^d E_{j, 0},$$

(6.27)

where we write (with a slight abuse of notation)

$$\frac{D_{\mu_\ell, 0}^2}{E_{\ell, 0}} \prod_{j=1}^d E_{j, 0} = \frac{D_{\ell, 0}^2}{E_{\ell, 0}} \prod_{j=1, j \neq \ell}^d E_{j, 0}.$$

(6.28)

Then we have

$$\lim_{a \to 0} \left(\langle Y(\xi) \rangle + i Q^{d/2} \text{Tr} \partial_a (\xi \epsilon F^{d/2} G) \right) = 0,$$

(6.29)

where

$$\epsilon F^{d/2} = \sum_{\mu_1, \mu_2, \ldots, \mu_{d/2} = 1}^d \sum_{\nu_1, \nu_2, \ldots, \nu_{d/2} = 1}^d \epsilon_{\mu_1 \nu_1 \ldots \mu_{d/2} \nu_{d/2}} \prod_{j=1}^{d/2} F_{\mu_j, \nu_j}.$$

(6.30)

Proof. Rewrite the right hand sides of (6.21) and (6.24) as:

$$z_1 = -i Q^{d/2} \text{Tr} \partial_a \left(\xi \epsilon F^{d/2} \frac{r}{a} W_0 C_0^{-(d/2+1)} L_0^{-(d/2+1)} \prod_{j=1}^d E_{j, 0} \right),$$

(6.31)

$$z_2 = -i Q^{d/2} \text{Tr} \partial_a \left(\xi \sum_{\mu_1, \mu_2, \ldots, \mu_{d/2} = 1}^d \sum_{\nu_1, \nu_2, \ldots, \nu_{d/2} = 1}^d \epsilon_{\mu_1 \nu_1 \ldots \mu_{d/2} \nu_{d/2}} \prod_{j=1}^{d/2} F_{\mu_j, \nu_j} \right.\left. 2r^2 W_0 C_0^{-(d/2+1)} L_0^{-(d/2+1)} \sum_{\ell=1}^d \frac{D_{\mu_\ell, 0}^2}{E_{\ell, 0}} \prod_{j=1}^d E_{j, 0} \right)$$
\[
= -iQ^{d/2} \text{Tr}_{V_a^d} \left(\xi \sum_{\mu_1, \mu_2, \ldots, \mu_d/2 = 1}^{d} \sum_{\nu_1, \nu_2, \ldots, \nu_d/2 = 1}^{d} \epsilon_{\mu_1 \nu_1 \ldots \mu_d/2 \nu_d/2} \prod_{j=1}^{d/2} F_{\mu_j \nu_j} \
2r^2 W_0 C_0^{-(d/2+1)} L_0^{-(d/2+1)} \frac{1}{2} \sum_{\ell=1}^{d/2} \left(\frac{D_{\mu_0 \nu_0}^{\ell}}{E_{\mu_0 \nu_0}} + \frac{D_{\nu_0 \mu_0}^{\ell}}{E_{\nu_0 \mu_0}} \right) \prod_{j=1}^{d/2} E_{\nu_j} \right) \)
\]
= \(-iQ^{d/2} \text{Tr}_{V_a^d} \left(\xi \epsilon F^{d/2} 2r^2 W_0 C_0^{-(d/2+1)} L_0^{-(d/2+1)} \frac{1}{2} \sum_{\ell=1}^{d/2} \frac{D_{\mu_0 \nu_0}^{\ell}}{E_{\mu_0 \nu_0}} \prod_{j=1}^{d/2} E_{\nu_j} \right) \) \quad (6.32)

Then, the proposition follows from (6.3), (6.9), (6.17), (6.23), (6.31), and (6.32). \(\square\)

VI.5 Coefficients

We take the trace of the left hand side of (6.29) with respect to the (spinless) planewave basis \(u_p, p \in T^{d*}_a\), defined by (4.3). In the following proposition, \(G(p)\) is the eigenvalue of \(G\), i.e. \(Gu_p = G(p)u_p\) (see the proof of Lemma 4.1).

Proposition 6.6. Put

\[
G(p) = -2r^2 a^d \sum_{\mu=1}^{d} (1 - \cos ap_\mu) \prod_{\lambda=1}^{d} \cos ap_\lambda \
\times \frac{Ma}{r} + \sum_{\nu=1}^{d} (1 - \cos ap_\nu) - \sum_{\nu=1}^{d} \frac{\sin^2 ap_\nu}{\cos ap_\nu} \
\times \left[(Ma + r \sum_{\nu=1}^{d} (1 - \cos ap_\nu))^2 + \sum_{\nu=1}^{d} \sin^2 ap_\nu \right]^{d/2+1}, \quad (6.33)
\]

\[
\kappa_a = \frac{1}{L_d} \sum_{p \in T^{d*}_a} G(p). \quad (6.34)
\]

Then, we have

\[
\lim_{a \to 0} \left(\langle Y(\xi) \rangle + i\kappa_a Q^{d/2} a^d \sum_{x \in T^d_a} \xi(x) \epsilon F^{d/2}(x) \right) = 0, \quad (6.35)
\]

where

\[
\epsilon F^{d/2}(x) = \sum_{\mu_1, \mu_2, \ldots, \mu_d/2 = 1}^{d} \sum_{\nu_1, \nu_2, \ldots, \nu_d/2 = 1}^{d} \epsilon_{\mu_1 \nu_1 \ldots \mu_d/2 \nu_d/2} \prod_{j=1}^{d/2} F_{\mu_j \nu_j}(x), \quad x \in T^d_a. \quad (6.36)
\]

Proof. Let \(\varphi\) be a multiplication operator determined by a function \(\varphi\) which satisfies (4.30) and (4.31), and let \(K_0\) be a free operator on \(V_a^d\), i.e. an operator with \(u_p, p \in T^{d*}_a\) as the set of eigenfunctions. We denote the eigenvalue by \(K_0(p)\), i.e. \(K_0 u_p = K_0(p)u_p\). Then we
see that
\[
\Tr_{\phi} (\phi K_0) = \sum_{p \in T_d^*} (u_p, \phi K_0 u_p)
= \sum_{p \in T_d^*} K_0(p) (u_p, \phi u_p)
= \sum_{p \in T_d^*} K_0(p) \frac{a^d}{L^d} \sum_{x \in T_d^*} \phi(x).
\] (6.37)

The proposition is a consequence of (6.29) and (6.37).

Now, the proof of Theorem 2.1 is completed if we confirm the following.

Proposition 6.7 ([7]). It holds that
\[
\lim_{a \to 0} \kappa_a = \frac{2}{(4\pi)^{d/2}(d/2)!}.
\] (6.38)

Proof. Put
\[
g(a, q) = a^{-d} \frac{G(q/a)}{L^d} \sum_{q \in T_d^*} g(a, q).
\] (6.40)

Using the function \(g\), we write
\[
\kappa_a = \left(\frac{a}{L} \right)^d \sum_{q \in T_d^*} g(a, q).
\] (6.41)

For \(q \in T_d^* = [-\pi, \pi]^d\), let \([q]\) denote the point in \(aT_d^*\) nearest to \(q\). \([q]\) is defined almost everywhere in \(T_d^*\). Then, it holds that
\[
\kappa_a = \frac{1}{(2\pi)^d} \int_{T_d^*} dq g(a, [q]).
\] (6.42)
Note that, for an arbitrarily small $\epsilon > 0$, we can choose $\delta > 0$ such that
\[
\frac{1}{(2\pi)^d} \int_{B_\delta} dq \left| g(a, [q]) \right| < \epsilon,
\tag{6.43}
\]
hold for any $a \geq 0$, where $B_\delta = \{q \in \mathbb{R}^d \mid |q| < \delta\}$. Removing the small ball B_δ from the hypercube T^{d^*}, we can take the continuum limit:
\[
\lim_{a \to 0} \frac{1}{(2\pi)^d} \int_{T^{d^*} \setminus B_\delta} dq \ g(a, [q]) = \frac{1}{(2\pi)^d} \int_{T^{d^*} \setminus B_\delta} dq \ g(0, q).
\tag{6.44}
\]
Then, it holds that
\[
\lim_{a \to 0} \kappa_a = \frac{1}{(2\pi)^d} \int_{T^{d^*}} dq \ g(0, q).
\tag{6.45}
\]
It therefore suffices to show
\[
\int_{T^{d^*}} dq \ g(0, q) = \frac{2}{d} \Omega_d,
\tag{6.46}
\]
where Ω_d stands for the area of the d-dimensional unit sphere, i.e. $\Omega_d = (2\pi)^{d/2} / (d-2)!$. This fact is proved for $d = 4$ in [5] and for all d and all r in [7].

\section*{Appendix}

We list up the operators that are (globally) used in this paper.

\begin{align*}
T_{\mu 0}u(x) &= u(x + ae_\mu) \quad (2.4) \\
T_\mu &= U_\mu T_{\mu 0} \quad (2.5) \\
D_\mu &= \frac{1}{2a}(T_\mu - T_\mu^*) \quad (2.7) \\
\mathcal{D} &= \sum_{\mu=1}^d \gamma_\mu D_\mu \quad (2.9) \\
W &= -\sum_{\mu=1}^d (2I - T_\mu - T_\mu^*) \quad (2.10) \\
L &= MI - \frac{r}{2a} W \quad (3.5) \\
X_{\mu \nu} &= D_\mu L^{-1} D_\nu - D_\nu L^{-1} D_\mu \quad (3.6) \\
B &= \frac{1}{2} \sum_{\mu, \nu=1}^d \gamma_\mu \gamma_\nu X_{\mu \nu} \quad (3.7) \\
C &= L - \sum_{\mu=1}^d D_\mu L^{-1} D_\mu \quad (3.8) \\
E_{\mu 0} &= \frac{1}{2}(T_{\mu 0} + T_{\mu 0}^*) \quad (5.67)
\end{align*}

3 To be strict, our conclusion is consistent with that of [7], if we include $\prod_\mu \epsilon_\mu$ and replace $s^d - 1$ by s^{d-1} in the integrand of (A20) in [7].
References

