経済統計分析 9 分散分析

今日のおはなし、

- 検定 statistical test のいろいろ
 - ▶ 2変数の関係を調べる手段のひとつ
 - ▶ 適合度検定
 - ▶ 独立性検定
 - ▶ 分散分析
- ▶ 今日のタネ
 - ▶ 吉田耕作.2006.直感的統計学.日経BP.
 - ▶ 中村隆英ほか. 1984. 統計入門. 東大出版会.

仮説検定の手続き

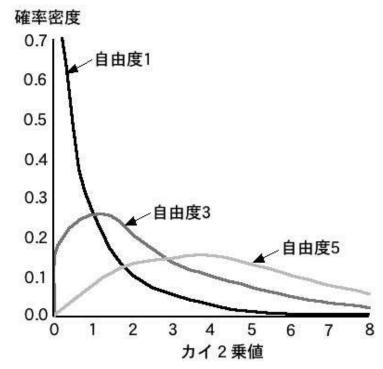
- ▶ 仮説検定のロジック
 - ▶ もし帰無仮説が正しければ、検定統計量が既知の分布に従う
 - ▶ 計算された検定統計量の値から,実現する確率(p値)が求まる

▶ 手続き

- 1. 仮説を立てる.
- 2. 有意水準を決める.
- 3. 検定統計量(test statistics)を計算する.
- 4. p値を求めて,棄却/受容を判定する.

X²分布 Chi-squared

- ▶ 自由度mのカイ2乗分布
 - ▶ m個の独立した標準正規分布に従う確率変数の2乗和の分布
 - ▶ 互いに独立な標準正規分布に従う確率変数をZ₁, Z₂, Z₃とおくと.
 - $Z_1^2 + Z_2^2 + Z_3^2$ は自由度3のカイ2乗分布に従う



F分布

- ▶ 自由度*m*₁, *m*₂のF分布
 - ト 自由度 m_1 のカイ2乗分布に従う確率変数を m_1 で割ったものと,自由度 m_2 のカイ2乗分布に従う確率変数を m_2 で割ったものの比は自由度 m_1 , m_2 のF分布に従う
 - ト いま,確率変数 U_1 が自由度 m_1 のカイ2乗分布に従い,確率変数 U_2 が自由度 m_2 のカイ2乗分布に従うとすると,

$$\frac{U_1/m_1}{U_2/m_2}$$
は自由度 m_1,m_2 の F 分布に従う

- ▶ カイ2乗分布, F分布の出番
 - ▶ 2乗して和をとっている →分散に関係しそう
 - 分散の比を調べたりしそう

適合度検定(例)

- ▶ サザエさん症候群 (Blue Monday)の検定
 - ▶ 吉田耕作『直感的統計学』p.285-286
 - ▶ 曜日ごとの不良率を,各曜日に100個ずつ取り出して調べてみた

曜日	月曜	火曜	水曜	木曜	金曜	合計
不良数	10	3	0	0	2	15

▶ 不良率が曜日によって異なるかどうかを有意水準5%で検定しよう。

検定のイメージ

- ▶ 不良率が曜日によって同じ(帰無仮説)なら,同じ回数だけ起こるはず
- ▶ しかし,サンプル誤差はありうるから,少しはずれるかもしれない
- 不良率が曜日によらないなら,毎日不良品が3個(=15/5)あるはず
- それぞれの曜日の「ずれ」の和の大きさで判断しよう
- ▶ 「ずれ」をそのまま足すと,正と負が相殺してしまう \rightarrow 2乗和をとる.

適合度検定(例)

実際の手続き

曜日	月曜	火曜	水曜	木曜	金曜	合計
不良数	10	3	0	0	2	15
理論值	3	3	3	3	3	
「誤差」2	7 ²	02	32	32	12	
揃え	$7^2/3$	$0^{2}/3$	$3^2/3$	$3^2/3$	1 ² /3	22.66

- ▶ 理論値と実現値の差を理論値で割ったものを2乗して足す
- 「ずれ」の総和とみなすことができる
- ▶ もし帰無仮説が正しければ、この「ずれ和」は自由度4のカイ2乗分布に 従うことが分かっている
 - カイ2乗分布は2乗和で定義されていたことを思い出そう.
- ▶ 自由度4のカイ2乗分布の上側5%点は9.488 →帰無仮説を棄却
- ▶「曜日によって不良率が異なる」という仮説を棄却

適合度検定

- ▶目的
 - ▶ 度数データが与えられているとき,理論的度数分布と一致するかどうか を検定する
- ▶ 状況
 - ▶ 母集団が*k*個のカテゴリに分類できる
 - n個からなるサンプルのうち,カテゴリiに属する個数を X_iと書く
 - ▶ カテゴリiに属する理論的な確率を piと書く
 - ▶ つまり,カテゴリiの理論的度数は npiとなる
- 検定統計量

$$Q = \sum_{i=1}^{k} \frac{(X_i - np_i)^2}{np_i} \sim \chi^2(k-1)$$

適合度検定(練習問題)

▶ 不良品個数が次のようであったら、曜日効果は認められるか

曜日	月曜	火曜	水曜	木曜	金曜	合計
不良数	8	4	2	2	4	

▶ 検定統計量は6となり、帰無仮説を棄却しない。

独立性の検定(例)

- ▶ 教授はエライか検定
 - ▶ 吉田耕作『直感的統計学』p.302-303
 - ▶ 教授の階級と査読付き論文数の同時度数分布(人)を作ってみた

本数	講師	助教授	准教授	正教授	合計
0	8	18	16	6	48
1~2	0	2	2	2	6
3~4	0	0	3	0	3
5以上	0	0	1	2	3
合計	8	20	22	10	60

- ▶ 論文数と教授の階級が関係ないかどうか検定しよう
- 検定のイメージ
 - ▶ 論文数が階級によって同じ(帰無仮説)なら,分布が同じになるはず
 - ▶ 適合度検定と似たような発想で.

独立性の検定(例)

- > 実際の手続き
 - ▶ 階級に関わらず,論文数の分布が周辺分布に等しいと仮定すると
 - ▶ 理論的な度数分布は

本数	講師	助教授	准教授	正教授	合計
0	6.40	16.00	17.60	8.00	48
1~2	0.80	2.00	2.20	1.00	6
3~4	0.40	1.00	1.10	0.50	3
5以上	0.40	1.00	1.10	0.50	3
合計	8	20	22	10	60

- ▶ 適合度検定と同じく、仮説的な度数分布との差の2乗を理論値で除した ものの2乗和をとったものが検定統計量 = 13.204
- ▶ 自由度9のカイ2乗分布に従うから,有意水準1%で帰無仮説を受容

独立性の検定

目的

▶ 2次元の度数データが与えられているとき,理論的度数分布と一致する かどうかを検定する

▶ 状況

- ▶ 母集団が k×m個のカテゴリに分類できる(「分割表」と呼ぶ)
- n個からなるサンプルのうち,カテゴリ(i, j) に属する個数を X_{i,j}と書く
- ▶ カテゴリ (i, j) に属する理論的な確率を p_ip_iと書く
 - ▶ 分布が独立であれば、同時確率は周辺確率の積となる
 - 周辺確率は周辺度数から求める
- ▶ つまり,カテゴリ (i, j) の理論的度数は n p_i p_j となる
- 検定統計量

$$Q = \sum_{j=1}^{m} \sum_{i=1}^{k} \frac{\left(X_{i,j} - np_i p_j\right)^2}{np_i p_j} \sim \chi^2(k-1)(m-1)$$

独立性の検定(練習問題)

- ▶ 管理職のレベルと高血圧の関係が以下のようであるとき,職階と高血圧は 独立に分布しているといえるか
 - 自由度2のカイ2乗分布の上側5%点は5.991.
 - ▶ 吉田耕作『直感的統計学』p.300

	重役級	部長級	課長級	合計
高血圧	80	140	80	300
正常	40	160	400	600
合計	120	300	480	900

▶ 検定統計量は144で,帰無仮説を棄却.

分散分析(例)

- 貯蓄率は職業によって異なるか?
 - ▶ 中村ほか『統計入門』pp.224-226
 - 貯蓄率を職業別に尋ねてみた

職業						
Α	21	21	15	13		
В	16	20	20	18	23	23
С	15	18	16	16	15	

- ▶ 貯蓄率が職業によって異なるかどうかを検定してみよう
- ▶ [注意] 今回はカテゴリではなくて連続変数を扱っていますよ.
- 検定のイメージ
 - ▶ 貯蓄率が平均的に等しければ(帰無仮説),職業別の平均からの分散 と,全体の平均からの分散は等しくなるはず
 - ▶ 平均からの乖離が正規分布に従うなら、F分布が利用できる
 - ▶ F分布は分散の比で定義されたことを思い出そう.

分散分析(例)

▶ 職業ごとの平均値を出してみると

職業	平均						
Α	17.5	21	21	15	13		
В	20.0	16	20	20	18	23	23
С	16.0	15	18	16	16	15	

▶ 職業ごとに平均値が異なるとすると, 偶然変動の2乗和は95.

職業	平均						
Α	17.5	3.5	3.5	-2.5	-4.5		
В	20.0	-4.0	0.0	0.0	-2.0	3.0	3.0
С	16.0	-1.0	2.0	0.0	0.0	-1.0	

- ▶ 全体の平均は18なので,全体的な変動の2乗和は,140
- ▶ 職業ごとの変動の2乗和は 4(-0.5)² + 6(2.0)² + 5(-2.0)² = 45
- 全変動(140)=職業変動(45)+偶然変動(95)
- F = (45/2)/(95/12) = 2.84

1元配置分散分析 ANOVA: Analysis of Variance

▶目的

サンプルがいくつかのカテゴリに分類されるとき,カテゴリごとの平均値が全て等しいかどうかを検定する

▶ 状況

- \blacktriangleright カテゴリ i には観測値が n_i 個だけあり, カテゴリは m 個ある. 総数はn
- \blacktriangleright カテゴリiのj番目の観測値の値は x_{ij} と書く
- 標本平均を上付き線で表す
- ▶ 変動の分解:誤差の2乗和
 - ▶ 全変動:全体の平均との偏差2乗和

全変動 =
$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - \bar{X})^2$$

▶ 級間変動

級間変動 =
$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (\bar{X}_i - \bar{X})^2 = \sum_{i=1}^{m} n_i (\bar{X}_i - \bar{X})^2$$

1元配置分散分析

- ▶ 変動の分解
 - ▶ 級内変動

級内変動 =
$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - \bar{X}_i)^2$$

- ▶ このとき,全変動 = 級内変動 + 級間変動
- 帰無仮説
 - ▶ 全ての平均が等しい →級間の分散 = 級内の分散
- 検定統計量
 - 各観測値が独立に正規分布に従うと仮定するとき、

$$F比 = \frac{級間変動/(m-1)}{級内変動/(n-m)} \sim F(m-1, n-m)$$

分散分析表

分散分析表

	平方和	自由度	分散	F比
級間	$S_A = \sum_{i=1}^m n_i \left(\overline{X}_i - \overline{X} \right)^2$	<i>m</i> - 1	$V_A = \frac{S_A}{m-1}$	V_A/V_E
級内	$S_{E} = \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} (x_{ij} - \bar{X}_{i})^{2}$	n - m	$V_E = \frac{S_E}{n - m}$	
全体	$S = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - \bar{X})^2$			

- ▶ MS-Excelで分散分析を行うと,このような出力が得られる.
- ▶ 自分で変動を計算して、F検定してもよいんですよ(fdist関数、finv関数).
- やってみよう(練習問題)。

MS-Excelで分散分析

- MS-Excel 2007でやってみた
 - ▶ データ→データ分析→分散分析:一元配置
 - ▶ 出力(桁だけそろえた)

分散分析: 一元配置

入力元-OK 入力範囲(W): \$A\$1:\$F\$3 14 キャンセル データ方向: ○列(C) ● 行(R) ヘルプ(田) □ 先頭列をラベルとして使用(L) a(A): 0.05 出力オプション \$A\$5 1 ● 出力先(0): ○ 新規ワークシート(P): 新規ブック(W)

? X

分散分析: 一元配置

概要

グループ	標本数	合計	平均	分散 —
 行 1	13.41 20.4	70	17.5	17
15				7.6
行 2	6	120	20	7.6
行 3	5	80	16	1.5

分散分析表

変動要因	変動	自由度	分散	観測された 分散比	P-値	F 境界値
グループ間	45	2	22.500	2.842	0.098	3.885
グループ内	95	12	7.917			
合計	140	14				

2元配置分散分析

- ▶ 1元配置分散分析ではカテゴリが1種類
- ▶ 2元配置分散分析ではカテゴリが2種類
 - ▶ 2つのカテゴリで定義されるcellごとに級内変動を計算 検証するモデルを

$$X_{ij} = \mu + \mu_{Ai} + \mu_{Bi} + e_{ij}$$

とすると、偶然誤差は

$$x_{ij} - \hat{X}_{ij} = x_{ij} - \bar{X}_{i,.} - \bar{X}_{.,j} + \bar{X}$$

▶ このばあいでも、総変動は、それぞれのカテゴリについての級間変動と、 上で定義した偶然誤差(級内変動)の和に分解される

- ▶ でも,計量経済学では,分散分析はあんまり用いられない気がする
- ▶ ダミー変数で回帰すればいいような.....?