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Abstract
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1 Introduction.

In [3] Ben Hambly and the authors considered a family of self-repelling walks with fixed endpoints on the
finite pre-Sierpiński gaskets. We proved the existence of the continuum limit, i.e., reducing the unit length
to 0 (with suitable scaling of time parameter). The limit is a family of continuous self-repelling processes
with specific fixed endpoints (‘pinned processes’). We studied their sample path properties, such as Hölder
continuity, short-time speed and a generalized law of the iterated logarithm.

In this paper, we consider the same family of walks on the finite pre-Sierpiński gaskets, which we recall
in Section 2, but instead of taking continuum limit, we fix the unit length and extend the walks to the
(infinite) pre-Sierpiński gasket, thus remove the pinning condition and construct (infinite length) stochastic
chains, and study their properties.

In Section 3 (Theorem 5) we construct a family of stochastic chains on the pre-Sierpiński gasket con-
sistent with the pinned self-repelling walks on the finite pre-Sierpiński gaskets studied in [3]. Our family of
walks is parametrized by u which indicates the strength of self-repulsion. The walk corresponding to u = 1
is the standard simple random walk, and for u = 0 the corresponding walk is self-avoiding and of infinite
length. The path measure for the self-avoiding (u = 0) case is rather complex, as is for all cases other than
the simple random walk (u �= 1). In particular, it is supported on walks without sharp turns for u = 0. The
measure is natural, however, from the renormalization group point of view [4], in that it corresponds to the
unique fixed point of the renormalization group recursion equation (10) associated with the self-avoiding
walks on the pre-Sierpiński gasket which respect symmetries of the Sierpiński gasket. This family of walks
on the finite pre-Sierpiński gaskets parametrized by u is introduced in [3] to interpolate the simple random
walk and the measure on self-avoiding paths by the path measures corresponding to the fixed points of the
(u dependent) renormalization group, which, hereafter we refer to as the fixed point theories. (We can of
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course consider more general class of walks by introducing more parameters, but to make clear the aim of
this paper, we will stick to the family studied in [3].) We can also construct the walks for u > 1, which
correspond to self-attracting walks.

It may also be worthwhile to note that the extension of pinned walks to the infinite pre-Sierpiński gasket
is not trivial for the walks. The continuum limit continuous processes of [3] have exact self-similarities which
can be used to obtain extentions to large scales. The walk (chain), on the other hand, has a finite unit,
so that there is no exact self-similarity. It turns out, as we see in Section 3, that the fixed point condition
of the renormalization group serves as a consistency condition in applying the extension theorems. In this
sense, we may say that the renormalization group fixed point theory is an extended notion of a self-similar
processes. Note also that since our family of walks lack Markov properties, constructions based on analytic
approach cannot be applied in general.

In Section 4, we prove in Theorem 8 an asymptotic bahavior of the self-repelling and self-attracting
walks, in terms of the (u dependent) displacement exponent γ. (The exponent is equal to the exponent for
the ‘mean-square displacement’ in physics literatures, defined by E[|w(n)|2] ∼ n2γ . Our proof implies that
the exponent is the same for all the moments E[|w(n)|s] ∼ nsγ , s > 0.)

Main tools for the proof are a reflection principle and an estimate on short and long paths. These tools
have also been employed in [6], where we proved the existence of displacement exponent for a self-avoiding
walk. We would like to emphasize that the reflection principle introduced in [6] is similar in spirit to the
reflection principle used in Section 4 but is actually entirely different. In fact, by comparing the definition
of reflection principles in [6] and that in this paper for the self-avoiding (u = 0) case, one should notice that
they are absolutely different reflections. A main reason for the difference is that, in [6] we considered equal
weights for self-avoiding walks with a fixed number of steps, hence in applying a reflection principle we only
needed to compare the numbers of certain sets of walks and their reflections, whereas we here consider fixed
point theories, whose weights are natural from renormalization point of view but complex from walks’ point
of view and also depends on u, so that a very delicate coupling type argument is necessary. On the other
hand, since we are working on fixed point theories, the estimates on short and long paths are considerably
easier than those in [6].

Acknowledgements. The authors would like to thank the referee for careful reading of the manuscript.
The research of K. Hattori is supported in part by a Grant-in-Aid for Scientific Research (C) 16540101

from the Ministry of Education, Culture, Sports, Science and Technology. The research of T. Hattori is
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2 Self-repelling walks on the finite pre-Sierpiński gasket.

The pre-Sierpiński gasket is defined as follows. Let O = (0, 0), a0 = (1
2 ,

√
3

2 ), b0 = (1, 0), c0 = (−1, 0), d0 =
(−1

2 ,
√

3
2 ), and aN = 2Na0, bN = 2Nb0, cN = 2Nc0, dN = 2Nd0, N ∈ N. Let F ′

0 be the set of all the points
on the vertices and edges of �Oa0b0. We define a sequence of sets F ′

0, F ′
1, F ′

2, . . . , inductively by

F ′
N+1 = F ′

N ∪ (F ′
N + aN ) ∪ (F ′

N + bN), N ∈ Z+ = {0, 1, 2, . . .} ,

where A + a = {x + a : x ∈ A} and kA = {kx : x ∈ A}. Let F ′′
N = F ′

N ∪ (F ′
N + cN ) and F0 =

∞⋃

N=1

F ′′
N .

We call F0 the (infinite) pre-Sierpiński gasket. For N ∈ Z+, let FN = 2NF0 and denote the set of vertices
in FN by GN .

For n ∈ Z+ we call w = (w(0), w(1), · · · , w(n)) an n-step path (or a path of length n), if

w(i) ∈ G0, |w(i + 1) − w(i)| = 1, w(i)w(i + 1) ∈ F0, i = 0, 1, · · · , n − 1.

Similarly, we call w = (w(0), w(1), w(2), · · ·) an infinite path (or a path of infinite length), if

w(i) ∈ G0, |w(i + 1) − w(i)| = 1, w(i)w(i + 1) ∈ F0, i = 0, 1, 2, · · · .
We denote the length of path w by L(w).
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For a path w and A ⊂ F0, we define the hitting time TA(w) of A for w, by TA(w) = min{j � 0 : w(j) ∈
A}. If the minimum does not exist, we put TA(w) = ∞. For a path w on F0 and M ∈ Z+, define T M

i (w),
i = 0, 1, 2, · · ·, by induction as follows: T M

0 (w) = TGM (w), and for i � 1, let T M
i (w) = min{j > T M

i−1(w) :
w(j) ∈ GM \ {w(T M

i−1(w))}}, if the minimum exists, otherwise T M
i (w) = ∞. T M

i (w) is the time when the
path w hits a vertex of GM for the i + 1-th time (including the case i = 0), under the condition that if w
hits the same element of GM more than once in a row, we consider it as once.

We mainly consider walks starting at the origin. (Notion for general paths introduced so far are also
used when we consider cutting and reflecting procedures of paths in the proofs of our results.) For each
n ∈ Z+, denote a set of n-step paths on F0 starting at the origin O by W (n). Namely,

W (n) = { (w(0), w(1), · · · , w(n)) : w(0) = O, w(i) ∈ G0, |w(i + 1) − w(i)| = 1,

w(i)w(i + 1) ∈ F0, i, i + 1 ∈ {0, 1, · · · , n} }.

For w ∈ W (n), L(w) = n. Let W ∗ =
∞⋃

n=1

W (n).

Fix N ∈ Z+ for the rest of this section. Let AN = {aN , bN , cN , dN}, and define

WN,a = {w ∈ W ∗ : L(w) = TAN = T{aN}}, WN,b = {w ∈ W ∗ : L(w) = TAN = T{bN}},
WN,c = {w ∈ W ∗ : L(w) = TAN = T{cN}}, WN,d = {w ∈ W ∗ : L(w) = TAN = T{dN}},

and
WN = WN,a ∪ WN,b ∪ WN,c ∪ WN,d.

For a path w ∈ WN and M ∈ Z+, define a ‘decimation’ map QM by setting (QMw)(i) = w(T M
i (w))

for i = 0, 1, 2, . . . , j, where j is the smallest integer such that T M
j+1(w) = ∞. QMw may be regarded

as a path on FM . If we write (2−MQMw)(i) = 2−Mw(T M
i (w)), then 2−MQMw is a path on F0 and

L(2−MQMw) = j. We will write L(QMw) = L(2−MQMw) for the length of decimated path (with a unit
step normalized to be 1), and T N

i (QMw) = T N
i (2−MQMw) for the hitting times.

For a path w ∈ WN , define the reversing number NK(w) and the returning number MK(w) for level
K ∈ {0, 1, · · · , N − 1} in the following manner. For � = 1, · · · , L(QK+1w), let

NK(�)(w) = �{i ∈ Z+ : T K+1
�−1 (QKw) < i < T K+1

� (QKw) :−−−−−−−−−−−−−−−−−→
(QKw)(i − 1)(QKw)(i) · −−−−−−−−−−−−−−−−−→(QKw)(i)(QKw)(i + 1) < 0, (QKw)(i) �= (QKw)(T K+1

�−1 (QKw)) },
(1)
where �a ·�b denotes the inner product of �a and �b in R

2, and

MK(�)(w) = �{i ∈ Z+ : T K+1
�−1 (QKw) < i < T K+1

� (QKw) : (QKw)(i) = (QKw)(T K+1
�−1 (QKw))},(2)

NK(w) =
L(QK+1w)∑

�=1

NK(�)(w),

MK(w) =
L(QK+1w)∑

�=1

MK(�)(w).

Thus NK(w) counts the number of times the path QKw makes U-turns or sharp-angle turns at vertices in
GK \ GK+1, and MK(w) counts the number of times QKw revisits a vertex in GK+1. It is these types of
steps that we will suppress or enhance in our path measures.

For p, q ∈ {a, b, c, d}, we define bijections Rp,q : WN,p → WN,q as follows. Ra,d, Rd,a, Rb,c, and Rc,b are
defined as the reflection with regard to y-axis. Consider the reflection of the parts of path within �OaNbN

with regard to the line y =
1√
3
x, and that of the parts within �OcNdN with regard to the line y = − 1√

3
x.

This defines Ra,b, Rb,a, Rc,d, and Rd,c. Then Ra,c = Rb,c ◦ Ra,b defines Ra,c, and other cases are defined
in a similar way. Under these bijections, NK(w), MK(w) and L(w) remain invariant.

Let x > 0 and u � 0. For w ∈ WN , define

fN(u, w) = fN(w) =
N−1∏

K=0

uNK(w)+MK(w),(3)

3



and
ΦN (x, u) =

∑

w∈WN,a

fN (w)xL(w).(4)

Owing to the one-to-one correspondence shown above, if the summation in (4) is taken over WN,b, WN,c

or WN,d instead of WN,a, it gives the same value. Thus, in the rest of this section, we work on WN,a. We
will often write Φ(x, u) instead of Φ1(x, u). For the explicit form of Φ, see [3]. We do not use it here.

If w ∈ WN,a and M � N , then 2−MQMw ∈ WN−M,a. For w ∈ WN+1,a, put w′ = 2−NQNw ∈ W1,a,
and for each j = 1, 2, · · · , L(w′), consider a path segment wj of the path w

wj = (w(T N
j−1(w)), w(T N

j−1(w) + 1), w(T N
j−1(w) + 2), · · · , w(T N

j (w))).(5)

This path segment is the ‘fine structure’ of the j-th step of the decimated path QNw. (a) It is a path on
G0 starting from w(T N

j−1(w)) ∈ GN and stopping at w(T N
j (w)), a neighboring point of w(T N

j−1(w)) in GN ,
and (b) it has no common point with GN other than the starting point w(T N

j−1(w)) before it reaches its
endpoint. A path with properties (a) and (b) can be identified, via reflection, with a path w̃j ∈ WN,a,
in such a way that w(T N

j−1(w)) and w(T N
j (w)) correspond to O and aN , respectively. Conversely, given

arbitrarily w′ ∈ W1,a, any w̃ ∈ WN,a can be the j-th path segment (5) of some w ∈ WN+1,a such that
2−NQNw = w′. Thus there is a one-to-one correspondence wj �→ w̃j ∈ WN,a. With this correspondence,
there is a natural one-to-one mapping

WN+1,a � w �→ (w′, w̃1, w̃2, · · · , w̃L(w′)) ∈ W1,a × WN,a × · · · × WN,a.(6)

Also we have
L(w̃j) = T N

j (w) − T N
j−1(w),(7)

and

L(w) =
L(2−N QN w)∑

j=1

(T N
j (w) − T N

j−1(w)) =
L(w′)∑

j=1

L(w̃j).(8)

For any w ∈ WN+1,a, by considering the path decomposition (w′, w̃1, w̃2, · · · , w̃L(w′)) determined by the
correspondence (6), we have from (3)

fN+1(w) = f1(w′)
L(w′)∏

j=1

fN(w̃j).(9)

Combining (3), (4), (8) and (9), we have the recursion relation of ΦN ,

ΦN+1(x, u) = Φ(ΦN (x, u), u) = Φ ◦ · · · ◦ Φ(x, u).(10)

This implies that for any M < N ,

ΦN (x, u) = ΦN−M (ΦM (x, u), u).(11)

Let ru be the radius of convergence for Φ(x, u) as a power series in x.

Proposition 1 (1) For each u � 0, ru > 0 and there is a unique fixed point xu of the mapping Φ(·, u) :
(0, ru) → (0,∞), that is, Φ(xu, u) = xu, xu > 0. As a function in u, xu is continuous and strictly
decreasing on [0, 1].

(2) Let λu =
∂Φ
∂x

(xu, u). Then λu is continuous in u and λu > 2.

Proof. The case of 0 � u � 1 corresponds to Proposition 2.3 in [3]. For u > 1, it is sufficient to show ru > 0.
The rest follows just as in the case of 0 � u � 1. Note that from the definitions of N0(w) and M0(w), we
have L(w) � N0(w) + M0(w). Thus if u > 1,

Φ(x, u) =
∑

w∈W1,a

uN0(w)+M0(w)xL(w) �
∑

w∈W1,a

(ux)L(w) = Φ(ux, 1).

Since we already know that r1 > 0, we have ru � r1/u > 0. �
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(10) implies that ΦN (xu, u) = xu for all N ∈ N. In the two extreme cases, we know that x0 =
√

5 − 1
2

,

λ0 =
7 −√

5
2

(see [4, 6]), and x1 =
1
4
, λ1 = 5 (see [1, 7]).

We next define a probability measure Pu
N on WN,a by assigning to each w ∈ WN,a,

Pu
N [{w}] = (

N−1∏

K=0

uNK(w)+MK(w)) xL(w)
u /ΦN(xu, u) = fN (w)xL(w)−1

u(12)

P 1
N corresponds to the simple random walk on F ′′

N conditioned that TAN = T{aN}. Under P 0
N , only self-

avoiding paths survive. (To be precise, the measure corresponds to the fixed point of the renormalization
group [4], hence the measure is supported on the self-avoiding paths with no sharp turns.) Let us denote
by Eu

N the expectation with regard to Pu
N .

We cite the following Proposition 2 – Proposition 4 from [3]. They hold true also for u > 1.
For M � N , let QMPu

N be the image measure of Pu
N induced by 2−MQM . Combining (9), (11) and

(12), we have

Proposition 2 If w ∈ WN,a and M � N , then 2−MQMw ∈ WN−M,a and QMPu
N = Pu

N−M .

For M ∈ Z+ and k ∈ N, put SM
k = T M

k − T M
k−1.

Proposition 3 Assume N � M and k ∈ N.

(a) Let w ∈ WN,a . Under the conditional probability Pu
N [ · | SM

k (w) < ∞ ], the random variables
SM

i (w) for i = 1, . . . , k are i.i.d. and they are jointly independent of QMw.

(b) The law of SM
1 under Pu

N is equal to that of SM
1 under Pu

M . Eu
M [SM

1 ] = λM
u and the Laplace transform

of SM
1 is given by

gu
M (t) = Eu

M [e−tSM
1 ] =

1
xu

ΦM (xue−t, u), t � 0.

Proposition 4 The law of λ−N
u SN

1 under Pu
N converges weakly as N → ∞ to that of a random variable

S∗, with properties Pu[ S∗ > 0 ] = 1, Eu[ S∗ ] = 1, and its Laplace transform gu(t) = Eu[ exp(−tS∗) ]
being the unique solution to

gu(λut) =
1
xu

Φ(xugu(t), u), g′u(0) = 1.

3 Existence of stochastic chain consistent with the renormaliza-

tion group.

Let N ∈ N. The probability measure Pu
N in the preceeding section is defined on the set WN,a, which is a set

of paths on F ′′
N with fixed endpoints O and aN . In deducing displacement exponents, we need to consider

probability measures on sets of paths with fixed length (steps) n for all n ∈ N. We prove the existence of
a probability measure Pu on the set of paths of infinite length, for which the probability of the paths up
to the first hitting time of AN coincides with Pu

N (The precise statement is given in Corollary 7).
Let Pu

N,a be a probability measure on WN such that Pu
N,a[A] = Pu

N [A] for any A ⊂ WN,a , and define
probability measures Pu

N,b, Pu
N,c, Pu

N,d, on WN supported on WN,b, WN,c, WN,d, by the same formula as
(12), with aN replaced by bN , cN , dN , respectively. Define

W (∞) = {(w(0), w(1), w(2), · · ·) : w(0) = O, w(i) ∈ G0, |w(i + 1) − w(i)| = 1,

w(i)w(i + 1) ∈ F0, i ∈ Z+},
and let F be the σ-algebra on W (∞) generated by cylinder sets

Cn(w) = {w′ = (w′(0), w′(1), w′(2), · · ·) ∈ W (∞) : w′(j) = w(j) , j = 0, 1, 2, · · · , n},
w ∈ W (n), n ∈ N,

(13)

consisting of infinite-length paths whose first n steps are identical to w.
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Theorem 5 There exists a probability measure Pu on (W (∞),F) satisfying the following: For each n ∈ N

and w = (w(0), w(1), w(2), · · · , w(n)) ∈ W (n), it holds that

Pu[{w′ ∈ W (∞) : w′(j) = w(j), j = 0, 1, 2, · · · , n}]
=

1
4

∑

p∈{a,b,c,d}
Pu

N,p[{w′ ∈ WN,p : w′(j) = w(j), j = 0, 1, 2, · · · , n}],(14)

for any integer N satisfying
|w(j)| < 2N , j = 0, 1, 2, · · · , n − 1,(15)

where | · | denotes the Euclidean metric.

We remark that 2N or more steps are required for a path starting from O to hit AN = {aN , bN , cN , dN},
hence the condition (15) holds if 2N � n. Also, for each j ∈ Z+, X(j, ·) : W (∞) → G0 defined by
X(j, w) = w(j) is a G0-valued stochastic variable on (W (∞),F , Pu).

To prove Theorem 5, we first note the following. For a path in WN+1, the first hit of GN \ {O} occurs
at one of AN . By restricting the original path to [0, TAN ], we have a correspondence WN+1 → WN .

In Section 2, we introduced natural bijections Rp,q : WN,p → WN,q, p, q ∈ {a, b, c, d} which maps
w ∈ WN,p to Rp,qw ∈ WN,q in such a way that its shape (modulo partial reflection) does not change, and
in particular,

fN (w) = fN(Rp,q(w)).(16)

For simplicity of notation, we may write Rp,p for an identity map, and, in the proof of Theorem 5, we will
fix u and write PN,q for Pu

N,q.

Proposition 6 Let N be a positive integer and let p ∈ {a, b, c, d}. Consider a path

ŵ = (ŵ(0), ŵ(1), ŵ(2), · · · , ŵ(L(ŵ))) ∈ WN,p .

Then for any integer N ′ satisfying N ′ > N ,
∑

q∈{a,b,c,d}
PN ′,q[{w ∈ WN ′,q : w(j) = ŵ(j) , j = 0, 1, 2, · · · , L(ŵ)}] = PN,p[{ŵ}].

Proof. We prove the case N ′ = N + 1: The general case follows by induction in N ′. We also assume
ŵ ∈ WN,a, since other cases are similar.

We decompose w ∈ WN+1,q into (w′, w̃1, · · · , w̃L(w′)) ∈ W1,q × WN,a × · · · × WN,a, in the same way as
in (6), where w′ = 2−NQNw and w̃j is the j-th path segment identified, via appropriate reflection, with
a path in WN,a. Using (12), (8), (9) and (16), for the first equality, the condition that w(j) = ŵ(j) , j =
0, 1, 2, · · · , L(ŵ) for the second, (4) for the third, and finally, ΦN (xu, u) = xu and ŵ(L(ŵ)) = aN , we have,

PN+1,q[{w ∈ WN+1,q : w(j) = ŵ(j) , j = 0, 1, 2, · · · , L(ŵ)}]

=
∑

w∈WN+1,q;
w(j)=ŵ(j) , j=0,1,2,···,L(ŵ)

f1(w′)x−1
u

L(w′)∏

j=1

fN (w̃j)
L(w′)∏

j=1

xL(w̃j)
u

= fN (ŵ)xL(ŵ)−1
u

∑

w′∈W1,q ;

w′(1)=ŵ(L(ŵ))

f1(w′)
L(w′)∏

j=2

∑

w̃j∈WN,a

fN(w̃j)xL(w̃j)
u

= fN (ŵ)xL(ŵ)−1
u

∑

w′∈W1,q;

w′(1)=ŵ(L(ŵ))

f1(w′)ΦN (xu, u)L(w′)−1

= fN (ŵ)xL(ŵ)−1
u

∑

w′∈W1,q ;

w′(1)=a0

f1(w′)xL(w′)−1
u .
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Hence we have
∑

q∈{a,b,c,d}
PN+1,q[{w ∈ WN+1,q : w(j) = ŵ(j) , j = 0, 1, 2, · · · , L(ŵ)}]

= fN(ŵ)xL(ŵ)−1
u

∑

q∈{a,b,c,d}

∑

w′∈W1,q;

w′(1)=a0

f1(w′)xL(w′)−1
u .

According to the definition of Rp,q, w′ ∈ W1,q is mapped by Rq,a to Rq,a(w′) ∈ W1,a , while if w′(1) = a0

then this point is mapped to Rq,a(w′)(1) = q0 . On the other hand, L(w′) = L(Rq,a(w′)), and (16) implies
fN (w′) = fN(Rq,a(w′)). Note also that the first step w′(1) is a point in A0. Therefore

fN(ŵ)xL(ŵ)−1
u

∑

q∈{a,b,c,d}

∑

w′∈W1,q ;

w′(1)=a0

f1(w′)xL(w′)−1
u = fN(ŵ)xL(ŵ)−1

u

∑

q∈{a,b,c,d}

∑

w′∈W1,a;

w′(1)=q0

f1(w′)xL(w′)−1
u

= fN (ŵ)xL(ŵ)−1
u

∑

w′∈W1,a

f1(w′)xL(w′)−1
u = PN,p[{ŵ}].

�

Proof of Theorem 5. Let n ∈ N. Take an n step path w ∈ W (n) and a cylinder set Cn(w) defined in (13).
Take N satisfying (15), and put

P̃n[Cn(w)] =
1
4

∑

p∈{a,b,c,d}
PN,p[{w′ ∈ WN,p : w′(j) = w(j) , j = 0, 1, 2, · · · , n}].(17)

We first prove that the right-hand side is independent of N . Let N ′ > N . For any w′ ∈ WN ′ , it holds
that T N

1 (w′) < T N ′
1 (w′). By restricting w′ up to T N

1 (w′) , we have a path in WN . Since (15) implies
n � T N

1 (w′), we can classify the paths in {w′ ∈ WN ′,p : w′(j) = w(j) , j = 0, 1, 2, · · · , n} by the behavior
up to T N

1 (w′) and we have

1
4

∑

q∈{a,b,c,d}
PN ′,q[{w′ ∈ WN ′,q : w′(j) = w(j) , j = 0, 1, 2, · · · , n}]

=
1
4

∑

p∈{a,b,c,d}

∑

ŵ∈WN,p;
ŵ(j)=w(j) , j=0,1,2,···,n

∑

q∈{a,b,c,d}
PN ′,q[{w′ ∈ WN ′,q : w′(j) = ŵ(j) , j = 0, 1, 2, · · · , L(ŵ)}],

which, by Proposition 6, is equal to

1
4

∑

p∈{a,b,c,d}
PN,p[{ŵ ∈ WN,p : ŵ(j) = w(j) , j = 0, 1, 2, · · · , n}],

which proves that the right-hand side of (17) gives the same value for all N satisfying (15).
We next extend P̃n, defined in (17) on the cylinder sets Cn(w), to a probability measure. Let Fn be

the σ-algebra on W (∞) generated by the cylinder sets Cn(w) i.e., a family of sets which are determined
by the first n steps of the paths in W (∞). We extend P̃n to Fn by

P̃n[V ] =
∑

w∈W (n); Cn(w)⊂V

P̃n[Cn(w)], V ∈ Fn .(18)

To prove that P̃n is a probability measure, it is sufficient to prove P̃n[W (∞)] = 1. Let N be a positive
integer satisfying 2N � n. If w′ ∈ WN then L(w′) � 2N (� n), hence there exists a unique w ∈ W (n)
satisfying w′(j) = w(j) , j = 0, 1, 2, · · · , n. Using also (17), we therefore have

P̃n[W (∞)] =
∑

w∈W (n)

P̃n[Cn(w)] = 1 .

7



Lastly, we note that it is a standard argument of the extension theorem that if P̃n, n ∈ N, satisfies the
consistency condition

P̃n+1[Cn(w)] = P̃n[Cn(w)] , w ∈ W (n) , n = 1, 2, · · · ,(19)

then there exists a probability measure Pu on (W (∞),F) satisfying (14) for all n ∈ N and w ∈ W (n) .
To prove the consistency condition (19), let n ∈ N and w ∈ W (n). Note that Cn(w) ∈ Fn ⊂ Fn+1. If
2N � n + 1 then (18), and (17) imply

P̃n+1[Cn(w)] =
∑

w′′∈W (n+1);
w′′(j)=w(j), j=0,1,2,···,n

P̃n+1[Cn+1(w′′)]

=
1
4

∑

p∈{a,b,c,d}

∑

w′′∈W (n+1);
w′′(j)=w(j), j=0,1,2,···,n

PN,p[{w′ ∈ WN,p : w′(j) = w′′(j) , j = 0, 1, 2, · · · , n + 1}]

=
1
4

∑

p∈{a,b,c,d}
PN,p[{w′ ∈ WN,p : w′(j) = w(j) , j = 0, 1, 2, · · · , n}] = P̃n[Cn(w)].

�

Corollary 7 If N ∈ N and w ∈ WN , then

Pu[{w′ ∈ W (∞) : w′(j) = w(j), j = 0, 1, 2, · · · , L(w)}] =
1
4

∑

p∈{a,b,c,d}
Pu

N,p[{w}].(20)

Proof. Put n = L(w). Then the definition of WN implies (15), hence by Theorem 5 and Proposition 6 we
have the statement. �

4 Displacement exponents.

In this section, we prove the following.

Theorem 8 (Displacement exponent) Let γu =
log 2
log λu

, u � 0, where λu is a continuous function of

u defined in Proposition 1. Then, for any s > 0,

lim
n→∞(log n)−1 log Eu[ |w(n)|s ] = sγu ,

where | · | denotes the Euclidean metric.

Our proof below implies an additional statement on the correction to the ‘leading term’ log E[|w(n)|s] ∼
sγu log n in Theorem 8. See (37) and (38) for details.

Let us study the location of the walk after n-steps. Define for w ∈ W (∞) ∪ ⋃
k�n W (k)

Dn(w) = min{ M � 0 : |w(i)| � 2M , 0 � i � n },
and

||w||n = max
0�i�n

|w(i)|.

Then
2Dn(w)−1 < ||w||n � 2Dn(w)(21)

holds. Let K(n) be the positive integer such that

λK(n)
u � n < λK(n)+1

u .(22)

8



Proposition 9 (Long-path estimate) There exist positive constants C1 = C1(u) and C2 = C2(u) such
that for any positive integers n and M , Pu[ Dn(w) � K(n) + M ] � C2e

−C12
M

.

To prove this proposition, we prepare a few lemmas. In the following we fix u � 0 arbitrarily and simply
write ΦN (·, u) = ΦN (·), Φ1(·, u) = Φ(·) and λu = λ.

Lemma 10 If x < xu, then there exist positive constants C3 = C3(u, x) and C4 = C4(u, x) such that
ΦN (x) < C4e

−C32
N

for all N ∈ N.

Proof. We use the fact that Φ(x) is a power series of x without constant and linear terms, with non-negative
coefficients. We can easily see that for x < xu, {ΦN(x)}N=1,2,··· is a decreasing sequence and since 0 is the
only fixed point of Φ in [0, xu), we see that ΦN (x, u) → 0 as N → ∞. We also see

ΦN+1(x) = Φ(ΦN (x)) = ΦN (x)2P (ΦN (x)),

where P is expressed as a power series with non-negative coefficients. This combined with P (ΦN (x)) <
P (xu) = 1/xu, implies

2−(N+1){log ΦN+1(x) + log
1
xu

} < 2−N{log ΦN (x) + log
1
xu

}.

By repeated use of this inequality, we have

lim sup
N→∞

2−N log ΦN (x) = lim sup
N→∞

2−N{log ΦN (x) + log
1
xu

} � log
x

xu
= −C3 < 0.

This implies that there is an N0 ∈ N such that ΦN (x) � e−C32
N

for any N > N0. Taking C4 large enough,
we have the statement. �

Lemma 11 For any δ > 0, there exist positive constants C′
3 = C′

3(u, δ) and C′
4 = C′

4(u, δ) such that
ΦN+M (x1+δλ−N

u ) � C′
4e

−C′
32

M

, for any N, M ∈ N.

Proof. Since ΦN+M (x1+δλ−N

u ) = ΦM (ΦN (x1+δλ−N

u )), the statement is proved from Lemma 10 if we show
that there exists a positive constant ε such that

ΦN(x1+δλ−N

u ) < xu − ε(23)

for all N ∈ N. Let g̃N (t) = E[e−tλ−N SN
1 ] =

1
xu

ΦN (xue−λ−N t), t � 0, be the Laplace transform of λ−NSN
1 .

Note that
ΦN (x1+δλ−N

u ) = xug̃N (−δ log xu).(24)

Proposition 3 and Proposition 4 imply that g̃N (t) converges to g(t) = E[e−tS∗
] as N → ∞. Since P [S∗ >

0] = 1, we have g(t) < 1 for any t > 0. Thus there exist an ε′ > 0 and N1 ∈ N such that ΦN(x1+δλ−N

u ) <

xu − ε′ for all N > N1. Since it holds that ΦN (x1+δλ−N

u ) < xu also for N = 1, · · · , N1, there exists ε > 0
satisfying (23). �

Proof of Proposition 9. The equations (21) and (22) imply

Pu[ Dn(w) � K(n) + M ] � Pu[ S
K(n)+M−1
1 < n ] � Pu[ S

K(n)+M−1
1 < λK(n)+1 ].(25)

Corollary 7 and (12) imply that, if 0 � M − 2 � J ,

Pu[ SJ
1 < λJ−M+2 ] =

1
4

∑

p∈{a,b,c,d}
Pu

J,p[ SJ
1 < λJ−M+2 ] = Pu

J,a[ SJ
1 < λJ−M+2 ]

=
1
xu

∑

w∈WJ,a,L(w)<λJ−M+2

xL(w)
u fJ(w) � 1

x2
u

ΦJ(x(1+λ−(J−M+2))
u ),

where we used SJ
1 (w) = L(w) for w ∈ WJ,a and x

L(w)(1+1/L(w))
u � (x1+λ−(J−M+2)

u )L(w). This combined
with Lemma 11 and (25) leads to Pu[ Dn(w) � K(n) + M ] � C2e

−C12
M

. �
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Proposition 12 (Short-path estimate) There exists a positive constant C5 = C5(u) such that for any
positive integers n and M satisfying M < K(n),

Pu[ Dn(w) < K(n) − M ] � 1
xu

e−C5λM

.

Proof. Put N = K(n) − M . Taylor’s theorem implies, for |z| � 1, |Φ(xu + z) − xu| � λ|z|(1 + b|z|), where

b =
1
2λ

max
|y|�1

|Φ′′(xu + y)|. Let a be a positive number such that a ·
∞∏

k=0

(1 + bλ−k) � 1. Then by induction

we can show that for |z| � aλ−N and any K � N ,

|ΦK(xu + z) − xu| � λK |z|
K−1∏

�=0

(1 + bλ−(N−�)) � λK |z|
a

.(26)

Since xu < 1, we can choose 0 < C5 < 1
2 so that (1 +

2C5

a
)xu � 1. Since ex/2 � 1 + x for 0 � x � 1, (26)

implies

ΦN (xueλ−N C5) � ΦN (xu(1 + 2C5λ
−N )) � xu(1 +

2C5

a
) � 1.

Thus we have
Eu

N [ eλ−N SN
1 C5 ] =

1
xu

ΦN (xueλ−N C5) � 1
xu

.

Using Chebyshev’s inequality, we obtain

Pu
N,a[

SN
1

λN
� λM ] � 1

xu
e−C5λM

.(27)

Note that Dn(w) < N implies that SN
1 > n. Therefore

Pu[Dn(w) < N ] =
1
4

∑

q∈{a,b,c,d}
Pu

N+1,q[Dn(w) < N ] = Pu
N,a[Dn(w) < N ] � Pu

N,a[SN
1 > n].

This combined with (22) and (27) implies the statement. �

We move on to the reflection argument. The exponent γu in Theorem 8 takes the same value as the
one that governs the short-time speed of the corresponding continuum limit process, E[|X(t)|s] ∼ tsγ ,
t → 0, obtained in [3]. The reason is that both exponents are derived from the same renormalization group
analysis. However, to relate the renormalization group results to the asymptotic behaviors of the walks,
we need different methods, as may be easily anticipated from the fact that the continuum limit processes
have self-similarity, while the walks (discrete chains) do not. One of the main tools here is a somewhat
complicated use of a reflection principle, which we will explain in detail.

In the reflection argument, we split paths into parts, hence we have to consider paths starting from
points other than O. Let

W =
∞⋃

n=1

{(w(0), w(1), · · · , w(n)) : w(i) ∈ G0, |w(i + 1) − w(i)| = 1,

w(i)w(i + 1) ∈ F0, i ∈ {0, 1, · · · , n − 1}}.

Namely, W is a set of finite-length paths whose starting points are not fixed at O. We extend the definitions
of the reversing number NK(w) and the returning number MK(w) so that they hold also for any w ∈ W .
Define

NK(w) =
L(QK+1w)+1∑

�=0

NK(�)(w) and MK(w) =
L(QK+1w)+1∑

�=1

MK(�)(w),
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where, for � = 1, · · · , L(QK+1w), NK(�) and MK(�) are defined by (1) and (2), and the term for � = 0 is
counted only if T K+1

0 (QKw) > 1, with

NK(0)(w) = �{i ∈ Z+ : 0 < i < T K+1
0 (QKw) :

−−−−−−−−−−−−−−−−−→
(QKw)(i − 1)(QKw)(i) · −−−−−−−−−−−−−−−−−→(QKw)(i)(QKw)(i + 1) < 0 },

and the term for � = L(QK+1w) + 1 is counted only if (QKw)(L(QKw)) �∈ GK+1, with

NK(L(QK+1w) + 1)(w) = �{i ∈ Z+ : T K+1
L(QK+1w)(QKw) < i � L(QKw) − 1 :

−−−−−−−−−−−−−−−−−→
(QKw)(i − 1)(QKw)(i) · −−−−−−−−−−−−−−−−−→(QKw)(i)(QKw)(i + 1) < 0, (QKw)(i) �= (QKw)(T K+1

L(QK+1w)(QKw)) },

and

MK(L(QK+1w) + 1)(w) = �{i ∈ Z+ :

T K+1
L(QK+1w))(QKw) < i � L(QKw) : (QKw)(i) = (QKw)(T K+1

L(QK+1w))(QKw))}.

The definition of fN (w) given by (3) is unchanged.
Let w ∈ WN . Consider splitting w into two parts at a time t < L(w). Let

w1(i) = w(i), 0 � i � t, and w2(i) = w(t + i), 0 � i � L(w) − t.

Then
L(w1) = t, L(w2) = L(w) − t.(28)

Note that for K � N ,

T K
0 (w2) = inf{i � 0 : w2(i) ∈ GK} = inf{i � 0 : w(t + i) ∈ GK}.

Proposition 13 (Path splitting) Let w ∈ WN . Assume that w is split into two parts at some time
t < L(w).

(1) If w(t) ∈ GM \ GM+1 for some M < N , then

fN(w) � fN (w1) · fN (w2) � u−3(N−M)fN(w) for 0 � u � 1,

u−3(N−M)fN(w) � fN (w1) · fN (w2) � fN(w) for u > 1,

L(w) = L(w1) + L(w2).

(2) If w(t) = O, then
fN (w) = fN(w1) · fN(w2),

L(w) = L(w1) + L(w2).

Proof. (1) First consider NK(w) with M � K � N − 1. There is an integer �(K) such that T K
�(K)−1(w) �

t < T K
�(K)(w). w2(T K

0 (w2)) coincides either with w(T K
�(K)(w)) or w(T K

�(K)−1(w)). When we count sharp
turns and U-turns of w1 and w2, at most two turns of (QKw)(i) at i = �(K) − 1 or �(K) may elude the
counting (see Fig. 1). Thus

NK(w) − 2 � NK(w1) + NK(w2) � NK(w).

As for MK(w) with M � K � N − 1, there is an integer �′(K + 1) such that T K+1
�′(K+1)−1(w) < t <

T K+1
�′(K+1)(w). w2(T K+1

0 (w2)) coincides either with w(T K+1
�′(K+1)(w)) or w(T K+1

�′(K+1)−1(w)). In the latter case,
the first return of QKw to w(T�′(K+1)−1(w)) after t eludes the counting in MK(w2). Thus

MK(w) − 1 � MK(w1) + MK(w2) � MK(w).

Thus, for M � K we have

NK(w) + MK(w) − 3 � NK(w1) + MK(w1) + NK(w2) + MK(w2) � NK(w) + MK(w).(29)
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O

w(Tl(K)-1)K

w(t)

w(Tl(K)+1)K

w(Tl(K))
K

Figure 1:

For NK(w) and MK(w) with 1 � K < M , from the fact that w2(0) ∈ GK+1 ⊂ GM , it holds that

NK(w) = NK(w1) + NK(w2),(30)

and
MK(w) = MK(w1) + MK(w2).(31)

(29), (31) and (30) combined with (3) prove the proposition. (2) is immediate if we note that splitting at
O does not affect NK(w) or MK(w). �

Proposition 14 (Reflection principle) There exists C6 = C6(u) > 0 such that for any n ∈ N and s > 0

C6 Eu[ 2Dn(w)s, |w(n)| � 2Dn(w)−2 ] � Eu[ 2Dn(w)s, |w(n)| < 2Dn(w)−2 ]

Proof. First, fix arbitrarily N ∈ N and condition on {Dn(w) = N}. Then it is enough to study the behavior
of paths within F ′′

N+1.
For w ∈ W (n) such that Dn(w) = N , let T (n, AN−2) = sup{i < n : w(i) ∈ AN−2}, where AM =

{aM , bM , cM , dM}. Define

UN (z) = {w ∈ W (n) : Dn(w) = N, |w(n)| < 2N−2, w(T (n, AN−2)) = z},
VN (z) = {w ∈ W (n) : Dn(w) = N, |w(n)| � 2N−2, w(T (n, AN−2)) = z}, z ∈ AN−2.

For w ∈ UN (bN−2), let us denote by wR the n-step path obtained from w by reflecting the part
{w(i) : T (n, AN−2) < i � n} with respect to a line parallel to the y-axis that passes bN−2 (see Fig. 2).
This mapping is an injection from UN(bN−2) to VN (bN−2). Also for the case that z ∈ {aN−2, cN−2, dN−2},
we can define an injection from UN (z) to VN (z) in the following way. For w ∈ UN (z), we first reflect
the part {w(i) : T (n, AN−2) < i � n} at z, and if the reflected path leaks out of F0 , then reflect the
leaking part appropriately so that it lands on F0 (see Fig. 3). We denote the reflected path for the cases

12



cN-2 O bN-2 bN-1 bN

dN-2 aN-2 eN-2

aN

w(n) wR(n)

reflection line

Figure 2:

z ∈ {aN−2, cN−2, dN−2} also by wR .
For w̃ ∈ UN(z) ∪ VN (z), define

pN+1(w̃) =
∑

fN+1(w′)xL(w′)−1
u ,

where the summation is taken over w′ ∈ WN+1 with w′(i) = w̃(i) for i = 0, 1, · · · , n. We claim that there
exists a positive constant M3 that depends only on u such that

pN+1(wR) � M3pN+1(w)(32)

holds for all w ∈ UN(z), z ∈ AN−2 and N ∈ N.
With (32), the proposition is proved as follows. Let

UN = {w ∈ WN+1 : Dn(w) = N, |w(n)| < 2N−2},
VN = {w ∈ WN+1 : Dn(w) = N, |w(n)| � 2N−2}.

Corollary 7 and (32) imply

Eu[ 2Dns, |w(n)| < 2Dn−2 ] =
∞∑

N=1

2NsPu[ Dn(w) = N, |w(n)| < 2N−2 ]

=
∞∑

N=1

2Ns 1
4

∑

p∈{a,b,c,d}

∑

w∈UN∩WN+1,p

Pu
N+1,p[{w}]

�
∞∑

N=1

2Ns 1
4M3

∑

p∈{a,b,c,d}

∑

w∈VN∩WN+1,p

Pu
N+1,p[{w}]
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cN-2 O bN

dN-2 aN-2

aN

w(n)

wR(n)

reflection line 2 reflection line 1

Figure 3:

=
1

M3

∞∑

N=1

2NsPu[ Dn(w) = N, |w(n)| � 2N−2 ]

=
1

M3
Eu[ 2Dns, |w(n)| � 2Dn−2 ].

This implies the statement, with C6 =
1

M3
.

It remains to prove (32). We prove for the case w ∈ UN (bN−2) and 0 � u � 1. The other

cases can be proved in a similar manner. Put eM =
aM+1 + bM+1

2
, M ∈ Z+. For a path w ∈

UN (bN−2), w(n) can lie either in �OaN−2bN−2 or in �OcN−2dN−2. Let us consider the first case.
Note that wR(n) ∈ �bN−2eN−2bN−1. We will prepare some inequalities relating w and wR. For w′ ∈⋃

k�n W (k), put T (n+, GM) = inf{i � n : w′(i) ∈ GM}, M ∈ N. Note that if w′(n) ∈ �OaN−2bN−2,
then w′(T (n+, GN−2)) ∈ {aN−2, bN−2, O} and if w′(n) ∈ �bN−2eN−2bN−1 then w′(T (n+, GN−2)) ∈
{eN−2, bN−2, bN−1}. We will extend w and wR up to time T (n+, GN−2). To this end, we define for
w̃ ∈ UN (bN−2) ∪ VN (bN−2)

H(z)[w̃] =
∑

fN+1(w′)xL(w′)−1
u , z ∈ GN−2,

where the summation is taken over w′ ∈
⋃

k�n

W (k) satisfying w′(i) = w̃(i) for i = 0, · · · , n, and w′(L(w′)) =

w′(T (n+, GN−2)) = z.
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Taking into account the possibility that wR makes a 2N−2-scale sharp turn at the reflection point bN−2

while w does not, we have
H(eN−2)[wR] � uH(aN−2)[w],(33)

H(bN−2)[wR] � uH(bN−2)[w],(34)

H(bN−1)[wR] � uH(O)[w].(35)

Next we introduce two quantities Ξ and Ξ′. Let W a
M = {w ∈ W : w(0) = aM , L(w) = TAM+1(w)},

M ∈ Z+, and Ξ =
∑

w∈W a
0

f1(w)xL(w)
u . We will show that for any M ∈ N,

∑

w∈W a
M

fM+1(w)xL(w)
u = Ξ holds.

Note that if w ∈ W a
M , then 2−MQMw ∈ W a

0 . We split w into segments wi such that wi(t) = w(T M
i−1(w)+t),

0 � t � T M
i (w) − T M

i−1(w), i = 1, · · · , L(2−MQMw), and apply (30) and (31). Noting that each wi can be
identified, via reflection, with a path in WM,a, we have

∑

w∈W a
M

fM+1(w)xL(w)
u =

∑

w∈W a
M

xL(w)
u

M−1∏

K=0

uNK(w)+MK(w) · uNM(w)+MM (w)

=
∑

v∈W a
0

∑

w∈W a
M

2−M QM w=v

L(v)∏

i=1

(xL(wi)
u

M−1∏

K=0

uNK(wi)+MK(wi)) · uN1(v)+M1(v)

=
∑

v∈W a
0

L(v)∏

i=1

(
∑

wi∈WM,a

xL(wi)
u

M−1∏

K=0

uNK(wi)+MK(wi)) · uN1(v)+M1(v)

=
∑

v∈W a
0

(ΦM (xu, u))L(v)uN1(v)+M1(v) = Ξ.

Moreover, symmetry arguments imply that if the summation is taken over paths starting at any other point
in AM , instead of aM , the correspoinding value is equal to Ξ. Let W e

,M = {w ∈ W : w(0) = eM , L(w) =

TAM+1(w)}, and Ξ′ =
∑

w∈W e
,0

f1(w)xL(w)
u . In a similar manner to the above argument, we see that for any

M ∈ N, it holds that
∑

w∈W e
,M

fM+1(w)xL(w)
u = Ξ′.

Now we are ready to prove (32). Let w ∈ UN (bN−2). We devide the path w′ in the summation into
segments by splitting at T (n+, GN−2), and if necessary, also at T (n+, GN−1) and at T (n+, GN). Then
Proposition 13 gives,

pN+1(w) � (H(aN−2)[w] + H(bN−2)[w])Ξ3 + H(O)[w] · 4xu,

where we used ΦM (xu, u) = xu. Splitting wR at T (n+, GN−2), and, if necessary, also at T (n+, GN−1) and
T (n+, GN), we have from Proposition 13 and (33) – (35),

pN+1(wR) � u9+6+3(H(eN−2)[wR] · Ξ′ Ξ2 + H(bN−2)[wR]Ξ3) + u9H(bN−1)[wR]Ξ2

� u19(H(aN−2)[w] · Ξ′ Ξ2 + H(bN−2)[w]Ξ3) + u10H(O)[w]Ξ2

� u19M1{(H(aN−2)[w] + H(bN−2)[w])Ξ3 + 4H(O)[w]xu}
� u19M1pN+1(w),

where we put M1 = min{1,
Ξ′

Ξ
,

Ξ2

4xu
} > 0.

The case w(n) ∈ �OcN−2dN−2 can be handled in the same way to give pN+1(wR) � u13M2pN+1(w),
where M2 is a positive constant depending only on u. Thus (32) holds with M3 = min{u19M1, u

13M2} > 0.
�
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Let C′
6 =

1
1 + C6

. Proposition 14 implies

Eu[ |w(n)|s ] � Eu[ 2(Dn(w)−2)s, |w(n)| � 2Dn(w)−2 ]

� 1
1 + C6

Eu[ 2(Dn(w)−2)s ] = 2−2sC′
6 Eu[ 2Dn(w)s ],

which, with the definitions of ||w||n and Dn(w), further implies

Proposition 15 2−2sC′
6 Eu[ 2Dn(w)s ] � Eu[ |w(n)|s ] � Eu[ ||w||sn ] � Eu[ 2Dn(w)s ].

Proof of Theorem 8. Assume β > 1.

Eu[ ||w||sn ] = Eu[ ||w||sn , ||w||n < (log n)βnγ ] + Eu[ ||w||sn , ||w||n � (log n)βnγ ]
� {(log n)βnγ}s + nsPu[||w||n � (log n)βnγ ],(36)

where we used ||w||n � n. Also, (21), (22), and γ = log 2/ log λ imply

Pu[||w||n � (log n)βnγ ] � Pu[Dn(w) � β log log n

log 2
+

log n

log λ
]

� Pu[Dn(w) � β log log n

log 2
+ K(n)]

� C2 exp{−C1(log n)β},
where in the last inequality Proposition 9 was used. This combined with (36) gives

(log n)−sβn−sγEu[ ||w||sn ] � 1 + (log n)−sβns(1−γ)C2 exp{−C1(log n)β}
� 1 + C2(log n)−sβn−γs,

for any large n such that C1(log n)β � s log n. Thus

lim sup
n→∞

(log n)−sβn−sγEu[ ||w||sn ] � 1.(37)

On the other hand, combining (21), (22) and Proposition 12 in a similar way to the above argument, we
see that for any α > 0 there exists a constant C′ > 0 such that

Eu[ ||w||sn ] � {(log n)−αnγ}s{1 − Pu[||w||n < (log n)−αnγ ]}
� {(log n)−αnγ}s{1 − 1

xu
exp{−C ′(log n)α/γ}}.

Thus
lim inf
n→∞ (log n)sαn−sγEu[ ||w||sn ] � 1.(38)

(37) and (38) imply lim
n→∞(log n)−1 log Eu[ ||w||sn ] = sγ, which combined with Proposition 15, further

implies the assertion of the theorem. �
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